八年级人教版上册数学期中测试卷(含答案)
2022-2023学年人教版八年级数学上册期中测试卷(含答案)

人教版八年级数学上册期中测试卷一、单选题(本题共10小题,每小题5分,共50分)1.下列命题正确的是()A.三角形的三条中线必交于三角形内一点B.三角形的三条高均在三角形内部C.三角形的外角可能等于与它不相邻的内角D.四边形具有稳定性【答案】A【解析】【解答】解:A、三角形的三条中线必交于三角形内一点,符合题意;B、钝角三角形的三条高有两条在三角形外部,故不符合题意;C、三角形的外角等于与它不相邻的两个内角之和,故不符合题意;D、四边形具有不稳定性,故不符合题意,故答案为:A.2.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于().A.10B.11C.13D.11或13【答案】D【解析】【解答】根据题意,需分两种情况讨论:当两腰为5,底边为3时,周长等于13;当两腰为3,底边为5时,周长等于11.且两种情况均符合三角形三边之间关系定理,所以周长为11或13,故答案为:D.3.如图,在△ABC中,AB=5,BC=8,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离为()A.2B.3C.4D.5【答案】B【解析】【解答】解:∵在△ABC中,AB=5,BC=8,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,∴A′B′=AB=5,∠A′B′C=∠B=60°∵将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴A′B′=A′C=5∴△A′B′C为等边三角形∴B′C=A′B′=A′C=5∴平移的距离BB′=BC−B′C=3故答案为:B.4.如图,直线l外有不重合的两点A,B.在直线l上求一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B'.②连接AB'交直线l于点C,则点C即为所求.在解决这个问题时,没有用到的知识点是()A.线段的垂直平分线性质B.两点之间线段最短C.三角形两边之和大于第三边D.角平分线的性质【答案】D【解析】【解答】解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′.∵AB′交l于C,且两条直线相交只有一个交点,∴CB′+CA=AB′,即CA+CB=AB′.任取直线l上一点C′,与点C不重合,则C′B′+C′A>AB′,即AB′是CA+CB的最小值. 本题在解答过程中利用了线段垂直平分线的性质定理:两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边. 没有用到的知识点是:角平分线的性质,故答案为:D.5.如图,CA=CB,AD=BD,M、N分别为CA、CB的中点,∠ADN=80°,∠BDN=30°,则∠CDN的度数为()A.40°B.15°C.25°D.30°【答案】C【解析】【解答】解:在∠CAD和∠CBD中,{CA=CB AD=BD CD=CD,∴∠CAD∠∠CBD(SSS),∴∠CDA=∠CDB,∠A=∠B,又∵AC=CB,M,N分别为CA,CB的中点,∴AM=BN,又AD=BD,∴∠ADM∠∠BDN(SAS),∴∠ADM=∠BDN=30°,∵∠ADN=80°,∴∠ADM+2∠CDN=80°,∴∠CDN=25°,故答案为:C.6.如图,在Rt∠ABC中,∠BAC=90°,AB=AC,AD∠BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF。
人教版八年级数学上册期中测试题(含答案)

八年级期中综合素质调研检测数 学(本卷满分120分,考试时间:120分钟)题号一二三总分1—1213—18 19 20 21 22 23 24 25 26 得分一、选择题:(本题共12小题,每小题3分,共36分, 请将正确的答案写在题后的括号内)。
1. 通常把自行车的车身设计为三角架结构,这是因为三角形具有 ( )A .对称性B .稳定性C .全等性D .以上说法都正确2. 下列各组数中,能组成三角形的一组是( )1,1,2B .1,2,4C .2,3,5D .2,3,43.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为 公共边的“共边三角形”有( )对。
A. 2 B. 3 C. 4 D. 54. 下列说法:①全等三角形的形状相同、大小相等②全等三角形的面积相等 ③周长相等的两个三角形全等 ④全等三角形的对应边相等、对应角相等其中正确的说法为( ) A .②③④B. ①②③C. ①②④D. ①②③④5.一副三角板有两个直角三角形,按如图的方式叠放在一起,则∠α的度数是( ) A. 165⁰B. 150⁰C. 135⁰D. 120⁰6. 下列四组条件中,可以判定△ABC 与△111C B A 全等的是( )A. ,,1111C A AC C B BC ==∠A=∠1AB. ,11B A AB = ∠C=∠1C =090C. ,11C A AC = ∠A=∠1A ∠B=∠1BD. ∠A=∠1A ∠B=∠1B ,∠C=∠1C7. 下列计算正确的是( )A.3332a a a =•B. 422x x x =+C.236a a a =÷D.6328)2(m m -=-8. 若,)()(22A b a b a +-=+则A 为 ( ) A.-2abB.2abC. 4abD. -4ab9. 已知43))((2--=+-x x n x m x ,则n m -的值为 ( ) A. 1B .3C. -2D . -310. 下列因式分解正解的是( )A. 2)()()(y x x y y y x x -=-+-B.)(2y x x x xy x +=++C. )2)(2(442-+=+-x x x xD.)4(42+-=+-x x x x11. 如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是 ( ) A. ∠AOB=90⁰ B. AD+BC=AB C. 点O 是CD 的中点 D. 图中与∠CBO 互余的角有两个12. 矩形ABCD 中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图 中空白部分的面积为 ( ) A. 2c ac bc ab +-- B.2c ac ab bc ++-C.ab a bc b -+-22D. ac bc ab a -++2二、填空题:(本大题6小题,每小题3分,共18分,请将正确的答案填写在相应题中的横线上)13. 正n 边形的一个外角是40⁰,则n 为 . 14. 已知方程{512=+=-a b b a 的解恰好是△ABC 的两边长,则△ABC 的第三边C 的取值范围是 .15. 在△ABC 中,点D 、E 、F 分别 是BC 、AD 、CE 的中点,且△ABC 的面积等于82cm ,则阴影S = . 16. 已知51=+x x ,则221xx +的值是 . 17. 如图所示,在△ABC 中,∠A=70⁰,∠B=50⁰,点D 、E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处, 若△EFC 为直角三角形,则∠BDF= .18. 如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平 分线交于点1A ,∠1A BC 的平分线与∠1A CD 的平分线交于点2A ,,∠BC A n 1-的平分线与∠CD A n 1-交于点n A ,的平分线交于点n A ,若∠A=θ,则∠=n A .三、解答题:(本大题共8小题,共66分,解答应写出文字说明或演算步骤或推理过程) 19.因式分解(每小题4分,共12分)(1))(9)(3a b b a -+- (2)m mx mx 1682+-(3)))((6-2+n n +7.20. 化简求值(每小题5分,共10分)(1)2215()()2()3(),5x y x y x y x y x y +--+--其中=-2,=(2)6423323(420126)(2),2,2a a b a b a b a a b ⎡⎤---+÷--=-=⎣⎦其中21.(5分)已知在△ABC 中,三边长分别为a ,b ,c 满足等式,0222222=--++bc ab c b a 请判断△ABC 的形状,并证明你的结论。
人教版八年级上册数学《期中》测试卷及答案【完美版】

人教版八年级上册数学《期中》测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±2.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.下列运算正确的是( )A .4=±2B .(4)2=4C .2(4)-=﹣4D .(﹣4)2=﹣44.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<5.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙8.如图,在△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B 的长为( ).A .1B .31-C .2D .222-9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .2510.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.若m+1m =3,则m 2+21m=________. 4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题(本大题共6小题,共72分)1.解方程:223124x x x --=+-2.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.3.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值4.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.5.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.6.学校需要添置教师办公桌椅A 、B 两型共200套,已知2套A 型桌椅和1套B 型桌椅共需2000元,1套A 型桌椅和3套B 型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、B5、A6、B7、B8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()2x x y -23、74、25、1(21,2)n n --6、18三、解答题(本大题共6小题,共72分)1、54x = 2、42x x +;1x =时,原式52=(或当2x =时,原式32=.)3、(1)详见解析(2)k 4=或k 5=4、(1)略;(2)75.5、略.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。
人教版八年级上册数学期中测试卷(含答案)

参考答案
1.B
2.D
3.A
4.A
5.D
6.C
7.C
8.A
9.D
10.B
11.100°
12.4cm、5cm、6cm
13. , , ,
14.4
15.
A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形
6.(本题3分)如图,点 分别在 的边 、 上, ,若 垂直平分 ,则 ().
A. B. C. D.
7.(本题3分)下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形.其中一定是轴对称图形的有()
A.2个B.3个C.4个D.5个
8.(本题3分)如图,在△ABC中,∠B=50°,点D为边AB的中点,点E在边AC上,将△ADE沿DE折叠,使得点A恰好落在BC的延长线上的点F处,DF与AC交于点O,连结CD,则下列结论一定正确的是( )
A.6B.7C.8D.9
3.(本题3分)如图,点D,F,E,A在同一直线上,已知 ,那么添加下列条件不能判断 的是()
A. B. C. D.
4.(本题3分)已知点A(m-1,3)与点B(2,n)关于x轴对称,则m+n的值为( ).
A.0B.-6C.-1D.6
5.(本题3分)若一个三角形三个内角度数的比为11︰7︰3,那么这个三角形是()
人教版八年级上册数学期中测试卷
(满分120分时间100分钟)
题号
一
二
三
总分
得分
一、单选题(共30分)
1.(本题3分)已知等腰三角形的两边长分别为3cm和7cm,则这个三角形的周长为()
人教版八年级上册数学期中试卷(附答案)

人教版八年级上册数学期中试卷(附答案)一、选择题(每小题3分,共计30分)1.下列计算正确的是( )(A)3a-a=2 (B)(a 2)4=a 8 (C)a+a 4=a 5 (D)(a+b)(a-b)=a 2+b 22.下列图形是轴对称图形的是( )3.下列从左到右的变形中,是因式分解的是( )(A)x(a-b)=ax-bx (B) x 2-1+y 2=(x-1)(x+1)+y 2(C) x 2-1=(x-1)(x+1) (D) ax+bx+c= x(a+b)+c4.计算[(-a )3]4÷(-a 4)3的结果是( )(A)-1 (B)1 (C)a (D)-a5.计算:0.756³(- 43)6的结果是( ) (A)-1 (B)1 (C)-5 (D) 164 6.如图,AB=AC ,∠A=40°,AB 的垂直平分线MN交AC 于点D ,则∠DBC 的度数为( )(A)60° (B)45°(C)30° (D)20°7. 计算:a 2(a+1)-a(a 2-2a-1)的结果是( )(A) -a 2-a (B) 2a 2+a +1 (C) 3a 2+a (D) 3a 2-a8.等腰三角形的一边长为4cm ,另一边长为9cm ,则它的周长为( )(A)13cm (B)17cm (C)22cm (D)17cm 或22cm .9.如图,∠AOB=30°,P 为∠AOB 平分线上一点,PC∥OA 交OB 于点C , PD ⊥OA 于点D ,若PD+PC=12,则0C 的长为( )(A)2 (B)4 (C)6 (D)810.下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形; ③有一边上的高也是这边上的中线的 等腰三角形是等边三角形; ④三个外角都相等的三角形是等边三角形. 正确 的个数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个二、填空题(每小题3分,共计30分)11.如果点A 的坐标为(3,-2),点B 的坐标为(3,2),那么点A 和点B 关于 _________ 对称.12.计算:d 3²d+d 2²d 2=_________.13.若等腰三角形有一个角为1000,则另两个角为_________.14.把多项式ab 2-2ab+a 分解因式的结果是15.计算(-x-y )2=_________________.16.若x+ 1x =5, 则x 2+ 1 x2 =________. 17.若x 2 - 2mx + 1是一个完全平方式,则m 的值为18.已知等腰Rt △ABC 中,∠C=90°,直线l 经过点C , 过点A 、B 分别作直线l 的垂线,垂足分别为D 、E , 若AD=15,BE=13,则DE=_________.19. 如图,在△ABC 中,AB=AC, 点D 、E 分别在BC 、AC 上,连接AD 、DE ,∠BAD=20°,AD=AE,则∠EDC=_______度.20.在△ABC 中,∠ACB=2∠ABC ,AD 为∠BAC 的平分线,过C 点作 AD 的垂线交 AB 于点,垂足为F ,BF=43, 则CD=三、解答题(21-24题每题6分,25,26题每题8分,27,28题每题10分,共60分)21.计算、因式分解:⑴ 计算: (x+y)(x-y)-x(x+y); ⑵ 因式分解: m 2(x-y)+n 2(y-x).。
人教版八年级上册数学期中考试试卷及答案

八年级上册数学期中考试(时刻:90分钟总分:100分)一.选择题(36分)1.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()AB C3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2图14.如图2,AD是ABC△的中线,E,F别离是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则那个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,5ADCB图2EFCOAB图411.等腰三角形的一个角是80°,则它的底角是 ( )A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则那个等腰三角形的底角是 ( )A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)13.若是△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 若是△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“必然”或“不必然”或“必然不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= . 16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必需知足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。
人教版八年级数学上册期中测试题-带参考答案

人教版八年级数学上册期中测试题-带参考答案(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列交通标志图案是轴对称图形的是()A B C D2.(2022年金华)已知三角形的两边长分别为5 cm和8 cm,则第三边的长可以是()A. 2 cmB. 3 cmC. 6 cmD. 13 cm3. 如图1,已知△ABC≌△DEC,点E在AB边上,∠B=70°,则∠BCE的度数为()A. 30°B. 40°C. 45°D. 50°图14.若一个正多边形的各个内角都是140°,则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形5. 根据图2中给定的条件,全等的三角形是()A.①和②B.②和③C.①和④D.②和④①②③④图26.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限7. 如图3,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C,E,再分别以点C,E为圆心,大于12CE的长为半径画弧,两弧交于点F,连接BF交AC于点D.若∠A=50°,则∠CBD的度数是()A. 25°B. 40°C. 50°D. 65°图3 图4 图5 图68.(2022年海南)如图4,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A. 80°B. 100°C. 120°D. 140°9. 如图5,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点的三角形共有()A. 3个B. 4个C. 5个D. 6个10.如图6,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S.若AQ=PQ,PR=PS,有下列结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确的是()A.仅①②B.仅①②③C.仅①②④D.①②③④二、填空题(本大题共6小题,每小题4分,共24分)11. 如图7是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是.图7 图8 图912. 如图8,已知BE=DC,请添加一个条件:,使得△ABE≌△ACD.13.如图9,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG.若S△ABC=6,则图中阴影部分的面积是.14. 如图10,把长方形纸片ABCD沿对角线折叠,若∠BDE =25°,那么∠BED =__________.图10 图11 图1215. 如图11,OP平分∠AOB,PM⊥OA于点M,点D在OB上,DH⊥OP于点H.若OD=4,OP=7,PM=3,则DH的长为.16. 如图12,点E在等边三角形ABC的边BC上,BE=12,DC⊥BC于点C,P是射线CD上一动点,F 是线段AB上一动点,当EP+PF的值最小时,BF=14,则AC的长为__________.三、解答题(本大题共7小题,共66分)17.(6分)如图13,在平面直角坐标系中,形如英文字母“V”的图形三个端点的坐标分别是A(2,3),B(1,0),C(0,3).(1)画出字母“V”的图形关于x轴对称的图形;(2)所得图形与原图形结合起来,你能从中看出什么英文字母?图1318.(6分)如图14,在四边形ABCD中,∠A=100°,∠D=140°,∠BCD的平分线CE交AB于点E.(1)若∠B=∠BCD,则∠B= °;(2)若CE∥AD,求∠B的度数.图1419.(8分)如图15,点B,E,C,F在同一条直线上,AB=DE,AB∥DE.老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AC=DF;乙说:添加AC∥DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是 .(2)请你从正确的说法中选择一种,并给出证明.图1520.(10分)如图16,在△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.图1621.(10分)如图17,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证:(1)△ADB≌△AEC;(2)DB⊥EC.图1722.(12分)如图18,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.(1)AD与CE相等吗?为什么;(2)若∠BCD=75°,求∠ACE的度数;(3)若∠BCE=α,∠ACE=β,则α,β之间满足一定的数量关系,试说明这个结论.图1823.(14分)如图19,在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向A点运动,并且点Q的运动速度与点P的运动速度不相等,设点Q的运动时间是t s.(1)用含有t的式子表示PC=cm;(2)当△BPD与△CQP全等时,求点Q的运动速度;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求:经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?图19参考答案一、1. A 2. C 3. B 4. D 5. C 6. D 7. A 8. B 9. C 10. C二、11. 540°12.∠B=∠C或∠AEB=∠ADC13.2 14. 130°15. 12 716. 20 解析:如图1,作点E关于直线CD的对称点G,过G作GF⊥AB于点F,交CD 于点P,此时EP+PF的值最小.因为△ABC是等边三角形,所以AC=BC,∠B=60°.又∠BFG=90°,所以∠G=30°.所以BG=2BF=28.因为BE=12,所以CE=12EG=12×(28-12)=8.所以AC=BC=BE+EC=12+8=20.三、17. 解:(1)如图所示.(2)字母x.18.解:(1)60(2)因为CE∥AD,所以∠DCE+∠D=180°.所以∠DCE=180°-∠D=180°-140°=40°.因为CE平分∠BCD,所以∠BCD=2∠DCE=80°.所以∠B=360°-(100°+140°+80°)=40°.19. 解:(1)乙、丙(2)选择乙(答案不唯一).证明如下:因为AB∥DE,AC∥DF,所以∠B=∠DEC,∠F=∠ACB.在△ABC和△DEF中,∠ACB=∠F,∠B=∠DEF,AB=DE所以△ABC≌△DEF(AAS).20.解:(1)因为DE是BC的垂直平分线,所以CD=BD.所以∠CBD=∠C=35°.因为∠A=90°,所以∠C+∠CBD+∠DBA=90°.所以∠DBA=90°-35°-35°=20°.(2)因为△ABD 的周长为30,所以AB+AD+BD=AB+AD+CD=AB+AC=30.因为AC=18,所以AB=30-18=12.21.证明:(1)因为AB⊥AC,AD⊥AE,所以∠BAC=∠DAE=90°.所以∠BAC+∠BAE=∠DAE+∠BAE,即∠BAD=∠CAE.在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,所以△ADB≌△AEC(SAS).(2)设BD和CE交于点F.图1因为△ADB≌△AEC,所以∠ACE=∠ABD.所以∠BFC=∠BAC=90°.所以DB⊥EC.22.(1)证明:AD=CE.理由如下:因为BD为△ABC的角平分线,所以∠ABD=∠CBE.在△ABD和△EBC中,BA=BE,∠ABD=∠CBE,BD=BC,所以△ABD≌△EBC(SAS).所以AD=CE.(2)解:因为BD=BC,所以∠BDC=∠BCD=75°.所以∠ADB=180°-75°=105°.由(1)知∠BCE=∠ADB=105°.所以∠ACE=105°-75°=30°.(3)解:同(2)可得∠BDC=∠BCD=α-β.因为△ABD≌△EBC,所以∠BAD=∠BEC.所以∠EBC=∠ABD=∠ACE=β.因为∠DBC+∠BDC+∠BCD=180°,所以β+(α-β)+(α-β)=180°.所以2α-β=180°.23.解:(1)(8-3t)(2)因为D为AB的中点,所以BD=12AB=5.因为点Q的运动速度与点P的运动速度不相等,所以BP≠CQ.又∠B=∠C,所以△BPD≌△CPQ.所以BP=PC=4 cm,CQ=BD=5 cm.所以3t=4,解得t=4 3 .所以点Q的运动速度为5÷43=154cm/s.(3)设经过x秒后点P与点Q第一次相遇.根据题意,得154x=3x+2×10.解得x=803.所以点P共运动了803×3=80 cm.△ABC周长为10+10+8=28 cm.因为80=28×2+8+10+6,所以点P,Q在AB边上相遇.所以经过803s点P与点Q第一次在AB边上相遇.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二人教版上学期数学期中测试卷
一、填空题:
1、如果42
=x ,那么x=____________.
2、如果式子2-x 在实数范围内有意义,那么实数x 的取值范围是__________.
3、比较大小:33____27.
4、如果一个多边形的每一个外角都等于30°,那么这个多边形是_________边形.
5、如果实数a 、b 在数轴上的位置如图所示,那么化简22b a =______________.
6、
ABCD 中,∠A 的平分线AE 交DC 于E ,如果∠DEA=25°,那么∠B=_______°.
7、当a_________时,1112-⋅+=-a a a .
8、有一个边长为11cm 的正方形和一个长为15cm ,宽为5cm 的矩形,要作一个面积为这两个图形面积之和的正方形,则此正方形边长应为__________cm .
9、量得地图上A 、B 两地的距离是160mm ,如果比例尺是1∶10000,那么A 、B 两地的实际距离是_____________m .
10、一井深AH 为9米,一人用一根长10米的竹竿AB 一头B 插入井底,另一头A 正好到井口,抽起竹竿量得浸入水中的长度CB 为6米,则井中水的深度DH=__________米.
二、选择题:
1、和数轴上的点成一一对应关系的是( ). (A )有理数 (B )无理数 (C )实数 (D )整数
2、下列图形中,既是轴对称图形,又是中心对称图形的是( ). (A )平行四边形 (B )矩形 (C )等腰梯形(D )等边三角形
3、若最简二次根式145
2
+x 与164-x 是同类二次根式,则x 的取值为( ) (A )1
(B )0
(C )-1
(D )1或-1
4、如果25)3(2
=-x ,那么x 的值是( ). (A )2和8 (B )2和-8 (C )-2和8 (D )-2和-8 5、顺次连结等腰梯形各边中点,所得的四边形一定是( ). (A )矩形 (B )菱形 (C )正方形 (D )梯形 6、把944
-x 在实数范围内分解因式,结果正确的是( ). (A ))32)(32(2
2-+x x
(B ))32)(32(-+x x
(C ))32)(32)(32(2
-++x x x (D ))32)(32)(32(2
-++x x x
7、△ABC 中,D 、E 、F 分别是BC 、CA 、AB 边的中点,那么四边形AFDE 的周长等于( ). (A )AB+AC (B )AD+BC (C ))(2
1
BC AC AB ++(D )BC+AC 7题图
9、下列命题中,不正确的是( ).
(A )一个四边形如果既是矩形又是菱形,那么它一定是正方形 (B )有一个角是直角,且有一组邻边相等的平行四边形是正方形 (C )有一组邻边相等的矩形是正方形
(D )两条对角线垂直且相等的四边形是正方形
三、计算下列各题: 1、2
1823+-; 2、)562)(625(-+;
3、化简1
222
2
+-x x x (x>1) 4、已知:432c b a ==,求
c
b a
b +-的值.
5、已知:ab=1且a=32-,
6、已知:0)82(12=-++--y x y x ,
求:(1)b 的值;
求:x+3y 的平方根.
(2)2
)(b a -的值;
四、(本题共12分,每小题4分)
1、已知:如图,平行四边形ABCD 中,E 、F 分别为AB 、CD 上的点,且AE=CF ,EF 与BD 交于点O . 求证:OE=OF .
2、已知:如图,梯形ABCD 中 ,AB ∥CD ,中位线EF 长为20,AC 与EF 交于点G ,GF-GE=5. 求AB 、CD 的长.
3、已知矩形ABCD 的一条对角线长为8cm ,两条对角线的一个夹角为60°,求矩形的边长.
五、已知:如图,BD 、CE 是△ABC 的高,DG ⊥BC 与CE 交于F ,GD 的延长线与BA 的延长线交于点H . 求证:GH GF GD ⋅=2
六、如图,E 是矩形ABCD 的边CD 上的一点,BE 交AC 于点O ,已知△OCE 和△OBC 的面积分别为2和8. (1)求△OAB 和四边形AOED 的面积;(2)若BE ⊥AC ,求BE 的长. 解:
答案
一、填空题:(本题共20分,每小题2分)
1、±2;
2、x ≥2;
3、<;
4、十二;
5、-ab ;
6、130;
7、≥1;
8、14;
9、1600;10、5.4.
二、选择题:(本题共30分,每小题3分)
1.C 2.B 3.A 4.C 5.B 6.D 7.A 8.D 9.D 10.C
三、计算下列各题:(本题共24分,每小题4分) 1.解:原式22
12223+-=
22
3=
2.解:原式)562)(562(-+=
2
25)62(-= =24-25 =-1
3.解:原式2
2
)1(2-=
x x
21-=
x x
21
-=x x
4.解:设:k c
b a ===4
32
则k c k b k a 4,3,2===
71
74323==+-=+-k k k k k k c b a b
5、(1)32321
1+=-=
=a b (2)2
2)]32()32[()(+--=-b a
2
)3232(---=
2
)32(-= =12
6、解:由已知得 ⎩⎨
⎧=-+=--0
820
1y x y x ………………………… 1′
解得 ⎩
⎨⎧==23
y x ……………………………… 2′
∴x+3y=3+2×3=9 ……………………………… 3′
∴x+3y 的平方根是±3 ……………………………… 4′
四、(本题共12分,每小题4分) 1.证明:在ABCD 中, ∵AB ∥CD
∴∠1=∠2 ……………………………………………… 1′ ∵AB=CD AE=CF
∴AB-AE=CD-CF
⎪⎩
⎪
⎨⎧=∠=∠∠=∠DF BE 4312
∴△BOE ≌△DOF ……………………………………………… 3′ ∴OE=OF ……………………………………………… 4′ 2、解:在梯形ABCD 中,AB ∥CD , ∵中位线EF 长为20 ∴GF+GE=20 又∵GF-GE=5 解得 GF=225,GE=2
15 ………………………… 1′ ∵EF ∥AB ∥CD
∴G 为AC 中点 …………………………… 2′ ∴AB=2GF=25
CD=2GE=15 …………………………… 4′
3、解:
如图,矩形ABCD 中,∠AOB=60°,AC=8cm ∴BD=AC=8cm ∴cm AC AO 421
==
cm BD BO 42
1
== ……………………………… 2′
∴AO=BO
∴△AOB 为等边三角形
∴AB=AO=4cm ……………………………… 3′
∵∠ABC=90°
∴BC 22AB AC -=
2248-= 48=
34=(cm )
∴矩形边长为4cm 和34cm ……………………………… 4′
五、(本题7分)
证明:∵BD ⊥AC ,DG ⊥BC
∴△CGD ∽△DGB
∴DG CG
BG DG = ∴CG BG DG ⋅=2
……………………………… 2′
∵CE ⊥AB
∴∠1+∠CBE=90° 又∠2+∠GBH=90°
∴∠1=∠2 ……………………………… 4′ ∠FGC=∠HGB=90°
∴GF ·GH=BG ·GC …………………………… 6′ ∴GH GF GD ⋅=2
…………………………… 7′
六、(本题7分) 解:
(1)∵△COE 与△OBC 中边EO ,BO 在同一直线上且此边上的高相等 ∴
4
1
82===∆∆OB OE S S OBC OCE …………………………… 1′ 在矩形ABCD 中 ∵DC ∥AB
∴△OCE ∽△OAB
∴
16
1
)41()(22===∆∆OB OE S S OAB OCE ∴3221616=⨯==∆∆OCB OAB S S ………………………… 2′
∴ABC S ∆=OAB OBC S S ∆∆+ =8+32=40
∵AB=CD ,BC=DA 且∠ABC=∠ADC=90° ∴ADC S ∆=ABC S ∆
∴OCE ADC AOED S S S ∆∆-=四边形
=40-2=38 …………………………… 4′ (2)设OE=x (x >0)则 OB=4x BE=5x 在Rt △BOE 中
∵∠BCE=90°,CO ⊥BE ∴△COE ∽△BOC
CO OB
OE CO =
∴2
244x x x OB CE CO =⋅=⋅= ………………………… 5′
∴CO=2x ∵OCE S ∆=22
1
=⋅OC OE ∴
222
1
=⋅⋅x x ∴2=x (负值舍去) ……………………………… 6′ ∴255==x BE ……………………………… 7′。