高等数学上册练习题
大学高等数学上习题(附答案)

《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。
(完整版)高数上册练习题

上册练习题、单项选择题(本大题有4小题,每小题4分,共16分)1 设f ( x) cos x (x sin x ),则在x 0处有().(A) f(0)2(B) f(0)1(C) f(0)0(D) f(X)不可导.c 设(x) 12. 1X,(x) 3 33x,则当x 1时(X)(A) (x)与(x)是同阶无穷小,但不是等价无穷小;(B ) (X)与(X)是等价无穷小;(C)(X)是比(x)高阶的无穷小;(D)(X)是比(x)高阶的无穷小.X3.若F(X)0(2t x)f(t)dt,其中心)在区间上(1,1)二阶可导且f(x)0 ,则().(A)函数F(x)必在x 0处取得极大值;(B)函数F(x)必在x 0处取得极小值;(C)函数F(x)在x 0处没有极值,但点(0,F(0))为曲线y F(x)的拐点;(D)函数F(x)在x 0处没有极值,点(0,F(0))也不是曲线y F(x)的拐点。
4设12 0f(t)dt ,则f (x)((D)x 2.4分,共16分)二、填空题(本大题有4小题,每小题2叫13x)sin x已知C0SX是f(X)的一个原函数6. x I r cosx 则f(x) d xx2 2 2lim — (cos cos L7. n n n n1cos3 ) n8. 2 2x arcs in x 1 -- dx 丄"x2210.f (X)是连续函数,且 f (X)2 2——2(A)2(B)2(C)x二、解答题(本大题有5小题,每小题8分,共40 分)9.设函数y y(x)由方程" sin( xy) 1确定,求y(x)以及y(°).求1x(1 x7)dx.四、解答题(本大题10分)14. 已知上半平面内一曲线 y y(x) (x 0),过点(01),且曲线上任一点 M(X 0,y 0)处切线斜率数值上等于此曲线与 x 轴、y 轴、直线x X 。
所围成 面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线y ln x 的切线,该切线与曲线y ln x 及x 轴围成平面图形D.(1)求D 的面积A ; (2)求D 绕直线x = e 旋转一周所得旋转体的体积 V. 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数f(x )在0,1上连续且单调递减,证明对任意的q [0,1],q1f (x) d x q f (x)dxf ( x) d x 0 f (x)cos x dx 017. 设函数f(x)在0,上连续,且0证明:在0,内至少存在两个不同的点1,2,使f (°f ( 2)0.(提xF(x) f(x)dx示:设11.12. 13.设 f (x)xe、、2x 2"x , 设函数f (x )连续,g (x )并讨论g (x )在xg(x)0 x 11f (xt)dt3 f(x)dx .求微分方程xy 2 y,且x0处的连续性.xlnx 满足y (1)lim 0 空Ax ,A 为常数.求 19的解.解答一、单项选择题(本大题有4小题,每小题4分,共16分) 1、D 2、A 3、C 4、C二、 填空题(本大题有4小题,每小题4分,共16分) 1 COSX 26 -( ) C5. e .6. 2 x .7. 2 .8. 3 三、 解答题(本大题有5小题,每小题8分,共40分)9.解:方程两边求导e x y (1 y ) cos(xy)(xy y) 0、1 (x 1)2dx0 2: _cos d (令 x 1 sin )'2y(x)e x y ycos(xy) e x yx cos(xy) 0 y(0)10.解: u7x 7x 6dx 原式 1 (1u)du7 u(1 u) 1 尹|u|2ln |u 1 ,|x 7 2ln |訥|10,yx du1|) c x 7| C(- u 1 7 031—)duu 111.解:3 f(x)dxxe xdx12.解: -2e 34 由 f (°)g(x) 1f (xt )dt知 g (0) 0。
完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高等数学习题集及答案

D. 无关条件
A. 若 { un} 有界,则 { un} 发散 C. 若 { un} 单调,则 { un} 收敛
B. 若 {un} 有界,则 { un} 收敛 D. 若 { un} 收敛,则 { un} 有界
22. 下面命题错误的是 【 】
A. 若 { un} 收敛,则 { un} 有界
C. 若 { un} 有界,则 { un} 收敛
A. y arcsin x
B. y arccosx
C. y arctan x
D. y arccot x
7. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. ( , )
B. [ 1,1]
C. ( , )
D. [ 2,0]
8. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. 连续点
B. 可去间断点
C.跳跃间断点
47. lim xsin 1 的 值为 【
x0
x
A. 1
B.
】 C. 不存在
D. 0
48. 当 x
时下列函数是无穷小量的是 【 】
x cos x
A.
sin x
x2
B.
C.
sin x D. (1 1) x
x
x
x
x
x2 1 x 0
49. 设 f ( x)
, 则下列结论正确的是 【 】
C. e 3
】
D. e3
4
A. e
B. 1
2
C. e
D.
4
e
26. x 1是函数 f ( x)
x x3 的 【 x2 x 2
】
A. 连续点
完整)高等数学练习题附答案

完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。
+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。
2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。
高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。
参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。
由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。
高等数学第一章试题库

第一章试题库第一部分基础练习题一、选择题1.下列数列收敛的是()。
A.sin n x n = B.1sin n x n n = C.1ln n x n = D.1(1)n n-+2.0()f x +和0()f x -都存在是函数()f x 在0x x =处有极限的().A.充分条件B.必要条件C.充要条件D.无关条件3.下列函数中,相同的是().A.2()lg f x x =与()2lg g x x =B.()f x =()g x =C.()f x x =与()g x =D.()arcsin f x x =与()arcsin()g x x π=-4.设函数()f x 为奇函数,()g x 为偶函数,则()是奇函数。
A.[()]f f x B.[()]g g x C.[()]f g x D.[()]g f x 5.下列变量中是无穷小量的是()A.1ln(1)1(0)x x +-→B.11sin ()x x x→∞C.()122x x →- D.11(0)x e x -→6.函数()cos f x x x =()A.x →∞时为无穷大量 B.x →∞时极限存在C.在(,)-∞+∞内有界 D.在(,)-∞+∞内无界7., 1, n n n x n n⎧⎪=⎨⎪⎩为奇数为偶数,当n →+∞时{}n x 是()A.无穷大量B.无穷小量C.有界变量D.无界变量8.下列关于无穷小的说法中,错误的是()A.有限个无穷小的乘积仍是无穷小B.无穷小与有界函数的乘积是无穷小C.两个无穷小的商仍是无穷小D.有限个无穷小的代数和仍是无穷小9.当x →∞时,函数()sin f x x x =是()。
A.无穷大量B.无穷小量C.无界函数D.有界函数10.下列函数在自变量的变化过程中为无穷小量的是()。
A )0(sin ln →x xxB )0(1→x e xC )1()1(12→-x x D)0(cot →x x 11.设45)(,0,0,)(2-=⎪⎩⎪⎨⎧<≥=x x g x x x x x f ,则=)]0([g f ()A.16-B.4-C.4D.1612.已知(21)f x -的定义域为[0,1],则()f x 的定义域为().A.[1/2,1]B.[-1,1]C.[0,1]D.[-1,2]13.下列各式计算正确的是()A.sin lim1x xx →∞= B.01lim sin 1x x x→= C.1lim sin1x x x→∞= D.011lim sin 1x xx→=14.函数⎪⎩⎪⎨⎧≤<+=<<-+=2020022)(2x x x x x x f 的定义域是()A.)2,2(-B.]0,2(-C.]2,2(-D.(0,2]15.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(lim 0x f x ()A.1B.0C.1-D.不存在16.下列函数在定义域内关于原点对称的是()A.22ln(1)x x +B.1xx +C.3x x e e -+D.ln(x +17.下列数列收敛的是().A.12,2,,(2),n ---L LB.135721,,,,,357921n n -+,L LC.1135721,,,,(1),357921n n n -----+L L ,D.1234,,,,(1),23451n n n ---+,L L 18.下列计算正确的的是().A.1lim(1)xx x e→∞+= B.01lim(1x x e x →+= C.1lim sin 1x x x →∞= D.sin lim 1x xx→∞=19.=-→xx x 21)1(lim ()A.21- B.e - C.21eD.20.22442lim ,313x ax x x x →∞-+=-+那么a 的值为()A.1B.0C.2D.321.当0x →时,tan sin x x e e -与n ax 为等价无穷小,则().A.1,1a n ==B.1,22a n ==C.1,32a n ==D.1,44a n ==22.当0x →时,下列函数哪一个是其他三个的高阶无穷小().A.2xB.1cos x -C.tan x x -D.2ln(1)x +23.当0x →时,与2x 等价的无穷小量是(A.2ln(1)x + B.21xe - C.1cos x-1-24.当0→x 时,1是x 的().A.高阶无穷小B.低阶无穷小C.等价无穷小D.同阶但非等价无穷小25.当0→x 时,)2sin(3x x +与x 比较是().A.高阶无穷小B.等价无穷小C.同阶无穷小,但不是等价无穷小D.低阶无穷小26.设2, 01()2, >1x x f x x x -⎧<≤=⎨⎩,则1x =是该函数的()A.可去间断点B.跳跃间断点C.第二类间断点D 连续点27.设1sin , 0()1, 0x x f x xx ⎧≠⎪=⎨⎪=⎩,则0x =是该函数的()A.可去间断点 B.跳跃间断点 C.第二类间断点 D.连续点28.0x =为函数1()sin f x x x=的()A.可去间断点B.跳跃间断点C.振荡间断点D.无穷间断点29.函数1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩在0x =处()A.无极限B.不连续C.连续D.以上都不对30.0x =是11()1x f x e =+的()。
高等数学第一学期试题(附参考答案)

《高 等 数 学》课程试题一、填空题 .(每小题3分,共24分) 1. 设=+=)]([,1)(2x f f xx x f 则2. =→xx x 5sin 3sin lim 03. 设⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在0=x 连续,则常数=a4. 曲线x y ln 2=上点(1, 0)处的切线方程为5.设参数方程⎩⎨⎧==ty t x sin 2,则=dxdy 6. 函数x x f 2arctan )(=,则=dy7. ⎰=)(cos x xd 8. ⎰-201dx x =二、选择题 .(每小题3分,共24分)1.设函数⎩⎨⎧<<-≥-+=10,11,42)(22x x x x x x f ,则)(lim 1x f x →等于( )A .-3B .-1C . 0D .不存在 2. 当)1ln(0x ,,x +→两个无穷小比较时是比x ( )A. 高阶的无穷小量B. 等价的无穷小量C. 非等价的同阶无穷小量D. 低阶的无穷小量3.设)(x f 的一个原函数为)1ln(+x x ,则下列等式成立的是( ) A .C x x dx x f ++=⎰)1ln()( B.C x x dx x f +'+=⎰]1ln([)(班级:姓名:学号:试题共页加白纸张密封线C.⎰+=+C x f dxx x )()1ln( D.C x f dx x x +='+⎰)(])1ln([ 4. 设函数)(x f y =在0x x =处可导,则必有( )A .0=∆y B. 0lim=∆→y xx C. dy y =∆ D. 0=dy 5.设)12)(1()(+-='x x x f ,则在)1,21(内,曲线)(x f 是( )A .单调增加且是凹的B .单调增加且是凸的C .单调减少且是凹的D .单调减少且是凸的 6.设)0(),1ln(≠+=a ax y ,则二阶导数y ''=( ) A .22)1(ax a+ B.2)1(ax a + C. 22)1(ax a+-D. 2)1(ax a+-7.积分=⎰-dx x1121( )A .是发散的 B. 2 C. -2 D . 0 8.设函数⎰-=Φ2)(xtdttex ,则其导数=Φ')(x ( )A .x xe - B. xxe--;C.232xex -D.232xex --三、求极限.(每小题5分,共10分) (1)3)21(lim +∞→+x x x(2)xx x x sin cos 1lim+-→四、求下列导数或微分. (每小题6分,共12分) (1)求由方程1ln =+y ye x确定的隐函数)(x f y =的导数dxdy ;(2)求函数xe y sin =在01.0,0=∆=x x 处的微分dy五、求下列积分.(每小题6分,共18分) (1) ⎰+dxeexx 21(2)⎰212ln exdx x(3)⎰20sin πdx x六、设x:,0求证(5分)>1>ex x+七、欲做一个长方体的带盖箱子,其体积为723m,而底面的长与宽成2:1的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数练习题一、选择题。
4、11lim1--→x x x ( )。
a 、1-=b 、1=c 、=0d 、不存在 5、当0→x 时,下列变量中是无穷小量的有( )。
a 、x 1sinb 、x x sinc 、12--xd 、x ln 7、()=--→11sin lim 21x x x ( )。
a 、1b 、2c 、0d 、219、下列等式中成立的是( )。
a 、e n n n =⎪⎭⎫ ⎝⎛+∞→21lim b 、e n n n =⎪⎭⎫ ⎝⎛++∞→211limc 、e n nn =⎪⎭⎫ ⎝⎛+∞→211lim d 、e n nn =⎪⎭⎫⎝⎛+∞→211lim10、当0→x 时,x cos 1-与x x sin 相比较( )。
a 、是低阶无穷小量 b 、是同阶无穷小量 c 、是等阶无穷小量 d 、是高阶无穷小量11、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( )。
a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件12、 数列{y n }有界是数列收敛的 ( ) .(A )必要条件(B) 充分条件 (C) 充要条件 (D)无关条件13、当x —>0 时,( )是与sin x 等价的无穷小量.(A) tan2 x (B) x (C)1ln(12)2x + (D) x (x +2)14、若函数()f x 在某点0x 极限存在,则( ).(A )()f x 在0x 的函数值必存在且等于极限值(B )()f x 在0x 的函数值必存在,但不一定等于极限值(C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 15、如果0lim ()x x f x →+与0lim ()x x f x →-存在,则( ).(A )0lim ()x xf x →存在且00lim ()()x xf x f x →=(B )0lim ()x xf x →存在但不一定有00lim ()()x xf x f x →=(C )0lim ()x xf x →不一定存在(D )0lim ()x xf x →一定不存在16、下列变量中( )是无穷小量。
0) (x e .A x1-→0)(x x 1sin.B → )3 (x 9x 3x .C 2→-- )1x (x ln .D →17、=∞→xxx 2sin lim( )218、下列极限计算正确的是( )e x 11lim .A x0x =⎪⎭⎫ ⎝⎛+→ 1x 1sin x lim .B x =∞→ 1x 1sin x lim .C 0x =→ 1x x sin lim .D x =∞→19、下列极限计算正确的是( )1x x sin lim .A x =∞→ e x 11lim .B x0x =⎪⎭⎫ ⎝⎛+→ 5126x x 8x lim .C 232x =-+-→ 1x x lim .D 0x =→A. f(x)在x=0处连续B. f(x)在x=0处不连续,但有极限C. f(x)在x=0处无极限D. f(x)在x=0处连续,但无极限 23、1lim sinx x x→∞=( ). (A )∞ (B )不存在 (C )1 (D )024、221sin (1)lim (1)(2)x x x x →-=++( ).(A )13 (B )13- (C )0 (D )23) ( , 0 x 1x 2 0 x 1 x ) x ( f . 20、 则下列结论正确的是 设25、设1sin 0()30x x f x x ax ⎧≠⎪=⎨⎪=⎩,要使()f x 在(,)-∞+∞处连续,则a =( ). (A )0 (B )1 (C )1/3 (D )326、点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的( ).(A )连续点 (B )第一类非可去间断点 (C )可去间断点 (D )第二类间断点28、0()0x f x xk x ≠⎪=⎨⎪=⎩,如果()f x 在0x =处连续,那么k =( ). (A )0 (B )2 (C )1/2 (D )130、设函数()⎩⎨⎧=x xe x f x00≥〈x x 在点x=0处( )不成立。
a 、可导b 、连续c 、可、连续,不可异31、函数()x f 在点0x 处连续是在该点处可导的( )。
a 、必要但不充分条件 b 、充分但不必要条件 c 、充要条件 d 、无关条件32、下列函数中( )的导数不等于x 2sin 21。
a 、x 2sin 21b 、x 2cos 41c 、x 2cos 21- d 、x 2cos 411-33、设)1ln(2++=x x y ,则y ′= ( ). ①112++x x ②112+x ③122++x x x④12+x x34、已知441x y =,则y ''=( ). A. 3x B. 23x C. x 6 D. 636、下列等式中,( )是正确的。
()x 2ddx x21.A =⎪⎭⎫⎝⎛=x 1d dx .B lnx⎪⎭⎫ ⎝⎛=2x 1d dx x 1.C -()cosx d sinxdx .D =37、d(sin2x)=( )A. cos2xdxB. –cos2xdxC. 2cos2xdxD. –2cos2xdx 39、曲线y=e 2x 在x=2处切线的斜率是( ) A. e 4 B. e 2 C. 2e 240、曲线11=+=x x y 在处的切线方程是( )232x y .A +=232x y .B -=232x y .C --=232x y .D +-=41、曲线22y x x =-上切线平行于x 轴的点是 ( ).A 、 (0, 0)B 、(1, -1)C 、 (–1, -1)D 、 (1, 1)42、下列函数在给定区间上不满足拉格朗日定理的有( )。
a 、x y = []2,1-b 、15423-+-=x x x y []1,0c 、()21ln xy += []3,0 d 、212x xy +=[]1,1-43、函数23++=x x y 在其定义域内( )。
a 、单调减少b 、单调增加c 、图形下凹d 、图形上凹 44、下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .sin x B .e xC .x 2D .3 - x 45、下列结论中正确的有( )。
a 、如果点0x 是函数()x f 的极值点,则有()0x f '=0 ;b 、如果()0x f '=0,则点0x 必是函数()x f 的极值点;c 、如果点0x 是函数()x f 的极值点,且()0x f '存在, 则必有()0x f '=0 ;d 、函数()x f 在区间()b a ,内的极大值一定大于极小值。
46、函数()x f 在点0x 处连续但不可导,则该点一定( )。
a 、是极值点b 、不是极值点c 、不是拐点d 、不是驻点 52、函数f(x)=x 3+x 在( )()单调减少+∞∞-,.A ()单调增加+∞∞-,.B()()单调增加单调减少+∞--∞-,,,.C 11 ()()单调增加单调减少+∞∞-,,,.C 0053、函数f(x)=x 2+1在[0,2]上( )A.单调增加B. 单调减少C.不增不减D.有增有减 54、若函数f(x)在点x 0处取得极值,则( )0)x (f .A 0=' 不存在)x (f .B 0' 处连续在点0x )x (f .C 不存在或)x (f 0)x (f .D 00'='55、函数f(x)=e x-x-1的驻点为( )。
A. x=0 =2 C. x=0,y=0 =1,e-2 56、若(),0='x f 则0x 是()x f 的( )A.极大值点B.最大值点C.极小值点D.驻点 57、若函数f (x )在点x 0处可导,则()()=--→hx f h x f h 22lim000)x (f .A 0' )x (f 2.B 0' )x (f .C 0'- )x (f 2.D 0'-58、若,)1(x xf =则()='x f ( )x 1.Ax 1-.B 2x 1.C 2x 1.D - 59、函数x x y -=33单调增加区间是( ) A.(-∞,-1) B.( -1,1) C.(1,+∞) D.(-∞,-1)和(1,+∞)60、=-⎰)d(e x x ( ).A .c x x+-eB .c x x x ++--e eC .c x x +--eD .c x xx +---e e61、下列等式成立的是( ) . A .x x x 1dd ln = B .21d d 1xx x -= C .x x x sin d d cos = D .x x x 1d d 12= 62、若)(x f 是)(x g 的原函数,则( ).(A )⎰+=C x g dx x f )()( (B )⎰+=C x f dx x g )()( (C )⎰+='C x g dx x g )()( (D )⎰+='C x g dx x f )()(64、若⎰+=c ex dx x f x22)(,则=)(x f ( ).(A )x xe 22 (B )xe x 222(C )xxe 2 (D ))1(22x xe x+65、设xe-是)(x f 的一个原函数,则⎰=dx x xf )(( ).(A )c x e x+--)1( (B )c x e x ++-)1( (C )c x e x+--)1( (D )c x e x ++--)1(66、若⎰+=c x dx x f 2)(,则⎰=-dx x xf )1(2( ).(A ) c x +-22)1(2 (B ) c x +--22)1(2 (C )c x +-22)1(21 (D ) c x +--22)1(2167、⎰=xdx 2sin ( ).(A )c x +2cos 21(B )c x +2sin (C )c x +-2cos (D )c x +-2cos 2168、下列积分值为零的是( )⎰+-ππxdx sin x .A ⎰--+11xx dx 2e e .B ⎰---11x x dx 2e e .C ()⎰+-+22dx x x cos .D ππ71、若=+=⎰)(,2sin )(x f c x dx x f 则B. 2sin2xC. -2cos2xD. -2sin2x 73、若()⎰=+102dx k x ,则k=( )a 、0b 、1c 、1-d 、2375、⎰+-=+ππdx x x e x )sin (2cos ( )3π.A 3 3π2.B 3 32π2e .C 3-1+ 32πe-e .D 3-1+76、⎰=-21dx x77、无穷积分⎰+∞=121dx x ( ) A.∞ 31.C78、=⎰-])(arctan [02xdt t dxd ( )。