特殊的平行四边形章节知识点归纳(全)

合集下载

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。

2.平行线性质:特殊平行四边形的两对边分别是平行的。

根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。

3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。

这个性质可以通过两个相似三角形的性质证明得出。

4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。

这个性质可以通过垂直线的性质证明得出。

5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。

这个性质可以通过平行线的性质证明得出。

6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。

这个性质也可以通过夹角的定义和平行线的性质证明得出。

7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。

这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。

特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。

例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。

特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。

总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。

通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。

平行四边形知识点总结

平行四边形知识点总结

平行四边形知识点总结一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。

需要注意的是,平行四边形的定义既是它的一个性质,即两组对边分别平行;也是判定一个四边形是否为平行四边形的依据之一。

二、平行四边形的性质1、边的性质(1)平行四边形的两组对边分别平行且相等。

(2)平行四边形的邻边之和等于周长的一半。

2、角的性质(1)平行四边形的两组对角分别相等。

(2)平行四边形的邻角互补,即相邻的两个角之和为 180 度。

3、对角线的性质(1)平行四边形的对角线互相平分。

(2)两条对角线把平行四边形分成的四个三角形的面积相等。

4、对称性平行四边形是中心对称图形,对称中心是两条对角线的交点。

三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形。

这是根据平行四边形的定义直接得出的判定方法。

2、两组对边分别相等的四边形是平行四边形。

如果一个四边形的两组对边分别相等,那么可以通过平移其中一组对边,使其与另一组对边重合,从而证明该四边形是平行四边形。

3、一组对边平行且相等的四边形是平行四边形。

先证明一组对边平行,如果再能证明这组对边相等,就可以判定为平行四边形。

4、两组对角分别相等的四边形是平行四边形。

因为平行四边形的两组对角分别相等,所以如果一个四边形的两组对角分别相等,那么它就是平行四边形。

5、对角线互相平分的四边形是平行四边形。

通过证明对角线互相平分,可以得出四边形的两组对边分别平行,从而判定为平行四边形。

四、平行四边形面积的计算平行四边形的面积=底×高需要注意的是,底和高必须是相对应的,即底边上对应的高。

五、平行四边形中的常见题型1、利用性质求边长、角度或对角线的长度已知平行四边形的一些边、角或对角线的关系,通过性质列方程求解。

2、证明一个四边形是平行四边形根据给定的条件,选择合适的判定方法进行证明。

3、求平行四边形的面积给出底和高的长度,或者通过其他条件求出底和高,进而计算面积。

4、与三角形结合的问题例如,平行四边形的对角线把平行四边形分成两个全等的三角形,或者通过三角形的全等或相似来解决平行四边形中的问题。

平行四边形和特殊平行四边形的知识要点

平行四边形和特殊平行四边形的知识要点
等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴
4、对角线互相垂直平分,每一条对角线平分一组对角。
1、有一组邻边相等的平行四边形
2、四条边都相等的四边形
3、对角线互相垂直平分的四边形
4、对角线互相垂直的平行四边形
5、菱形的面积=两对角线乘积的一半
既是中心对称也是轴对称图形



1、四条边都相等
2、四个角都是直角
3、对角线互相垂直平分且相等,每一条对角线平分一组对角。
平行四边形和特殊平行四边形的知识要点
图形名称
性质定理
判定定理
对称性





1、对边平行且相等
2、对角相等
3、对角线互相平分
1.两组对边分别平行的四边形。
2.两组对边分别相等的四边形。
3.两组对角分别相等的四边形
4.对角线互相平分的四边形
5.一组对边平行且相等的四边形。中来自心对称




1、对边平行且相等
1、邻边相等的矩形是正方形
2、有个角是直角的菱形
3、对角线互相垂直平分且相等的四边形
既是中心对称也是轴对称图形




1、等腰梯形两腰相等、两底平行.
2、等腰梯形在同一底上的两个角相等.
3、等腰梯形的对角线相等.
1、两腰相等的梯形是等腰梯形.
2、在同一底上的两个角相等的梯形是等腰梯形.
3、对角线相等的梯形是等腰梯形.
2、对角相等且四个角都是直角
3、对角线互相平分且相等
1、有一个角是直角的平行四边形
2、对角线相等的平行四边形
3、有3个角是直角的四边形(1、直角三角形斜边上的中线等于斜边的一半。2、三角形的中位线平行于第三边,且等于第三边的一半)

特殊平行四边形的性质和判定总结

特殊平行四边形的性质和判定总结
2.菱形(重点):
平行四边形有一组领边相等_菱形
性质:
判定
周长
面积
菱形具有平行四边形的所有性质

四条边相等的四边形是菱形
边长×4
对角线积的一半或底×高
菱形的四条边都相等
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角
对角线
对角线互相垂直的平行四边形是菱形
对角线互相垂直且平分的四边形是菱形
3.正方形:
对角线互相垂直的矩形是正方形
对角线相等的菱形是正方形
对角线互相垂直且相等的平行四边形是正方形
对角线互相垂直平分且相等的四边形是正方形
一.平行四边形的性质及判定:
特殊的平行四边形:1.矩形:
平行四边形_有一个角是直角_矩形
性质:
判定
周长
面积
矩形具有平行四边形的所有性质

有一个角是直角的平行四边形是矩形
邻边之和的二倍
底×高
矩形的四个角都是直角
有三个角是直角的四边形是矩形
矩形的对角线相等
对角线
对角线相等的平行四边形是矩形
对角线互相平分且相等的四边形是矩形
性质:
判定:
周长
面积
平行四边形的对边平行且相等

两组对边分别平行的四边形是平行四边形
邻边之和的二倍
底×高
平行四边形的对角相等
两组对边分别相等
一组对边平行且相等的四边形是平行四边形
平行四边形的邻角互补

两组对角分别相等的四边形是平行四边形
对角线
对角线互相平分的四边形是平行四边形
平行四边形有一组邻边相等且有一个角是直角___正方形
性质:
判定:

北师大九年级数学上册

北师大九年级数学上册

北师大九年级数学上册一、章节知识点总结。

1. 特殊平行四边形。

- 矩形。

- 定义:有一个角是直角的平行四边形是矩形。

- 性质:- 四个角都是直角。

- 对角线相等。

- 既是轴对称图形(对称轴有两条,对边中点连线所在直线)又是中心对称图形(对称中心是对角线交点)。

- 判定:- 有一个角是直角的平行四边形是矩形。

- 对角线相等的平行四边形是矩形。

- 有三个角是直角的四边形是矩形。

- 菱形。

- 定义:有一组邻边相等的平行四边形是菱形。

- 性质:- 四条边都相等。

- 对角线互相垂直,且每条对角线平分一组对角。

- 是轴对称图形(对称轴是两条对角线所在直线),也是中心对称图形。

- 判定:- 有一组邻边相等的平行四边形是菱形。

- 对角线互相垂直的平行四边形是菱形。

- 四条边都相等的四边形是菱形。

- 正方形。

- 定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。

- 性质:- 四条边都相等,四个角都是直角。

- 对角线相等且互相垂直平分,每条对角线平分一组对角。

- 既是轴对称图形(有四条对称轴,两条对角线所在直线和两组对边中点连线所在直线)又是中心对称图形。

- 判定:- 有一组邻边相等的矩形是正方形。

- 有一个角是直角的菱形是正方形。

2. 一元二次方程。

- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程,一般形式为ax^2+bx + c=0(a≠0)。

- 解法:- 直接开平方法:对于形如x^2=k(k≥slant0)的方程,x=±√(k)。

- 配方法:将方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后求解。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其解为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥slant0)。

第08讲特殊平行四边形单元整体分类总复习(原卷版)

第08讲特殊平行四边形单元整体分类总复习(原卷版)

第08讲特殊平行四边形章节分类总复习考点一矩形的判定与性质【知识点睛】❖矩形的判定方法:①有一个角是直角的平行四边形是矩形; ②有三个角是直角的四边形是矩形;③四个角都相等的四边形是矩形; ④对角线相等的平行四边形是矩形;⑤对角线相等且互相平分的四边形是矩形.❖矩形的性质①矩形的对边平行且相等; ②矩形的四个角都是直角;③矩形的对角线相等且互相平分; ④矩形既是轴对称图形,又是中心对称图形。

【类题训练】1.如图,在矩形ABCD中,AC、BD交于点O,DE⊥AC于点E,∠AOD=124°,则∠CDE 的度数为()A.62°B.56°C.28°D.30°2.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且,连接EF.若AC=10,则EF的长为()A.B.3C.4D.53.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=2,∠ABE=45°,则DE的长为()A.2﹣2B.﹣1C.﹣1D.24.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S25.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.MB=MO B.OM=AC C.BD⊥AC D.∠AMB=∠CND6.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.47.如图,在矩形ABCD中,AB=12,AD=10,点P在AD上,点Q在BC上,且AP=CQ,连结CP、QD,则PC+QD的最小值为()A.22B.24C.25D.268.如图,在▱ABCD中,下列条件①AC=BD;②∠1+∠3=90°;③OB=AC;④∠1=∠2,能判断▱ABCD是矩形的有()A.1个B.2个C.3个D.4个9.如图,在矩形ABCD中,AB=4,BC=6,E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.如图,在平面直角坐标系xOy中,矩形OABC的边OA=3,OC=4,点M(2,0),在边AB存在点P,使得△CMP为“智慧三角形”,则点P的坐标为()A.(3,1)或(3,3)B.(3,)或(3,3)C.(3,)或(3,1)D.(3,)或(3,1)或(3,3)11.如图所示,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.12.矩形ABCD中,AB=8,AD=4,点A是y轴正半轴上任意一点,点B在x轴正半轴上.连接OD.则OD的最大值是.13.如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=°.14.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.15.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是.17.矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH=.18.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.19.如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠ACB的角平分线于点E,交∠ACB的外角平分线于F.问:(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.20.如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=10,BD=8,求△BCF的面积.考点二菱形的判定与性质【知识点睛】❖菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②四条边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线互相垂直平分的四边形是菱形。

人教版八年级数学下册-第18章-平行四边形-章节知识点和常考易错点归纳

人教版八年级数学下册-第18章-平行四边形-章节知识点和常考易错点归纳

平行四边形章节知识梳理一.知识点:1、定义两组对边分别平行的四边形是平行四边形.定义中的“两组对边平行”是它的特征,抓住了这一特征,记忆理解也就不困难了.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.同学们要在理解的基础上熟记定义.2、性质平行四边形的有关性质和判定都是从边、角、对角对称性四个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)对称性:平行四边形是中心对称图形,对角线的交点是对称中心;(5)面积:①=底×高=ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形4、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:1.平行四边形;2.一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:1.平行四边形;2.一组邻边相等,两者缺一不可.(3)正方形:一组邻边相等的矩形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:1.一组对边平行;2.一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.5.几种特殊四边形的有关性质(1)矩形:1.边:对边平行且相等;2.角:对角相等、邻角互补;3.对角线:对角线互相平分且相等;4.对称性:既是轴对称图形又是中心对称图形.(2)菱形:1.边:四条边都相等;2.角:对角相等、邻角互补;3.对角线:对角线互相垂直平分且每条对角线平分每组对角;4.对称性:既是轴对称图形又是中心对称图形.(3)正方形:1.边:四条边都相等;2.角:四角相等;3.对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;4.对称性:既是轴对称图形又是中心对称图形.6、几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一个角是直角的菱形;②有一组邻边相等的矩形;③对角线相等的菱形;④对角线互相垂直的矩形.7、几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD 为平行四边形,再说明对角线互相垂直. ③说明四边形ABCD 的四条边相等.(3)识别正方形的常用方法①先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.②先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角.二、几种特殊四边形的面积问题(1)设矩形ABCD 的两邻边长分别为a,b ,则 S 矩形=ab .(2)设菱形ABCD 的一边长为a ,高为h ,则 S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则 S 菱形=2ab。

特殊平行四边形知识点总结及题型

特殊平行四边形知识点总结及题型

新天宇教育授课讲义授课科目初三上册授课时间(2016.9.11)授课内容特殊的平行四边形1基础知识1.基础知识点(概念、公式)1.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.菱形判定方法2:四边都相等的四边形是菱形.2.矩形矩形定义: 有一个角是直角的平行四边形叫做矩形(通常也叫长方形或正方形).矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴;矩形的性质:(具有平行四边形的一切特征)矩形性质1: 矩形的四个角都是直角.矩形性质2: 矩形的对角线相等且互相平分.矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形.2.正方形正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形是中心对称图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.正方形具有矩形的性质,同时又具有菱形的性质.正方形的判定方法:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.注意:1、正方形概念的三个要点:(1)是平行四边形;(2)有一个角是直角;(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.2.本节课的重点、难点(1)对平行四边形和特殊的几种图形的性质要注意理解(2)对证明特殊平行四边形的方法进行掌握3.学生容易混淆的知识点(1)各种四边形对角线的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5. 矩形的性质
A
D
) )
O
B
C
(1)∵四边形 ABCD 是矩形
∴∠DAB=∠ABC =∠BCD=∠CDA=90°(

(2)∵四边形 ABCD 是矩形 ∴AC=BD( OA=OC= OB=OD(
) )
6. 矩形的判定
A
D
O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90°
∴□ABCD 是矩形(
(2)∵四边形 ABCD 是正方形
∴AC=BD(

AC⊥BD,且 OA=OC= OB=OD(
8. 正方形的判定
A
D
) )

O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90° ,AB=BC
∴□ABCD 是正方形(

(2)∵四边形 ABCD 是菱形,且∠BAD=90°
∴菱形 ABCD 是正方形(

(2)∵四边形 ABCD 是平行四边形,且 AC=BD
∴□ABCD 是矩形(

(3)∵∠DAB=∠ABC =∠BCD =90°
∴四边形 ABCD 是矩形(

7. 正方形的性质
A
D
O
B
C
(1)∵四边形 ABCD 是正方形 ∴AB= BC =CD=AD( ∠DAB=∠ABC =∠BCD=∠CDA=90°(
(正方形既是菱形也是矩形)
4. 菱形的判定:有一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形; 四条边相等的四边形是菱形.
5. 矩形的判定:有一个角是直角的平行四边形是矩形 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形.
6. 正方形的判定:有一组邻边相等并且有一个角是直角的平行四边形是正方形 有一组邻边相等的矩形是正方形 对角线垂直的矩形是正方形; 有一个角是直角的菱形是正方形; 对角线相等的菱形是正方形.
7. 平行四边形的性质: 平行四边形的对边平行且相等 平行四边形的对角相等,邻角互补 平行四边形的对角线互相平分
8. 平行四边形的判定: 两组对边分别平行的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 两组对角分别相等的四边形是平行四边形 对角线互相平分的四边形是平行四边形

(3)∵四边形 ABCD 是菱形,且 AC=BD
∴菱形 ABCD 是正方形(

(4)∵四边形 ABCD 是矩形,且 AB=BC
∴矩形 ABCD 是正方形(

(5)∵四边形 ABCD 是矩形,且 AC⊥BD
∴矩形 ABCD 是正方形(

另外:平行四边形是中心对称图形 正方形、矩形、菱形既是中心对称图形也是轴对称图形)
几何语言符号 1. 平行四边形的性质
A
D
O
B
C
(1)∵四边形 ABCD 是平行四边形
∴AB//CD,AD//BC(

(2)∵四边形 ABCD 是平行四边形
∴∠BAD=∠BCD,∠ABC=∠ADC(
∠BAD+∠ABC=180°,∠BAD+∠ADC=180°(
(5)∵OA=OC,OB=OD ∴四边形 ABCD 是平行四边形(
A
D
347 8来自3. 菱形的性质1 2
5 O6
B
C
(1)∵四边形 ABCD 是菱形
∴AB= BC =CD=AD(

(2)∵四边形 ABCD 是菱形
∴AC⊥BD 且 OA=OC= 1 AC ,OB=OD= 1 BD(
2
2
(3)∵四边形 ABCD 是菱形
∴∠1=∠2= 1 ∠ABC,∠7=∠8= 1 ∠ADC(
2
2
) )
) ) ) ) )
) )
4. 菱形的判定
A
D
O
B
C
(1)∵四边形 ABCD 是平行四边形,且 AB= BC ∴□ABCD 是菱形(
(2)∵四边形 ABCD 是平行四边形,且 AC⊥BD
∴□ABCD 是菱形(

(3)∵AB= BC =CD=AD ∴四边形 ABCD 是菱形(
(3)∵四边形 ABCD 是平行四边形
∴OA=OC,OB=OD(

A
D
2. 平行四边形的判定 (1)∵AB//CD,AD//BC
O
B
C
∴四边形 ABCD 是平行四边形(
(2)∵AB=CD,AD=BC ∴四边形 ABCD 是平行四边形(
(3)∵AD//BC ∴四边形 ABCD 是平行四边形(
(4)∵∠BAD=∠BCD,∠ABC=∠ADC ∴四边形 ABCD 是平行四边形(
第一章 特殊的平行四边形
文字语言描述
1. 菱形的性质:具有平行四边形的一切性质,另外, 菱形的四条边相等、对角线互相垂直且平分 菱形的每条对角线平分一组对角.
2. 矩形的性质:具有平行四边形的一切性质,另外, 矩形的四个角都是直角;矩形的对角线相等且平分
3. 正方形的性质:正方形的四个角都是直角,四条边相等; 正方形的对角线相等且互相垂直平分; 正方形的每条对角线平分一组对角.
相关文档
最新文档