人教版八年级上册数学 期中综合提升训练(附答案)

合集下载

新人教版八年级上学期数学期中综合试题(含答案解析)

新人教版八年级上学期数学期中综合试题(含答案解析)

新人教版八年级上学期数学期中综合试题(含答案解析)新人教版2021八年级上学期数学期中综合试题(含答案解析)一选择题〔12小题,每题4分〕1.以下长度的三条线段能组成三角形的是〔〕A.1, 2 ,4 B.4, 5,9 C.6,8, 10 D.5, 15, 8 2.以下分式是最简分式的是〔〕A. B. C. D.3.如图,在以下条件中,不能证明△ABD≌△ACD的条件是〔〕.A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD="DC"C.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB="AC"4.以下轴对称图形中,可以用没有刻度的直尺画出对称轴的有〔〕A.1个 B.2个 C.3个 D,4个5.多项式的最小值为〔〕A.4 B.5 C.16 D.256.a÷b× ÷c× ÷d× 等于〔〕A.a B. C. D.ab c d7.一个多边形内角和是1080°,那么这个多边形是〔〕A.五边形 B.六边形 C.七边形 D.八边形8.如图,在△ABC中,∠A,∠1,∠2的大小关系是( ) A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠19.假定分式的值为0,那么x的值为〔〕A.2或-2 B.2 C.-2 D.410.△ABC,求作一点P,使P到三角形三边的距离相等,那么点P是 ( )A.三边中垂线的交点B.三边的高线的交点C.三边中线的交点D.三个内角的角平分线的交点〔cx+d〕,11.假定多项式33x2﹣17x﹣26可因式分解成〔ax+b〕其中a、b、c、d均为整数,那么|a+b+c+d|之值为何?〔〕A.3 B.10 C.25 D.2912.如图,直线是一条河,A、B两地相距10 ,A、B两地到的距离区分为8 、14 ,欲在上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,那么铺设的管道最短的是〔〕二、填空题〔共6题,每题4分〕13.,,那么 = .14.化简: = 。

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。

人教版2024~2025学年八年级上册期中数学复习训练试题[含答案]

人教版2024~2025学年八年级上册期中数学复习训练试题[含答案]

二、境空题:本大题共 6 小题,每小题 3 分,共 18 分,请将答案直接填在答题
纸中对应的横线上.
13.已知点 P(-2,1),则点 P 关于 x 轴对称的点的坐标是 .
14.如果将一副三角板按如图方式叠放,那么 1 等于

15.如图,D 在 BC 边上, EAC 40° , △ ABC ≌△ ADE ,则 B 的度数为
A.5
B.8
C.9
D.10
11.如图,在 V ABC 中, BAC 90°,AB 6,AC 8,BC 10,EF 垂直平分 BC ,点 P
为直线 EF 上的任意一点,则 AP + BP 的最小值是( )
A.6
B.7
C.8
D.10
12.如图,C 为线段 AE 上一动点(不与点 A,E 重合),在 AE 同侧分别作正三角形 ABC 和
2024-2025 学年第一学期人教版八年级期中数学复习训练试
卷(天津)
试卷满分:120 分 考试时间:100 分钟
一、选择题本大愿共 12 小题每小题 3 分共 36 分在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.下列图形中,不是轴对称图形的是( )
A.
B.
C.
D.
2.下列长度的三条线段中,能组成三角形的是( )
2
A. AF BF
B. AE
C. DBF + DFB 90°
D. BAF EBC
7.如图, Rt△ ABC 中, ACB 90°, A 55° ,将其折叠,使点 A 落在边 CB 上 A 处,折
痕为 CD ,则 ADB ( )
A. 40°
B. 30°

人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。

3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。

若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。

10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。

11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。

(最新)人教版八年级上册数学期中达标测试卷部分附答案共3份

(最新)人教版八年级上册数学期中达标测试卷部分附答案共3份

八年级上册期中综合能力测评(附答案)一.选择题1.在平面直角坐标系中,点P(4,﹣3)到x轴的距离()A.4B.3C.5D.﹣32.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查杭州市出租车数量D.了解全班同学的家庭经济状况4.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)25.将点P(﹣2,﹣3)向左平移3个长度单位,再向上平移2个长度单位得到点Q,则点Q的坐标是()A.(1,﹣3)B.(﹣2,1)C.(﹣5,﹣1)D.(﹣5,5)6.下列运算正确的是()A.2m3+3m2=5m5B.m3÷(﹣m)2=mC.m•(m2)3=m6D.(m+n)(n﹣m)=m2﹣n27.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°8.古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米2020石,验得米内夹谷,抽样取米一把,数得270粒内夹谷30粒,则这批米内夹谷约为()A.222石B.224石C.230石D.232石9.若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为()A.4a2﹣1B.4a2﹣4a+1C.4a2+4a+1D.2a2﹣10.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A的度数为()A.31°B.62°C.87°D.93°11.已知a+b=﹣5,ab=﹣4,则a2﹣ab+b2=()A.29B.37C.21D.3312.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是线段AE上的一点,则下列结论错误的是()A.AE⊥BC B.BE=CE C.∠ABD=∠DBE D.△ABD≌△ACD二.填空题13.如果等腰三角形的两条边长分别等于3厘米和7厘米,那么这个等腰三角形的周长等于厘米.14.计算:xy2•(﹣6x)2=.15.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是.16.如图,在△ABC中,BD平分∠ABC,DE∥BC,交AB于点E,若AB=7cm,AE=4cm.则DE的长为cm.17.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6.按照这种运算规定,当x=时,=0.18.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2020=.三.解答题19.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.20.先化简,再求值:(2x+y)(2x﹣y)﹣(x﹣2y)2+y(﹣4x+5y+1),其中x=2,y=2008.21.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?22.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A 点除外)23.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ的形状,并加以证明.24.如图,四边形ABCD是边长为1的正方形,分别延长BD,DB至点E,F,且BF=DE=.连接AE,AF,CE,CF.(1)求证:四边形AECF是菱形;(2)求四边形AECF的面积;(3)如果M为AF的中点,P为线段EF上的一动点,求PA+PM的最小值.25.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).参考答案一.选择题1.解:在平面直角坐标系中,点P(4,﹣3)到x轴的距离为3.故选:B.2.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.3.解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查杭州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.4.解:A.(x+y)2=x2++2xy+y2,故本选项不合题意;B.(x+3)(x﹣3)=x2﹣9,故本选项不合题意;C.(m﹣n)(n﹣m)=﹣n2+2mn﹣m2,故本选项不合题意;D.(x﹣y)2=(y﹣x)2,正确.故选:D.5.解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.6.解:A.2m3与3m2不是同类项,所以不能合并,故本选项不合题意;B.m3÷(﹣m)2=m,正确;C.m•(m2)3=m7,故本选项不合题意;D.(m+n)(n﹣m)=n2﹣m2,故本选项不合题意.故选:B.7.解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.8.解:这批米内夹谷约为2020×≈224(石);故选:B.9.解:三角形的面积为:(2a+1)(2a﹣1)=2a2﹣,故选:D.10.解:∵DE垂直平分BC,∴DB=DC,∴∠DBC=∠C=31°,∵BD平分∠ABC,∴∠ABD=∠CBD=31°,∴∠A=180°﹣31°×3=87°,故选:C.11.解:把a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,将ab=﹣4代入得:a2+b2=33,则a2﹣ab+b2=33﹣(﹣4)=37.故选:B.12.解:∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE⊥BC,故选项A正确;BE=CE,故选项B正确;在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),故选项D正确;∵D为线段AE上一点,BD不一定是∠ABC的平分线,∴∠ABD与∠DBE不一定相等,故选项C错误;故选:C.二.填空题13.解:当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故答案为:17.14.解:xy2•(﹣6x)2==12x3y2,故答案为:12x3y2.15.解:若点P在第四象限,且点P到x轴的距离为2,到y轴的距离为3,则点的坐标为(3,﹣2),故答案为:(3,﹣2).16.解:∵AB=7cm,AE=4cm,∴BE=7﹣4=3cm,∵BD平分∠ABC,∴∠EBD=∠CBD,∵DE∥BC,∴∠EDB=∠CBD,∴∠EDB=∠EBD,∴DE=BE=3cm;故答案为:3.17.解:由题意得(x+2)(x﹣2)﹣(x+4)(x﹣3)=0,x2﹣4﹣(x2+x﹣12)=0,解得x=8.故答案为:8.18.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,又∵∠3=60°,∴∠OB1A2=60°+30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,∴a2=2a1=2,同理;a3=4a1=4,a4=8a1=8,a5=16a1,…,以此类推:所以a2020=22019.故答案是:22019.三.解答题19.解:(1)(2x﹣3)m+2m2﹣3x=2mx﹣3m+2m2﹣3x=(2m﹣3)x+2m2﹣3m,∵其值与x的取值无关,∴2m﹣3=0,解得,m=,答:当m=时,多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关;(2)∵A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,∴3A+6B=3[(2x+1)(x﹣1)﹣x(1﹣3y)]+6(﹣x2+xy﹣1)=3(2x2﹣2x+x﹣1﹣x+3xy]﹣6x2+6xy﹣6=6x2﹣6x+3x﹣3﹣3x+9xy﹣6x2+6xy﹣6=15xy﹣6x﹣9=3x(5y﹣2)﹣9,∵3A+6B的值与x无关,∴5y﹣2=0,即y=;(3)设AB=x,由图可知S1=a(x﹣3b),S2=2b(x﹣2a),∴S1﹣S2=a(x﹣3b)﹣2b(x﹣2a)=(a﹣2b)x+ab,∵当AB的长变化时,S1﹣S2的值始终保持不变.∴S1﹣S2取值与x无关,∴a﹣2b=0∴a=2b.20.解:原式=4x2﹣y2﹣x2+4xy﹣4y2﹣4xy+5y2+y=3x2+y∵x=2,y=2008,∴原式=3×22+2008=202021.解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).22.解:(1)∵A(﹣4,3),C(﹣2,5),∴A′(﹣4,﹣3),C'(1,3);故答案为:﹣4,﹣3;1,3;(2)如图所示:即为所求;(3)△ABC与△PBC全等,这样的P点有3个.故答案为:3.23.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.24.(1)证明:连接AC交BD于O,∵四边形ABCD是正方形,∴BD⊥AC,BO=DO,AO=CO,∵BF=DE=,∴OE=OF,∴四边形AECF是菱形;(2)解:∵四边形ABCD是边长为1的正方形,∴AB=AD=1,∴BD=AC=,∴EF=3,∴四边形AECF的面积=AC•EF=×3=3;(3)解:∵四边形AFCE是菱形,∴点A与点C关于直线EF对称,连接CM交EF于P,则此时,PA+PM=CM最小,过C作CN⊥AF于N,则AC2﹣AN2=CN2=CF2﹣NF2,设AN=x,∴()2﹣x2=()2﹣(﹣x)2,解得:x=,∴MN=,∵CM2﹣MN2=AC2﹣AN2,∴CM2﹣()2=12﹣()2,解得:CM=,故PA+PM的最小值=.25.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.八年级上册同步练习:期中考试冲刺(四)(附答案)一.选择题1.下列四个图案中,是轴对称图形的是()A.B.C.D.2.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形B.五边形C.六边形D.七边形3.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.54.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或105.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S=15,则CD的长为()△ABDA.3 B.4 C.5 D.66.如图,△ABC与△DEF关于直线l对称,则∠F等于()A.60°B.40°C.80°D.60°或80°7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB8.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD9.将一副三角板如图放置,且两条直角边重叠,则∠1的度数是( )A .30°B .45°C .70°D .75°10.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线; ②∠ADC =60°; ③点D 在AB 的中垂线上; ④S △ACD :S △ACB =1:3. 其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④二.填空题11.木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是 .12.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的底角度数是 .13.一个三角形的两边长为5和7,则第三边a的取值范围是.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.15.如图,在等边三角形ABC中,AE=CD,AD、BE相交于P点.∠BPD=°.16.如图∠1,∠2,∠3分别是△ABC的外角,则∠1+∠2+∠3=°.三.解答题17.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.18.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.19.已知:如图,CA=CB(A、B、C三点不共线).(1)请分别作出线段CA、CB的垂直平分线(用尺规作图,保留作图痕迹,不必写作法);(2)设所作两垂直平分线交于点O,连接CO,请问CO平分∠ACB吗?请说明理由.四.解答题20.如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午11时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时60千米,求∠ASB的度数及AB的长.21.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.22.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,点B、C、E 在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(结论中不得含有未标识的字母);(2)试判断DC与BE是否垂直?并说明理由.五.解答题23.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.24.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案一.选择题1.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故选:D.2.解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故选:B.3.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.4.解:①当腰是3,底边是7时,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,能构成三角形,则其周长=3+7+7=17.故选:B.5.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.6.解:∵△ABC与△DEF关于直线l对称∴∠A=∠D=40°,∠B=∠E=60°∴∠F=180°﹣100°=80°.故选:C.7.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.8.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.9.解:如图,∠2=90°﹣45°=45°,∠3=∠2=45°,所以,∠1=∠3+30°=45°+30°=75°.故选:D.10.解:根据作图方法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,故②正确;∵∠B=30°,∠DAB=30°,∴AD =DB ,∴点D 在AB 的中垂线上,故③正确; ∵∠CAD =30°, ∴CD =AD , ∵AD =DB , ∴CD =DB , ∴CD =CB ,S △ACD =CD •AC ,S △ACB =CB •AC ,∴S △ACD :S △ACB =1:3,故④正确, 故选:D .二.填空11.解:木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是:三角形的稳定性. 12.解:∵在△CBA 1中,∠B =30°,A 1B =CB , ∴∠BA 1C ==75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=∠BA 1C =×75°;同理可得∠EA 3A 2=()2×75°,∠FA 4A 3=()3×75°, ∴第n 个三角形中以A n 为顶点的内角度数是() n ﹣1×75°.故答案为:() n ﹣1×75°. 13.解:∵三角形的两边长分别为5、7, ∴第三边a 的取值范围是则2<a <12. 故答案为:2<a <12.14.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.解:∵AE=CD,∴CE=BD,∵∠ABD=∠BCE,AB=BC,∴△ABD≌△CBE,故∠BAD=∠CBE,∵∠ABD+∠BAD+∠ADB=180°,∠CBE+∠ADB+∠BPD=180°,∴∠BPD=∠ABD,∵∠ABD=60°,∴∠BPD=60°,故答案为 60°.16.解:∵三角形的外角和为360°,∴∠1+∠2+∠3=360°,故答案为:360°.三.解答题17.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.18.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.19.解:(1)出线段CA的垂直平分线GH,线段CB的垂直平分线MN如图所示;(2)设GH交AC于F,MN交BC于E.∵AC=BC,BE=CE,CF=AF,∴CE=CF,∵CO=CO,∴Rt△OCE≌Rt△OCF(HL),∴∠OCE=∠OCF,∴OC平分ACB.四.解答题20.解:如图:由图可知∠SAB=90°﹣∠DAS=90°﹣60°=30°,∠ABS=90°﹣∠SBC=90°﹣30°=60°,因为在△ABS中,∠SAB=30°,∠ABS=60°,所以∠ASB=180°﹣∠ABS﹣∠SAB=180°﹣60°﹣30°=90°.60×(11﹣8)=180(千米).所以AB长为180千米.21.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.22.解:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠EAC=∠DAE+∠EAC,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)DC⊥BE,∵△ABE≌△ACD,∴∠AEB=∠ADC,∵∠ADC+∠AFD=90°,∴∠AEB+∠AFD=90°,∵∠AFD=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴DC⊥BE.五.解答题23.解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.24.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.25.(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.2020-2021学年湖南省长沙市天心区长郡教育集团八年级(上)期中数学试卷(附答案)一、选择题(共12小题).1.(3分)在平面直角坐标系中,点M(1,﹣2)在第()象限.A.一B.二C.三D.四2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)下面的调查方式中,你认为合适的是()A.调查市场上酸奶的质量情况,采用抽样调查方式B.了解长沙市居民日平均用水量,采用全面调查方式C.乘坐飞机前的安检,采用抽样调查方式D.某LED灯厂要检测一批灯管的使用寿命,采用全面调查方式4.(3分)下列运算正确的是()A.(m﹣n)(﹣m﹣n)=﹣m2﹣n2B.(﹣1+mn)(1+mn)=﹣1﹣m2n2C.(﹣m+n)(m﹣n)=m2﹣n2D.(2m﹣3)(2m+3)=4m2﹣95.(3分)将点A(﹣2,3)通过以下哪种方式的平移,得到点A'(﹣5,7)()A.沿x轴向右平移3个单位长度,再沿y轴向上平移4个单位长度B.沿x轴向左平移3个单位长度,再沿y轴向下平移4个单位长度C.沿x轴向左平移4个单位长度,再沿y轴向上平移3个单位长度D.沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度6.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.3a2÷a2=3a7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD8.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为()A.30石B.150石C.300石D.50石9.(3分)若(x+3)(x﹣5)=x2﹣mx﹣15,则m的值为()A.2B.﹣2C.5D.﹣510.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm11.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.19B.﹣19C.25D.﹣2512.(3分)如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.②④⑤B.①③⑤C.①④⑤D.①③④二、填空题(共6小题).13.(3分)等腰三角形的一个角是110°,则它的底角是.14.(3分)计算:3a2b•(﹣2ab3)2=.15.(3分)如果点P(a﹣1,a+2)在x轴上,则a的值为.16.(3分)如图,△ABC中,AB=6,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为.17.(3分)定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=.18.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,,则△A1B1A2的面积是,△A n B n A n+1的面积是.三、解答题(第19、20题各6分,第21、22题各8分,第23,24题各9分,第25、26题各10分)19.(6分)计算:(1)x(4x2﹣x)+x3÷x;(2)(x﹣y)(x+3y)﹣x(x+2y).20.(6分)先化简,再求值:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2,其中.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C (1,﹣3).(1)画出△ABC关于y轴对称的△A1B1C1,且点A的对应点为A1,点B的对应点为B1,点C的对应点为C1;(2)在(1)的条件下,A1,B1,C1的坐标分别是,,;(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标,这点的坐标为.23.(9分)已知:△A1B1C1三个顶点的坐标分别为A1(﹣3,4),B1(﹣1,3),C1(1,6),把△A1B1C1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC,且点A1的对应点为A,点B1的对应点为B,点C1的对应点为C.(1)在坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求点P的坐标.24.(9分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,CE=DB.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEB+∠FEC的度数;(3)当∠EDF=60°时,求∠A的度数.25.(10分)如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.26.(10分)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.参考答案一、选择题(共12小题).1.(3分)在平面直角坐标系中,点M(1,﹣2)在第()象限.A.一B.二C.三D.四解:∵1>0,﹣2<0,∴点M(1,﹣2)在第四象限.故选:D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.3.(3分)下面的调查方式中,你认为合适的是()A.调查市场上酸奶的质量情况,采用抽样调查方式B.了解长沙市居民日平均用水量,采用全面调查方式C.乘坐飞机前的安检,采用抽样调查方式D.某LED灯厂要检测一批灯管的使用寿命,采用全面调查方式解:A.调查市场上酸奶的质量情况,适合采用抽样调查方式,故本选项符合题意;B.了解长沙市居民日平均用水量,适合采用抽样调查方式,故本选项不符合题意;C.乘坐飞机前的安检,适合采用全面调查方式,故本选项不符合题意;D.某LED灯厂要检测一批灯管的使用寿命,适合采用抽样调查方式,故本选项不符合题意;故选:A.4.(3分)下列运算正确的是()A.(m﹣n)(﹣m﹣n)=﹣m2﹣n2B.(﹣1+mn)(1+mn)=﹣1﹣m2n2C.(﹣m+n)(m﹣n)=m2﹣n2D.(2m﹣3)(2m+3)=4m2﹣9解:A.(m﹣n)(﹣m﹣n)=﹣(m+n)(m﹣n)=﹣(m2﹣n2)=n2﹣m2,故本选项不合题意;B.(﹣1+mn)(1+mn)=(mn)2﹣12=m2n2﹣1,故本选项不合题意;C.(﹣m+n)(m﹣n)=﹣(m﹣n)(m﹣n)=﹣(m﹣n)2=﹣m2+2mn﹣n2,故本选项不合题意;D.(2m﹣3)(2m+3)=4m2﹣9,故本选项符合题意.故选:D.5.(3分)将点A(﹣2,3)通过以下哪种方式的平移,得到点A'(﹣5,7)()A.沿x轴向右平移3个单位长度,再沿y轴向上平移4个单位长度B.沿x轴向左平移3个单位长度,再沿y轴向下平移4个单位长度C.沿x轴向左平移4个单位长度,再沿y轴向上平移3个单位长度D.沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度解:∵点A(﹣2,3),A'(﹣5,7),∴点A沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度得到点A′,故选:D.6.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.3a2÷a2=3a解:A.a2•a3=a5,故本选项不合题意;B.(a2)3=a6,故本选项不合题意;C.(2a)2=4a2,故本选项符合题意;D.3a2÷a2=3,故本选项不合题意.故选:C.7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.8.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为()A.30石B.150石C.300石D.50石解:根据题意得:1500×=150(石),答:这批米内夹谷约为150石;故选:B.9.(3分)若(x+3)(x﹣5)=x2﹣mx﹣15,则m的值为()A.2B.﹣2C.5D.﹣5解:∵(x+3)(x﹣5)=x2﹣2x﹣15,∴﹣m=﹣2,则m=2.故选:A.10.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=10,∵△ABD的周长为16,∴AB+BD+AD=AB+BD+DC=AB+BC=16,∴△ABC的周长=AB+BC+AC=16+10=26(cm),故选:A.11.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.19B.﹣19C.25D.﹣25解:x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=25﹣6=19,故选:A.12.(3分)如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.②④⑤B.①③⑤C.①④⑤D.①③④解:∵△ADE、△DFG,△ABC为等边三角形,∴DA=DE,DG=DG,∠ADE=∠FGD=∠AED=∠ACB=∠DAE=∠BAC=60°,∴∠ADG=∠EDF,∠DAB=∠CAE,∴△ADG≌△EDF(SAS),故①正确∴∠DEF=∠DAG,∵∠DEF+∠AED=∠EAC+∠ACE=∠EAC+∠ABC﹣∠BCF,∴∠EAC﹣∠DEF=∠BCF,∵∠BAG=∠DAB﹣∠DAG=∠CAE﹣∠DEF,∴∠BAG=∠BCF,故④正确,∵DF+EG=DG+GE≥DE,∴DF+GE≠AD,故③错误.设AG交CF于点O,DG交CF于K.∵△ADG≌△EDF,∴∠OGK=∠FKD,EF=AG,∵∠GKO=∠FKD,∴∠GOK=∠FDK=60°,∴∠AOC=∠GOK=∠ABC=60°,∴∠BAG=∠BCE,∵EF=CE,∴AG=CE,∵AB=CB,∴△BAG≌△BCE(SAS),∴BG=BE,∠ABG=∠CBE,∴∠EBC=∠ABC=60°,∴△EBG是等边三角形,∴∠EGB=60°,故⑤正确,无法判断AC=EC或AE=EC或AE=EC,故△ACE不一定是等腰三角形,故②错误,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)等腰三角形的一个角是110°,则它的底角是35°.解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35°.14.(3分)计算:3a2b•(﹣2ab3)2=12a4b7.解:3a2b•(﹣2ab3)2=3a2b•4a2b6=12a4b7.故答案为:12a4b7.15.(3分)如果点P(a﹣1,a+2)在x轴上,则a的值为﹣2.解:∵点P(a﹣1,a+2)在x轴上,∴a+2=0,解得a=﹣2,故答案为:﹣2.16.(3分)如图,△ABC中,AB=6,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为13.解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=6,AC=7,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=6+7=13.故答案为:13..17.(3分)定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=3.解:根据题意得(x+2)2+(x+2)(2﹣x)=20,∴x2+4x+4+4﹣x2=20,∴4x+8=20,4x=12,解得x=3,故答案为:3.18.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,,则△A1B1A2的面积是,△A n B n A n+1的面积是22n﹣2.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,∴OA1=A1B1=A1A2=2,∴等边三角形边上的高为,∴△A1B1A2的面积是:2×=;∵△A2B2A3、△A3B3A4是等边三角形,同理可得:OA2=A2B2=A2A3=4,∴高为2,∴△A2B2A3的面积是:4×2=4;∵OA3=A3B3=A3A4=23=8,∴高为4,∴△A3B3A4的面积是:8×4=16=24;…△A n B n A n+1的面积是:22n﹣2;故答案为:,22n﹣2.三、解答题(第19、20题各6分,第21、22题各8分,第23,24题各9分,第25、26题各10分)19.(6分)计算:(1)x(4x2﹣x)+x3÷x;(2)(x﹣y)(x+3y)﹣x(x+2y).解:(1)x(4x2﹣x)+x3÷x=4x3﹣x2+x2=4x3;(2)(x﹣y)(x+3y)﹣x(x+2y)=x2+3xy﹣xy﹣3y2﹣x2﹣2xy=﹣3y2.20.(6分)先化简,再求值:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2,其中.解:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2=4﹣9x2+5x2﹣5x+4x2﹣4x+1=﹣9x+5,当时,原式=﹣9×(﹣)+5=3+5=8.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.22.(8分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C (1,﹣3).(1)画出△ABC关于y轴对称的△A1B1C1,且点A的对应点为A1,点B的对应点为B1,点C的对应点为C1;(2)在(1)的条件下,A1,B1,C1的坐标分别是(﹣3,3),(3,﹣3),(﹣1,﹣3);(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标,。

(整合)人教版八年级数学上册期中综合能力检测题部分附答案共3份

(整合)人教版八年级数学上册期中综合能力检测题部分附答案共3份

北京市陈经纶中学分校2020---2021 学年度第一学期期中检测八年级 数学试卷(无答案)(考试时间 90 分钟 满分 100 分)一、选择题(本题共有 8 小题,各题均附有四个备选答案,其中有且只有一个是正确的,每小题 2 分,共 16 分)1.如图,在△ABC 中,BC 边上的高为( )(A ) AB(B ) B D (C ) AE(D ) B E2.下列运算正确的是考生须知1、 在试卷和答题卡上认真填写班级、姓名、考号。

2、 试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。

3、 在答题卡上,选择题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

4、考试结束后,将试卷和答题卡一并交回。

(A ) 2a + 3b = 5ab(B )(ab )2= a 2b 2(C ) a 2 ⋅ a 3 = a 6(D ) (a 2 )3 = a 5 3.如图, AB 与CD 相交于点,则下列结论一定正确的是( )(A ) ∠1 > ∠3 (C ) ∠3 = ∠4(B ) ∠2 < ∠4 + ∠5 (D ) ∠3 = ∠54.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是(A ) (B ) (C ) (D )5.已知: 2m = 1, 2n = 3,则 2m + n =( )(A ) 2 (B ) 3 (C ) 4 (D ) 66. 如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°, 则∠EAC的度数为 ( )(A )40° (B )35° (C )30° (D )25° 7.如果等腰三角形的一个内角等于 110°,则它的底角是()(A )35° (B )55° (C ) 70° (D )35°或 70°8.如图,△ABC 中,∠ABC =∠ACB ,D 为BC 上一点,BF =CD ,CE =BD ,则∠EDF 等于( )1 (A )90° -∠A (B )90° - ∠A21 (C )180° -∠A (D )45° - ∠A2学校________________________班级_________________姓名____________________学号____________二、填空题(本题共有8 小题,每小题 2 分,共16 分)9.若4m ⋅23 = 27 ,则m=.10.比较大小:233 322 .11.如图,点B、F、C、E 在同一条直线上,欲证△ABC≌△DEF,已知A C=DF,AB=DE,还需要添加条件.第11 题第12 题12.如图所示,将正五边形A BCDE 的C点固定,并依顺时针方向旋转,若旋转n度,可使得新五边形A′B′C′D′E的顶点D′落在直线B C 上,则n的值是.13.如图1,已知三角形纸片ABC,AB=AC,∠A = 50°,将其折叠,如图2,使点A 与点B重合,折痕为E D,点E,D 分别在A B,AC 上,则∠DBC 的大小为.第13 题第14 题14.边长分别为a和2a 的两个正方形按如图的样式摆放,则图中的阴影部分的面积为.15.写出点A(2,3)关于直线l(直线l 上各点的横坐标都是-1 )的对称点B 的坐标.16.如图,两车从南北方向的路段AB 的A 端出发,分别向东、向西行进相同的距离,到达C,D 两地,此时可以判断C,D 到B 的距离相等,用到的数学道理是.16 题图⎩三、解答题(第 17-22 题共 6 题各 5 分,第 23-26 题共 4 题各 6分,第 27-28 题共 2 题各 7 分,共 68 分)17.解下列方程组⎧⎪3x < x + 8,18.解不等式组 ⎨⎪4 ( x +1) ≤ 7 x +10.并把它的解集在数轴上表示出来。

2022-2023学年人教版八年级上数学期中能力提升测试卷含答案

2022-2023学年人教版八年级上数学期中能力提升测试卷含答案

2022年人教版八年级数学第一学期期中能力提升测试卷一、选择题(共10小题,每小题3分,共30分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF3.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点4.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD5.一个多边形的每一个外角都等于45°,那么这个多边形的内角和为()A.1260°B.1080°C.1620°D.360°6.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去7.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短8.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.9.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=102°,则∠EAF为()A.38°B.40°C.24°D.44°10.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1B.2C.3D.4二、填空题(共5小题,每小题3分,共15分)11.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为.12.一个三角形的三边为2、4、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.13.若一个三角形的三条高所在直线的交点在三角形外部,此三角形是三角形.14.如图所示,∠A=∠E,AC⊥BE,AB=EF,BE=18,CF=8,则AC=.15.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数是.三、解答题(共8小题,共75分)16.(8分)如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?17.(8分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.18.(9分)已知:如图,∠A=∠D=90°,AC=BD.求证:AB=CD.19.(9分)如图,在△ABC中,∠B=26°,∠BAC=30°,过点A作BC边上的高,交BC的延长线于点D,CE平分∠ACD,交AD于点E.求∠AEC的度数.20.(10分)已知:如图,∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=CD,BE =CF.求证:△OEF是等腰三角形.21.(10分)如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR 分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.22.(10分)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.23.(11分)如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.参考答案12345678910D B C D B C C B C C11.40°或140°12.1013.钝角14.1015.60°三、解答题16.解:设这个多边形的边数为n,根据题意,得(n﹣2)•180=360×3+180,解得:n=9.即这个多边形的边数是9.17.解:(1)如图所示:△A1B1C1即为所求,A1(2,﹣4),B1(3,﹣1),C1(﹣2,1).(2)S△ABC=5×5−12×4×5−12×1×3−12×2×5=172.18.证明:连接BC,∵∠A=∠D=90°,∴△ABC和△DCB都是直角三角形.在Rt △ABC 和Rt △DCB 中,{BC =CBAC =DB ,∴Rt △ABC ≌Rt △DCB (HL ). ∴AB =CD .19.解:∵∠B =26°,∠BAC =30°, ∴∠ACD =56°, ∵CE 平分∠ACD , ∴∠ACE =∠ECD =28°, ∵AD ⊥BD , ∴∠CDE =90°,∴∠AEC =∠ECD +∠D =118°. 20.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE , 在Rt △ABF 和Rt △DCE 中,{AB =DC BF =CE ,∴Rt △ABF ≌Rt △DCE (HL ) ∴∠AFB =∠DEC , ∴OE =OF ,∴△OEF 是等腰三角形. 21.解:(1)∵P ,Q 关于OA 对称, ∴OA 垂直平分线段PQ , ∴MQ =MP =4, ∵MN =5,∴QN =MN ﹣MQ =5﹣4=1.(2)∵P ,R 关于OB 对称, ∴OB 垂直平分线段PR , ∴NR =NP =4,∴QR =QN +NR =1+4=5. 22.(1)证明:∵△ABD ≌△CFD , ∴∠BAD =∠DCF , 又∵∠AFE =∠CFD , ∴∠AEF =∠CDF =90°, ∴CE ⊥AB ;(2)解:∵△ABD ≌△CFD ,∴BD =DF ,∵BC =7,AD =DC =5, ∴BD =BC ﹣CD =2, ∴AF =AD ﹣DF =5﹣2=3.23.证明:(1)∵AD ∥BC , ∴∠ADB =∠CBE ,在△ABD 和△ECB 中,{∠A =∠BECAD =BE ∠ADB =∠CBE ,∴△ABD ≌△ECB (ASA ); (2)∵△ABD ≌△ECB , ∴BD =BC ,∴∠BDC =∠BCD =70°, ∴∠DBC =40°, ∴∠ADB =∠CBD =40°.。

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案一、选择题(每题4分,共40分)1. 已知数列:2, 4, 6, 8, 10, ...,该数列的第20项是()A. 40B. 42C. 38D. 412. 下列函数中,正比例函数是()A. y = 2x + 3B. y = 3x^2C. y = 5xD. y = x^33. 若平行线l1:3x - 4y + 5 = 0,l2:6x - 8y + 10 = 0,则两平行线的距离为()A. 5/2B. 5/3C. 10/3D. 104. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = x^35. 若直角坐标系中,点A(a, b)关于原点的对称点是B,则B的坐标是()A. (-a, b)B. (-a, -b)C. (a, -b)D. (b, a)6. 已知函数y = kx + b(k≠0)的图像经过第一、二、四象限,则()A. k > 0, b > 0B. k < 0, b < 0C. k > 0, b <0 D. k < 0, b > 07. 下列说法中,正确的是()A. 两个一次函数的图像平行,则它们的斜率相等B. 两个一次函数的图像垂直,则它们的斜率乘积为1C. 两个一次函数的图像重合,则它们的斜率相等D. 两个一次函数的图像相交,则它们的斜率之和为08. 下列图形中,一定是中心对称图形的是()A. 矩形B. 等边三角形C. 梯形D. 平行四边形9. 下列关于勾股定理的说法,正确的是()A. 直角三角形的两条直角边的平方和等于斜边的平方B. 直角三角形的两条直角边的平方差等于斜边的平方C. 直角三角形的斜边的平方等于两条直角边的平方和D. 直角三角形的斜边的平方等于两条直角边的平方差10. 若a^2 + b^2 = 25,且a > 0, b < 0,则a + b的取值范围是()A. a + b > 5B. a + b < 5C. a + b = 5D. a + b ≠ 5二、填空题(每题4分,共40分)11. 已知数列:3, 6, 9, 12, 15, ...,该数列的通项公式是an = _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学
期中综合提升训练
一.选择题
1.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()
①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平分∠BAC.
A.4个B.3个C.2个D.1个
2.已知△ABC≌△A'B'C,∠A=40°,∠CBA=60°,A'C交边AB于P(点P不与A、B重合).BO、CO分别平分∠CBA,∠BCP,若m°<∠BOC<n°,则n﹣m的值为()
A.20 B.40 C.60 D.100
3.的立方根是()
A.﹣4 B.±4 C.±2 D.﹣2
4.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度
B.先向右平移4个单位长度,再向上平移6个单位长度
C.先向左平移4个单位长度,再向下平移6个单位长度
D.先向右平移4个单位长度,再向下平移6个单位长度
5.下列调查方式,你认为最合适的是()
A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式
B.旅客上飞机前的安检,采用抽样调查方式
C.了解A市居民日平均用水量,采用全面调查方式
D.了解A市每天的平均用电量,采用抽样调查方式
6.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()
A.3cm,4cm,8cm B.8cm,7cm,15cm C.13cm,12cm,20cm D.5cm,5cm,11cm
7.若一个多边形的内角和是1080度,则这个多边形的边数为()
A.6 B.7 C.8 D.10
8.如图,图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角,关于这七个角的度数关系,下列选项正确的是()
A.∠2=∠4+∠5 B.∠3=∠1+∠6 C.∠1+∠4+∠7=180° D.∠5=∠1+∠4
9.下列所示的四个图形中,∠1和∠2是同位角的是()
A.①④B.①②③C.①②④D.②③
10.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()
A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形 D.三角形有稳定性二.填空题
11.平面直角坐标系中有一点M在第四象限,它到x轴的距离是4,到y轴的距离是5,则点M的坐标为.12.已知对任意有理数a、b,关于x、y的二元一次方程(a﹣b)x﹣(a+b)y=a+b有一组公共解,则公共解为.13.不等式3(x﹣1)≤5﹣x的非负整数是.
14.已知BD是△ABC的中线,AB=7,BC=3,且△ABD的周长为15,则△BCD的周长为.
15.已知△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,那么△DEF中EF边上的高是cm.
三.解答题
16.解不等式并把解集表示在数轴上:
(1)2(x+1)﹣1≥4x+2,(2)﹣2≥﹣
17.计算:
18.在平面直角坐标系中,三角形ABC的位置如图所示,把三角形ABC平移后,三角形ABC内任意点P(x,y)对应点为P′(x+3,y﹣4).
(1)画出平移后的图形;
(2)三角形ABC是经过怎样平移后得到三角形A′B′C′?
(3)在三角形ABC平移到三角形A′B′C′的过程中,线段AB扫过的面积为.
19.(1)如图:画出△ABC的高AD、角平分线AE;
(2)若∠ABC=100°,∠C=30°,求∠DAE的度数.
20.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:
销售时段
销售数量
销售收入A种型号B种型号
第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
五.解答题
21.一次随机的问卷调查,共发放1000份调查问卷,并全部回收.根据调查问卷,将消费者年收入情况整理后,制成表格如下:
年收入(万元) 1.2 1.8 3.0 5.0 10.0
被调查的消费者人数(人)200 500 200 70 30
表1(被调查的消费者打算购买住房的面积的情况,注:住房面积取整数)
将消费者打算购买住房的面积的情况整理后,作出部分频数分布直方图(如图),
请你根据以上信息,回答下列问题:
(1)根据频数分布直方图可得,被调查的消费者平均年收入为万元;被调查的消费者年收入的中位数是万元;在平均数、中位数这两个数中,更能反映出被调查的消费者年收入的一般水平.(2)根据表1可得,打算购买100~120平方米房子的人数是人;打算购买住房面积小于100平方米的消费者的人数占被调查人数的百分数是.
(3)在图中补全这个频率分布直方图.
答案
一.选择题1.C.2.B.3.D.4.D.5.D.6.C.7.C.8.D.9.C.10.D.二.填空题
11.(5,﹣4).12.x=0,y=﹣1.13.0、1、2.14.11.15.8 三.解答题
16.解:(1)2x+2﹣1≥4x+2,
2x﹣4x≥2﹣2+1,
﹣2x≥1,
x≤﹣,
(2)3x﹣12≥﹣2(7﹣x),
3x﹣12≥﹣14+2x,
3x﹣2x≥﹣14+12,
x≥﹣2,
17.解:
=﹣3+2+1=
18.解:(1)如图所示,△A′B′C′即为所求;
(2)由题意知,△ABC先向右平移3个单位、再向下平移4个单位可以得到△A′B′C;
(3)线段AB扫过的面积为S▱ABED+S▱DEB′A′=3×5+3×4=27,
故答案为:27.
19.解:(1)
(2)∵∠DAB=∠ABE﹣∠ADB=100°﹣90°=10°,(三角形的外角等于不相邻两内角和)(5分)∠BAC=180°﹣∠ABC﹣∠C=180°﹣100°﹣30°=50°,(三角形内角和为180°)
又∵AE平分∠BAC,∴∠BAE=∠BAC=25°,(角平分线的定义)
∴∠DAE=∠DAB+∠BAE=10°+25°=35°.(8分)
20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得:,
解得:,
答:A、B两种型号电风扇的销售单价分别为200元、150元.
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.
依题意得:160a+120(50﹣a)≤7500,
解得:a≤37.
答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.
(3)根据题意得:
(200﹣160)a+(150﹣120)(50﹣a)>1850,
解得:a>35,
∵a≤37,且a应为整数,
∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:
当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;
当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.
21.解:(1)==2.39(万元);
将这组数据按从小到大排列为,由于有偶数个数,取最中间两个数的平均数,第500、501位都是1.8,被调查的消费者年收入的中位数是1.8万元;
中位数更能反映出被调查的消费者年收入的一般水平.
(2)由图可知,打算购买100~120平方米房子的人数是1000﹣(360+200+120+40)=240人,打算购买住房面积小于100平方米的消费者的人数占被调查人数的百分数是=52%.
(3)如图:。

相关文档
最新文档