2010年北京高考试题数学理解析版
北京高考理科数学试卷及答案

2010年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I = (A ){}1,2(B ){}0,1,2(C ){}|03x x ≤<(D ){}|03x x ≤≤ (2)在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9(B )10(C )11(D )12(3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为 (4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A )8289A A (B )8289A C (C )8287A A (D )8287A C (5)极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是(A )两个圆(B )两条直线(C )一个圆和一条射线(D )一条直线和一条射线(6)a b 、为非零向量.“a b ⊥”是“函数()()()f x xa b xb a =+-g为一次函数”的 (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)设不等式组1103305390x y x y x y +-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数x y a =的图像上存在区域D 上的点,则a 的取值范围是 (A )(1,3](B)[2,3](C)(1,2](D)[3,+∞](8)如图,正方体1111ABCD A B C D -的棱长为2,动点E 、F 在棱11A B 上,动点P ,Q 分别在棱AD ,CD 上,若EF=1,1A E=x ,DQ=y ,D P=z (x y z 、、大于零),则四面体PEFQ 的体积 (A)与x y z 、、都有关 (B)与x 有关,与y 、z 无关 (C)与y 有关,与x ,z 无关 (D)与z 有关,与x ,y 无关第II 卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
(北京卷)十年真题(2010)高考数学真题分类汇编专题01集合文(含解析)

1
1
﹣0.8
0.1
﹣0.3
﹣1
(2)设数表 A 形如
1
1
﹣1﹣2d
d
d
﹣1
其中﹣1≤d≤0.求 k(A)的最大值;
(Ⅲ)对所有满足性质 P 的 2 行 3 列的数表 A,求 k(A)的最大值.
【解答】解:(1)因为 r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8, 所以 k(A)=0.7
A.x | 3 x 2
B.x | 5 x 2
C.x | 3 x 3
【答案】A 【解析】
解: B x | x 3 x | 3 x 3 ,
D.x | 5 x 3
则 A B x | 3 x 2,
故选:A.
2.已知集合 A {x | x2 5x 6 0}, B {x Z |1 x 5} ,则 A B ( )
∴A∩B={x|2<x<3}.
故选:C.
6.【2015 年北京文科 01】若集合 A={x|﹣5<x<2},B={x|﹣3<x<3},则 A∩B=(
)
A.{x|﹣3<x<2}
B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3}
【解答】解:集合 A={x|﹣5<x<2},B={x|﹣3<x<3},
A {3, 2, 1, 0,1, 2,3}
∴ A B 1,0,1,2,3 .
故选 B.
4.已知全集U R ,集合 A x | 2x 4 , B {x | (x 1)(x 3) 0} ,则 U A B ( )
历年考题细目表
题型
年份
单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 解答题 解答题
2010年北京西城区高考一模试题解析数学理科人教B版

北京市西城区2010年抽样测试高三数学试卷(理科)本试卷分第I 卷和第II 卷两部分,第I 卷1至2页,第II 卷3至5页,共150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第I 卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(西城·理·题1)1.设集合{|1}P x x =>,2{|0}Q x x x =->,则下列结论正确的是( ) A .P Q = B .P Q R = C .P Q Ü D .Q P Ü 【解析】 C ;(1,)P =+∞,(,0)(1,)Q =-∞+∞.(西城·理·题2)2.函数sin cos y x x =+的最小值和最小正周期分别是( ) A.2π B .2,2π- C.π D .2,π- 【解析】 A ;π4y x ⎛⎫=+ ⎪⎝⎭.(西城·理·题3)3.设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于( ) A .10 B .12 C .15 D .30 【解析】 C ;24362a a a +==,于是33a =,53515S a ==.(西城·理·题4)4.甲乙两名运动员在某项测试中的8次成绩如茎叶图所示,1x ,2x 分别表示甲乙两名运动员这项测试成绩的平均数,1s ,2s 分别表示甲乙两名运动员这项测试成绩的标准差,则有( ) A .1212,x x s s >< B .1212,x x s s =< C .1212,x x s s == D .1212,x x s s <>3275538712455698210乙甲【解析】 B ;1215x x ==,2222222222221211(761167)(872278)88s s =+++++<=+++++.(西城·理·题5) 5.阅读右面的程序框图,运行相应的程序,输出的结果为( ) A .1321 B .2113 C .813 D .138【解析】 D ;1,1,220x y z ===<;1,2,320x y z ===<;,8,13,2120x y z ===>,故输出138.(西城·理·题6)6.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A .12B .16C .24D .32 【解析】 C ;将三个人插入五个空位中间的四个空档中,有34A 24=种排法.(西城·理·题7)7.已知平面区域1||1{(,)0,{(,)01y x y x x y y M x y y x +⎧⎫-+⎧⎫⎪⎪Ω==⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭≤≤≥≥≤,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为( )A .14B .13C .12D .23【解析】 C ;如图,阴影部分大的等腰直角三角形区域为Ω,小的等腰直角三角形区域为M ,由面积比知12P =.(西城·理·题8)8.如图,平面α⊥平面β,αβ=直线l ,,A C 是α内不同的两点,,B D 是β内不同的两点,且,,,A B C D ∉直线l ,,M N 分别是线段,AB CD 的中点.下列判断正确的是( ) A .当||2||CD AB =时,,M N 两点不可能重合B .,M N 两点可能重合,但此时直线AC 与l 不可能相交 C .当AB 与CD 相交,直线AC 平行于l 时,直线BD 可以与l 相交 D .当,AB CD 是异面直线时,直线MN 可能与l 平行【解析】 B ;若,M N 两点重合,由,AM MB CM MD ==知AC BD ∥,从而AC ∥平面β,故有AC l ∥,故B 正确.第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.(西城·理·题9)9.若(2i)i i a b -=+,其中,a b ∈R ,i 为虚数单位,则a b += . 【解析】 3;2i i a b +=+1,2a b ⇒==.(西城·理·题10)10.已知||2a =,||3b =,,a b 的夹角为60°,则|2|a b -= .222(2)44cos6013a b a a b b -=-⋅︒+=.(西城·理·题11)11.将极坐标方程2cos ρθ=化成直角坐标方程为 . 【解析】 2220x y x +-=;2222cos 2x y x ρρθ=⇒+=.(西城·理·题12)12.如图,PC 切O 于点C ,割线PAB 经过圆心O ,弦CD AB ⊥于点E .已知O 的半径为3,2PA =,则PC =.OE = .B【解析】 94,5; 22(26)164PC PA PB PC =⋅=⨯+=⇒=;连结OC ,知O C P C ⊥,于是5PO =,2239235CO OE OP PE =⋅⇒==+.lBCOE PDA(西城·理·题13)13.已知双曲线2213y x -=的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点,则12PA PF ⋅最小值为 . 【解析】 2-;12(1,0),(2,0)A F -,设(,)(1)P x y x ≥,2212(1,)(2,)2PA PF x y x y x x y ⋅=--⋅-=--+,又2213y x -=,故223(1)y x =-,于是2212114545816PA PF x x x ⎛⎫⋅=--=--- ⎪⎝⎭,当1x =时,取到最小值2-.(西城·理·题14)14.设函数()f x 的定义域为D ,若存在非零实数l 使得对于任意()x M M D ∈⊆,有x l D +∈,且()()f x l f x +≥,则称()f x 为M 上的l 高调函数.如果定义域为[1,)-+∞的函数2()f x x =为[1,)-+∞上的m 高调函数,那么实数m 的取值范围是 .如果定义域为R 的函数()f x 是奇函数,当0x ≥时,22()||f x x a a =--,且()f x 为R 上的4高调函数,那么实数a 的取值范围是 .【解析】[2,)+∞;[1,1]-; 2()(1)f x x x =-≥的图象如下图左所示,要使得(1)(1)1f m f -+-=≥,有2m ≥;1x -≥时,恒有(2)()f x f x +≥,故2m ≥即可;由()f x 为奇函数及0x ≥时的解析式知()f x 的图象如下图右所示,∵222(3)()f a a f a ==-,由2222(4)()(3)f a f a a f a -+-==≥,故2243a a -+≥,从而21a ≤,又21a ≤时,恒有(4)()f x f x +≥,故21a ≤即可.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. (西城·理·题15) 15.(本小题满分12分)已知α为锐角,且πtan 24α⎛⎫+= ⎪⎝⎭.⑴求tan α的值;⑵求sin 2cos sin cos2αααα-的值.【解析】 ⑴π1tan tan 41tan ααα+⎛⎫+= ⎪-⎝⎭,所以1tan 2,1tan 22tan 1tan αααα+=+=--,所以1tan 3α=.⑵2sin 2cos sin 2sin cos sin cos2cos2αααααααα--=2sin (2cos 1)sin cos2sin cos2cos2ααααααα-===.因为1tan 3α=,所以cos 3sin αα=,又22sin cos 1αα+=,所以21sin 10α=,又α为锐角,所以sin α=所以sin 2cos sin cos 2αααα-.(西城·理·题16) 16.(本小题满分13)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响. ⑴求该选手进入第三轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率;⑶该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列和期望.【解析】 设事件(1,2,3,4)i A i =表示“该选手能正确回答第i 轮问题”,由已知12345431(),(),(),()6543P A P A P A P A ====,⑴设事件B 表示“该选手进入第三轮被淘汰”,则331212()()()()()P B P A A A P A P A P A ==543116546⎛⎫=⨯⨯-= ⎪⎝⎭.⑵设事件C 表示“该选手至多进入第三轮考核”, 则123112()()P C P A A A A A A =++1231121515431()()()(1)6656542P A P A A P A A A =++=+⨯+⨯⨯-=; ⑶X 的可能取值为1,2,3,4,11(1)()6P X P A ===,21541(2)()(1)656P X P A A ===⨯-=,3125431(3)()(1)6546P X P A A A ===⨯⨯-=,1235431(4)()6542P X P A A A ===⨯⨯=,()123436662E X =⨯+⨯+⨯+⨯=.(西城·理·题17) 17.(本小题满分14分)在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E 为PC 中点,底面ABCD 是直角梯形,AB CD ∥,ADC ∠=90°,1AB AD PD ===,2CD =. ⑴求证:BE ∥平面PAD ; ⑵求证:BC ⊥平面PBD ;⑶设Q 为侧棱PC 上一点,PQ PC λ=,试确定λ的值,使得二面角Q BD P --为45°.PEDCB A【解析】 ⑴取PD 的中点F ,连结,EF AF ,因为E 为PC 中点,所以EF CD ∥,且11,2EF CD ==在梯形ABCD 中,AB CD ∥,1AB =,所以EF AB ∥,EF AB =,四边形ABEF 为平行四边形, 所以BE AF ∥,BE ⊄平面PAD ,AF ⊂平面PAD , 所以BE ∥平面PAD . ⑵平面PCD ⊥底面ABCD ,PD CD ⊥,所以PD ⊥平面ABCD ,所以PD AD ⊥. 如图,以D 为原点建立空间直角坐标系D xyz -. 则(1,0,0)A ,(1,1,0)B ,(0,2,0)C ,(0,0,1)P .(1,1,0),(1,1,0)DB BC ==-.所以0,BC DB BC DB ⋅=⊥.又由PD ⊥平面ABCD ,可得PD BC ⊥, 所以BC ⊥平面PBD .⑶平面PBD 的法向量为(1,1,0)BC =-,(0,2,1),,(0,1)PC PQ PC λλ=-=∈, 所以(0,2,1)Q λλ-,设平面QBD 的法向量为(,,)n a b c =,由0n DB ⋅=,0n DQ ⋅=,得02(1)0a b b c λλ+=⎧⎨+-=⎩,所以21,1,1n λλ⎛⎫=- ⎪-⎝⎭,所以cos45||||n BCn BC⋅︒===, 注意到(0,1)λ∈,得1λ.(西城·理·题18) 18.(本小题满分14分)椭圆C:22221(0)x y a b a b+=>>.⑴求椭圆C 的方程;⑵设过点D (0,4)的直线l 与椭圆C交于,E F 两点,O 为坐标原点,若OEF ∆为直角三角形,求直线l 的斜率. 【解析】 ⑴由已知225c a b a =+=, 又222a b c =+,解得224,1a b ==,所以椭圆C 的方程为2214x y +=;⑵根据题意,过点(0,4)D 满足题意的直线斜率存在,设:4l y kx =+, 联立22144x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 得22(14)32600k x kx +++=,222(32)240(14)64240k k k ∆=-+=-,令0∆>,解得2154k >. 设E 、F 两点的坐标分别为1122(,),(,)x y x y , ⅰ)当EOF ∠为直角时,则1212223260,1414k x x x x k k +=-=++, 因为EOF ∠为直角,所以0OE OF ⋅=,即12120x x y y +=, 所以21212(1)4()160k x x k x x ++++=,所以222215(1)32401414k k k k ⨯+-+=++,解得k =ⅱ)当OEF ∠或OFE ∠为直角时,不妨设OEF ∠为直角,此时,1OE k k ⋅=,所以111141y y x x -⋅=-,即221114x y y =-……① 又221114x y +=…………② 将①代入②,消去1x 得2113440y y +-=, 解得123y =或12y =-(舍去), 将123y =代入①,得1x =所以114y k x -== 经检验,所求k 值均符合题意,综上,k的值为.(西城·理·题19) 19.(本小题满分14分)已知函数()1e x a f x x ⎛⎫=+ ⎪⎝⎭,其中0a >.⑴求函数()f x 的零点;⑵讨论()y f x =在区间(,0)-∞上的单调性;⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上,()f x 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.【解析】 ⑴令()0f x =,得x a =-,所以函数()f x 的零点为a -.⑵函数()f x 在区域(,0)-∞上有意义,22()e xx ax a f x x +-'=⋅,令()0f x '=得12x x ==,因为0a >,所以120,0x x <>,当x 在定义域上变化时,()f x '的变化情况如下:所以在区间,⎛-∞ ⎝⎭上()f x 是增函数,在区间0⎫⎪⎪⎝⎭上()f x 是减函数.⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上()f x 存在最小值2a f ⎛⎫- ⎪⎝⎭, 证明:由⑴知a -是函数()f x 的零点,因为10a x a --=-=>, 所以10x a <-<.由()1e x a f x x ⎛⎫=+ ⎪⎝⎭知,当x a <-时,()0f x >.又函数在1(,0)x 上是减函数,且102ax a <-<-<.所以函数在区间1,2a x ⎛⎤- ⎥⎝⎦上的最小值为2a f ⎛⎫- ⎪⎝⎭,且()02a f -<.所以函数在区间,2a ⎛⎤-∞- ⎥⎝⎦上的最小值为2a f ⎛⎫- ⎪⎝⎭. 计算得2e 2aa f -⎛⎫-=- ⎪⎝⎭.(西城·理·题20) 20.(本小题满分13分)对于各项均为整数的数列{}n a ,如果i a i +(i =1,2,3,…)为完全平方数,则称数列{}n a 具有“P性质”.不论数列{}n a 是否具有“P 性质”,如果存在与{}n a 不是同一数列的{}n b ,且{}n b 同时满足下面两个条件:①123,,,...,n b b b b 是123,,,...,n a a a a 的一个排列;②数列{}n b 具有“P 性质”,则称数列{}n a 具有“变换P 性质”.⑴设数列{}n a 的前n 项和2(1)3n n S n =-,证明数列{}n a 具有“P 性质”;⑵试判断数列1,2,3,4,5和数列1,2,3,…,11是否具有“变换P 性质”,具有此性质的数列请写出相应的数列{}n b ,不具此性质的说明理由;⑶对于有限项数列A :1,2,3,…,n ,某人已经验证当2[12,](5)n m m ∈≥时,数列A 具有“变换P 性质”,试证明:当”22[1,(1)]n m m ∈++时,数列A 也具有“变换P 性质”.【解析】 ⑴当2n ≥时,1n n n a S S -=-2221(1)[(1)1]33n n n n n n -=----=-,又10a =,所以2*()n a n n n =-∈N . 所以2(1,2,3,)i a i i i +==是完全平方数,数列{}n a 具有“P 性质”;⑵数列1,2,3,4,5具有“变换P 性质”, 数列{}n b 为3,2,1,5,4,数列1,2,3,…,11不具有“变换P 性质”,因为11,4都只有与5的和才能构成完全平方数, 所以数列1,2,3,…,11不具有“变换P 性质”; ⑶设2,121n m j j m =++≤≤, 注意到22(2)()44m m j m j +-+=+-, 令441h m j =+--, 由于121,5j m m +≤≤≥, 所以4412212h m j m =+--+≥≥,又22244142m h m m j m m -=--++--≥,2242(2)60m m m --=-->, 所以2h m <,即2[12,]h m ∈,因为当2[12,](5)n m m ∈≥时,数列{}n a 具有“变换P 性质”, 所以1,2,…,441m j +--可以排列成123,,,,h a a a a ,使得(1,2,,)i a i i h +=都是平方数.另外,244,441,,m j m j m j +-+-++可以按相反顺序排列, 即排列为2,,441,44m j m j m j +--++-,使得22(44)()(2)m j m j m +-++=+,22(441)(1)(2),,m j m j m +-+++-=+ 所以1,2,22441,44,,1,m j m j m j m j +--+--++可以排列成 2123,,,,,,44h a a a a m j m j ++-, 满足2(1,2,,)i a i i m j +=+都是平方数. 即当22[1,(1)]n m m ∈++时,数列A 也具有“变换P 性质”.。
2010年高考《数学(理科)》试题及参考答案(北京卷)

第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式 )]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.若集合=-====-P M x y y P y y M x 则},1|{},2|{( )A .}1|{>y yB .}1|{≥y yC .}0|{>y yD .}0|{≥y y2.若xx x f 1)(-=,则方程x x f =)4(的根是( )A .21 B .-21 C .2 D .-23.设复数=+=+-=2121arg ,2321,1z z i z i z 则( )A .π1213B .π127 C .π125 D .-π1254.函数)1(11)(x x x f --=的最大值是( ) A .54 B .45 C .43 D .345.在同一坐标系中,方程)0(0122222>>=+>+b a byax y b x a 与的曲线大致是( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧其中c '、c 分别表示上、下底面周长 l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径xyxy xyxyOOOOABCD6.若A ,B ,C 是△ABC 的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的是( )A .C A sin sin <B .C A cos cos <C .tgC tgA <D .ctgC ctgA <7.椭圆ϕϕϕ(sin 3,cos 54⎩⎨⎧=+=y x 为参数)的焦点坐标为( ) A .(0,0),(0,-8) B .(0,0),(-8,0)C .(0,0),(0,8)D .(0,0),(8,0)8.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点, G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度 数为( )A .90°B .60°C .45°D .0°9.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )A .42B .30C .20D .1210.已知直线1)0(022=+≠=++y x abc c by ax 与圆相切,则三条边长分别为|a |,|b|,|c|的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在11.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于( )A .8B .2C .-4D .-812.在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为3032,0,0=+==y x y x ,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( ) A .95B .91C .88D .752003年普通高等学校春季招生考试A B CDEFG H JL数 学(理工农医类)(北京卷)第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚. 题 号 二 三总 分 17 18 19 20 21 22 分 数二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.如图,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水 面高度恰好升高r ,则=rR14.在某报《自测健康状况》的报道中,自测血压 结果与相应年龄的统计数据如下表. 观察表中数据 的特点,用适当的数填入表中空白( )内年龄(岁) 30 35 40 45 50 55 60 65收缩压(水银柱 毫米) 110 115 120 125 130 135 ( )145 舒张压(水银柱 毫米) 70 73 75 78 80 83 ( )8815.如图,F 1,F 2分别为椭圆12222=+by ax 的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是16.若存在常数0>p ,使得函数 =)()(px f x f 满足)(),)(2(x f R x p px f 则∈-的一个正周期为三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)解不等式:.1)1(log)2(log 21221-->--x x x18.(本小题满分12分)rr↑↓(1)(2)xyOPF 1F已知函数)(,2cos 4sin 5cos6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.19.(本小题满分12分)如图,正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为22,侧棱长为4.E ,F 分别为棱AB ,BC 的中点, EF ∩BD=G .(Ⅰ)求证:平面B 1EF ⊥平面BDD 1B 1; (Ⅱ)求点D 1到平面B 1EF 的距离d ; (Ⅲ)求三棱锥B 1—EFD 1的体积V .ABCD EFGB 1C 1D 1A 120.(本小题满分12分)某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?21.(本小题满分13分)如图,在边长为l 的等边△ABC 中,圆O 1为△ABC 的内切圆,圆O 2与圆O 1外切,且与AB ,BC 相切,…,圆O n+1与圆O n 外切,且与AB ,BC 相切,如此无限继续下去. 记圆O n 的面积为)(N n a n ∈. (Ⅰ)证明}{n a 是等比数列; (Ⅱ)求)(lim 21n n a a a +++∞→ 的值.ABCO 1O 222.(本小题满分13分)已知动圆过定点P(1,0),且与定直线1l相切,点C在l上.x:-=(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A,B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.2003年普通高等学校春季招生考试数学试题(理工农医类)(北京卷)参考答案一、选择题:本题主要考查基本知识和基本运算. 每小题5分,满分60分.1.C2.A3.C4.D5.D6.A7.D8.B9.A 10.B 11.C 12.B 二、填空题:本题主要考查基本知识和基本运算.每小题4分,满分16分.13.332 14.(140)(85) 15.32 16.2p 注:填2p 的正整数倍中的任何一个都正确.三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查不等式的解法、对数函数的性质等基本知识,考查运算能力和逻辑思维能力. 满分12分.解:原不等式变形为)22(log)2(log21221->--x x x .所以,原不等式3230,203,01,0)1)(2(22201,02222<<⇔⎩⎨⎧<<>⇔⎪⎩⎪⎨⎧<->->+-⇔⎪⎩⎪⎨⎧-<-->->--⇔x x x x x x x x x x x x x x .故原不等式的解集为}32|{<<x x .18.本小题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力. 满分12分.解:由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得.所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos624x f x f xx x 所以=-+=是偶函数.当xx x x f Z k k x 2cos 4sin 5cos6)(,,4224-+=∈+≠时ππ1c o s 32c o s )1c o s 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或19.本小题主要考查正四棱柱的基本知识,考查空间想象能力、逻辑思维能力和运算能力. 满分12分.(Ⅰ)证法一: 连结AC.∵正四棱柱ABCD —A 1B 1C 1D 1的底面是正方形,∴AC ⊥BD ,又AC ⊥D 1D ,故AC ⊥平面BDD 1B 1. ∵E ,F 分别为AB ,BC 的中点,故EF ∥AC , ∴EF ⊥平面BDD 1B 1, ∴平面B 1EF ⊥平面BDD 1B 1. 证法二:∵BE=BF ,∠EBD=∠FBD=45°,∴EF ⊥BD. 又 EF ⊥D 1D∴EF ⊥平面BDD 1B 1, ∴平面B 1EF ⊥平面BDD 1B 1. (Ⅱ)在对角面BDD 1B 1中,作D 1H ⊥B 1G ,垂足为H.∵平面B 1EF ⊥平面BDD 1B 1,且平面B 1EF ∩平面BDD 1B 1=B 1G , ∴D 1H ⊥平面B 1EF ,且垂足为H ,∴点D 1到平面B 1EF 的距离d=D 1H.解法一:在Rt △D 1HB 1中,D 1H=D 1B 1·sin ∠D 1B 1H. ∵422221111=⋅==B A B D ,,174144sin sin 2211111=+==∠=∠GB B B GB B H B D∴.17171617441=⋅==H D d 解法二:∵△D 1HB 1~△B 1BG , ∴GB B D BB H D 11111=,∴.1717161442221211=+===GB B B H D d解法三:连结D 1G ,则三角形D 1GB 1的面积等于正方形DBB 1D 1面积的一半, 即21112121B B H D G B =⋅⋅, .1717161211===∴GB BB H D d(Ⅲ)EF B EF B D EFD B S d V V V 1111131∆--⋅⋅===.31617221171631=⋅⋅⋅⋅=20.本小题主要考查二次函数的性质等基本知识,考查分析和解决问题的能力. 满分12分.解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为125030003600=-,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元,则租赁公司的月收益为50503000)150)(503000100()(⨯-----=x x x x f ,整理得307050)4050(5012100016250)(22+--=-+-=x x xx f BO n-1O nACABCDEFG B 1C 1D 1A 1B 1BG DD 1HB 1BG DD 1H所以,当x =4050时,)(x f 最大,最大值为307050)4050(=f ,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.21.本小题主要考查数列、数列极限、三角函数等基本知识,考查逻辑思维能力. 满分13分. (Ⅰ)证明:记r n 为圆O n 的半径,则,633021l tg l r =︒=.2130sin 11=︒=+---nn n n r r r r所以,12),2(3122111lra n r r n n ππ==≥=-于是91)(211==--n n n n r r a a 故}{n a 成等比数列.(Ⅱ)解:因为),()91(11N n a a n n ∈=-所以.323911)(lim 2121l a a a a nn π=-=+++∞→22.本小题主要考查直线、圆与抛物线的基本概念及位置关系,考查运用解析几何的方法解决数学问题的能力. 满分13分.解:(Ⅰ)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为x y 42=.(Ⅱ)(i )由题意得,直线AB 的方程为⎪⎩⎪⎨⎧=--=--=xy x y x y 4)1(3)1(32由消y 得.3,31,03103212===+-x x x x 解得所以A 点坐标为)332,31(,B 点坐标为(3,32-),.3162||21=++=x x AB假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即⎪⎪⎩⎪⎪⎨⎧=-++=+++222222)316()32()131(,)316()32()13(y y 由①-②得,)332()34()32(42222-+=++y y.9314-=y 解得但9314-=y 不符合①,所以由①,②组成的方程组无解.① ② )332,31()32,3(-xy 42=l32-332xyA OB P(1,0)-1因此,直线l 上不存在点C ,使得△ABC 是正三角形. (ii )解法一:设C (-1,y )使△ABC 成钝角三角形, 由321)1(3=⎩⎨⎧-=--=y x x y 得, 即当点C 的坐标为(-1,32)时,A ,B ,C 三点共线,故32≠y . 又2222334928)332()311(||y y y AC +-=-+--=,22223428)32()13(||y y y BC ++=+++=, 9256)316(||22==AB .当222||||||AB AC BC +>,即9256334928342822++->++y y y y ,即CAB y ∠>,392时为钝角.当222||||||AB BC AC +>,即9256342833492822+++>+-y y y y ,即CBA y ∠-<时3310为钝角.又222||||||BC AC AB +>,即2234283349289256y y y y ++++->,即0)32(,03433422<+<++y y y . 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或.解法二:以AB 为直径的圆的方程为222)38()332()35(=++-y x . 圆心)332,35(-到直线1:-=x l 的距离为38,所以,以AB 为直径的圆与直线l 相切于点G )332,1(--.当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G点不重合,且A ,B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 过点A 且与AB 垂直的直线方程为9321).31(33332=-=-=-y x x y 得令.过点B 且与AB 垂直的直线方程为)3(3332-=+x y . 令33101-=-=y x 得.又由321)1(3=⎩⎨⎧-=--=y x x y 解得,所以,当点C 的坐标为(-1,32)时,A ,B ,C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是).32(9323310≠>-<y y y 或。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题09立体几何文(含解析)

专题09立体几何历年考题细目表历年高考真题汇编【2018年北京文科06】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()1.A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.【2017年北京文科06】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积10.故选:D.3.【2015年北京文科07】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD,PD.PC═该几何体最长棱的棱长为:故选:C.4.【2013年北京文科08】如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴(﹣3,﹣3,3),设P(x,y,z),∵(﹣1,﹣1,1),∴(2,2,1).∴|PA|=|PC|=|PB1|,|PD|=|PA1|=|PC1|,|PB|,|PD1|.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.5.【2012年北京文科07】某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+12【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底10,S后,S右10,S左6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.6.【2011年北京文科05】某四棱锥的三视图如图所示,该四棱锥的表面积是()A.16B.16+16C.32D.16+32【解答】解:由已知中的三视力可得该几何体是一个四棱锥,棱锥的底面边长为4,故底面面积为16,棱锥的高为2,故侧面的高为:2,则每个侧面的面积为: 4,故棱锥的表面积为:16+16,故选:B.7.【2010年北京文科05】一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A.B.C.D.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.8.【2010年北京文科08】如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【解答】解:三棱锥P﹣EFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D的距离,此距离只与x有关,因为EF=1,点Q到EF的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关.故选:C.9.【2019年北京文科12】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.10.【2019年北京文科13】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.11.【2016年北京文科11】某四棱柱的三视图如图所示,则该四棱柱的体积为.【解答】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S(1+2)×1,棱柱的高为1,故棱柱的体积V,故答案为:12.【2014年北京文科11】某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC,在Rt△BCD中,BD,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.13.【2013年北京文科10】某四棱锥的三视图如图所示,该四棱锥的体积为.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.14.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC.(Ⅱ)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∠ABC=60°,∴AB⊥AE,PA⊥AE,∵PA∩AB=A,∴AE⊥平面PAB,∵AE⊂平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB上是存在中点F,使得CF∥平面PAE.理由如下:取AB中点G,连结GF,CG,∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∴CG∥AE,FG∥PA,∵CG∩FG=G,AE∩PA=A,∴平面CFG∥平面PAE,∵CF⊂平面CFG,∴CF∥平面PAE.15.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH BC,由DE∥BC,DE BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.16.【2017年北京文科18】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC S△ABC2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC1×1.17.【2016年北京文科18】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.【解答】(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.18.【2015年北京文科18】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC 且AC=BC,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC,∴AB=2,OC=1,∴S△VAB,∵OC⊥平面VAB,∴V C﹣VAB•S△VAB,∴V V﹣ABC=V C﹣VAB.19.【2014年北京文科17】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.【解答】解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC⊂平面B1BCC1,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB,∴V E﹣ABC S△ABC•AA1(1)×2.20.【2013年北京文科17】如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.21.【2012年北京文科16】如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解答】解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC,又DE⊄平面A1CB,∴DE∥平面A1CB.(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,∴DE⊥平面A1DC,而A1F⊂平面A1DC,∴DE⊥A1F,又A1F⊥CD,∴A1F⊥平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC,∴DE⊥A1C,又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,∴A1C⊥平面DEP,从而A1C⊥平面DEQ,故线段A1B上存在点Q,使A1C⊥平面DEQ.22.【2011年北京文科17】如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN EG,∴Q为满足条件的点.23.【2010年北京文科17】如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB,CE =EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE.【解答】证明:(Ⅰ)设AC于BD交于点G.因为EF∥AG,且EF=1,AG AC=1,所以四边形AGEF为平行四边形,所以AF∥EG,因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(Ⅱ)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题AD与BD所成的角为()1.在正方体中, 1A.45?B.90C.60D.120【答案】C【解析】如图,连结BC1、BD和DC1,在正方体ABCD-A1B1C1D1中,由AB=D 1C 1,AB ∥D 1C 1,可知AD 1∥BC 1, 所以∠DBC 1就是异面直线AD 1与BD 所成角,在正方体ABCD-A 1B 1C 1D 1中,BC 1、BD 和DC 1是其三个面上的对角线,它们相等. 所以△DBC 1是正三角形,∠DBC 1=60° 故异面直线AD 1与BD 所成角的大小为60°. 故选:C . 2.在正方体中,用空间中与该正方体所有棱成角都相等的平面α去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S ,周长为l ,则( ) A .S 为定值,l 不为定值 B .S 不为定值,l 为定值 C .S 与l 均为定值 D .S 与l 均不为定值【答案】C 【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等, 如图:与面1A BD 平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,即六边形EFGHMN ,其中分别为其所在棱的中点,由正方体的性质可得22EF =, ∴六边形的周长l 为定值32. ∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变, 故S 与l 均为定值,故选C.3.在四面体P ABC -中,ABC ∆为等边三角形,边长为3,3PA =,4PB =,5PC =,则四面体P ABC -的体积为( )A .3B .23C .11D .10【答案】C 【解析】如图,延长CA 至D ,使得3AD =,连接,DB PD , 因为,故ADB ∆为等腰三角形,又,故,所以即,故CB DB ⊥,因为,所以,所以CB PB ⊥,因,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD , 所以,因A 为DC 的中点,所以,因为,故PDC ∆为直角三角形,所以,又,而4PB =,故即PBD ∆为直角三角形, 所以,所以,故选C.4.若,a b 是不同的直线,,αβ是不同的平面,则下列命题中正确的是( ) A .若,则αβ⊥B .若,则αβ‖C .若,则αβ‖D .若,则αβ‖ 【答案】C 【解析】A 中,若,平面,αβ可能垂直也可能平行或斜交,不正确; B 中,若,平面,αβ可能平行也可能相交,不正确;C 中,若,a b αβ⊥⊥,则,a b 分别是平面,αβ的法线,a b ‖必有αβ‖,正确;D 中,若,平面,αβ可能平行也可能相交,不正确.故选C.5.某几何体的三视图如图所示,则该几何体的外接球的体积是( )A .23π B .32π C .3π D .43π 【答案】B 【解析】解:根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的. 故:该几何体的外接球为正方体的外接球,所以:球的半径,则:.故选:B . 6.如图,正方体中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .【答案】A 【解析】 解:正方体中,过点1,,A E C 的平面截去该正方体的上半部分后, 剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.故选:A.7.下列说法错误的是()A.垂直于同一个平面的两条直线平行B.若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直C.一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行D.一条直线与一个平面内的无数条直线垂直,则这条直线和这个平面垂直【答案】D【解析】由线面垂直的性质定理知,垂直于同一个平面的两条直线平行,A正确;由面面垂直的性质定理知,若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直,B正确;由面面平行的判定定理知,一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行,C正确;当一条直线与平面内无数条相互平行的直线垂直时,该直线与平面不一定垂直,D错误,故选D.-中,8.《九章算术》中,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的四棱锥P ABCD=,点E,F分别为PC,PD的中点,则图中的PD⊥平面ABCD,底面ABCD是正方形,且PD CD鳖臑有()A.2个B.3个C.4个D.5个【答案】C 【解析】由题意,因为PD ⊥底面ABCD ,所以PDDC ,PD BC ⊥,又四边形ABCD 为正方形,所以BC CD ⊥,所以BC ⊥平面PCD ,BC PC ⊥,所以四面体PDBC 是一个鳖臑, 因为DE ⊂平面PCD ,所以BC DE ⊥,因为PD CD =,点E 是PC 的中点,所以DE PC ⊥, 因为,所以DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑, 同理可得,四面体PABD 和FABD 都是鳖臑, 故选C.9.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______. 【答案】48π 【解析】如图,在等边三角形ABC 中,取AB 的中点F , 设其中心为O ,由6AB =, 得,PAB ∆是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又因为平面PAB ⊥平面ABC ,PF ∴⊥平面 ABC ,PF OF ∴⊥,,则O 为棱锥P ABC -的外接球球心, 外接球半径,∴该三棱锥外接球的表面积为,故答案为48π.10.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为3,圆心角为23π的扇形,则该圆锥的体积为_______. 【答案】223π 【解析】因为展开图是半径为3,圆心角为23π的扇形,所以圆锥的母线3l =,圆锥的底面的周长为,因此底面的半径1r =,根据勾股定理,可知圆锥的高,所以圆锥的体积为.11.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列正确命题序号是_____. (1)若m α,n α∥,则m n ∥ (2)若m α⊥,m n ⊥则n α∥(3)若m α⊥,n β⊥且m n ⊥,则αβ⊥; (4)若m β⊂,αβ,则m α【答案】(3)(4) 【解析】 若,则m 与n 可能平行,相交或异面,故(1)错误; 若则n α∥或n α⊂,故(2)错误; 若且m n ⊥,则αβ⊥,故(3)正确;若,由面面平行的性质可得m α,故(4)正确;故答案为:(3)(4) 12.长方体的底面ABCD 是边长为1的正方形,若在侧棱1AA 上存在点E ,使得,则侧棱1AA 的长的最小值为_______.【答案】2 【解析】设侧棱AA 1的长为x ,A 1E =t ,则AE =x ﹣t ,∵长方体ABCD ﹣A 1B 1C 1D 1的底面是边长为1的正方形, ∠C 1EB =90°, ∴,∴2+t 2+1+(x ﹣t )2=1+x 2, 整理,得:t 2﹣xt+1=0,∵在侧棱AA 1上至少存在一点E ,使得∠C 1EB =90°, ∴△=(﹣x )2﹣4≥0, 解得x≥2.∴侧棱AA 1的长的最小值为2. 故答案为2.13.如图,在Rt ABC ∆中,1AB BC ==,D 和E 分别是边BC 和AC 上一点,DE BC ⊥,将CDE ∆沿DE 折起到点P 位置,则该四棱锥P ABDE -体积的最大值为_______.【答案】327【解析】在Rt ABC ∆中,由已知,1AB BC ==,DE BC ⊥,所以设,四边形ABDE 的面积为,当CDE ∆⊥平面ABDE 时,四棱锥P ABDE -体积最大, 此时,且,故四棱锥P ABDE -体积为,,30,3x ⎛⎫∈ ⎪ ⎪⎝⎭时,0V '> ;时,0V '<,所以,当33x =时,max 327V =. 故答案为32714.三棱锥P ABC -的4个顶点在半径为2的球面上,PA ⊥平面ABC ,ABC 是边长为3的正三角形,则点A 到平面PBC 的距离为______. 【答案】65【解析】△ABC 是边长为3的正三角形,可得外接圆的半径2r asin60==︒2,即r =1.∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即h2,那么球的半径R2,解得h=2,又由知,得'65d =故点A 到平面PBC 的距离为65故答案为65. 15.如图,该几何体由底面半径相同的圆柱与圆锥两部分组成,且圆柱的高与底面半径相等.若圆柱与圆锥的侧面积相等,则圆锥与圆柱的高之比为_______.【答案】3 【解析】设圆柱和圆锥的底面半径为R ,则圆柱的高1h =R ,圆锥的母线长为L ,因为圆柱与圆锥的侧面积相等, 所以,,解得:L =2R ,得圆锥的高为2h =3R ,所以,圆锥与圆柱的高之比为33RR=. 故答案为:3 16.直三棱柱中,,设其外接球的球心为O ,已知三棱锥O ABC -的体积为1,则球O 表面积的最小值为__________. 【答案】16π. 【解析】如图,在Rt ABC ∆中,设,则.分别取11,AC A C 的中点12,O O ,则12,O O 分别为111Rt A B C ∆和Rt ABC ∆外接圆的圆心, 连12,O O ,取12O O 的中点O ,则O 为三棱柱外接球的球心. 连OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O ABC -的体积为1, 即,∴6ac =.在2Rt OO C ∆中,可得,∴,当且仅当a c =时等号成立,∴O 球表面积的最小值为16π. 故答案为:16π.17.在三棱锥P ABC -中,ABC ∆是边长为4的等边三角形,,25PC =.(1)求证:平面PAB ⊥平面ABC ;(2)若点M ,N 分别为棱BC ,PC 的中点,求三棱锥N AMC -的体积V . 【答案】(1)见证明;(2) 26=3V 【解析】(1)取AB 中点H ,连结PH ,HC .∵,4AB =,∴PH AB ⊥,22PH =. ∵等边ABC ∆的边长为4 ∴23HC =,又25PC = ∴∴90PHC ∠=, 即PH HC ⊥ 又∵,AB平面ABC ,CH ⊂平面ABC ∴PH ⊥平面ABC ,又PH ⊂平面PAB ∴平面PAB ⊥平面ABC(2)∵点M ,N 分别为棱BC ,PC 的中点 ∴点N 到平面ABC 的距离为1=22PH 且∴三棱锥N AMC -的体积18.如图所示,三棱柱中,90BCA ∠=°,1AC ⊥平面1A BC .(1)证明:平面ABC ⊥平面11ACC A ;(2)若,11A A A C =,求点1B 到平面1A BC 的距离.【答案】(1)见解析;(2)3 【解析】 (1)证明:1AC ⊥平面1A BC ,.,,BC ∴⊥平面11ACC A .又BC ⊂平面ABC ,∴平面ABC ⊥平面11ACC A .(2)解:取AC 的中点D ,连接1A D .,.又平面ABC ⊥平面11ACC A ,且交线为AC ,则1A D ⊥平面ABC .1AC ⊥平面1A BC ,,∴四边形11ACC A 为菱形,.又11A A A C =,1A AC ∴是边长为2正三角形,13A D ∴= .面11BB C C ,1BB ⊂面11BB C C1AA ∴面11BB C C设点1B 到平面1A BC 的距离为h .则.,,3h ∴=.所以点1B 到平面1A BC 的距离为3.19.在边长为3的正方形ABCD 中,点E ,F 分别在边AB ,BC 上(如左图),且=BE BF ,将AED ,DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A (如右图).(1)求证:A D EF '⊥; (2)当13BF BC =时,求点A 到平面DEF 的距离. 【答案】(1)见解析;(2)375【解析】(1)由ABCD 是正方形及折叠方式,得:A E A D '⊥',A F A D '⊥',,A D ∴'⊥平面A EF ', 平面A EF ',.(2),,,52DEFS∴=设点A 到平面DEF 的距离为d ,,,解得375d =. ∴点A 到平面DEF 的距离为375.20.如图,四棱锥S ABCD -中,SD ⊥平面ABCD ,//AB CD ,AD CD ⊥,SD CD =,AB AD =,2CD AD =,M 是BC 中点,N 是SA 上的点.(1)求证://MN 平面SDC ; (2)求A 点到平面MDN 的距离. 【答案】(1)见证明;(2)127d = 【解析】(1)取AD 中点为E ,连结ME ,NE ,则//ME DC ,因为ME ⊄平面SDC ,所以//ME 平面SDC ,同理//NE 平面SDC . 所以平面//MNE 平面SDC ,从而因此//MN 平面SDC .(2)因为CD AD ⊥,所以ME AD ⊥.因为SD ⊥平面ABCD ,所以SD CD ⊥,ME SD ⊥.所以ME ⊥平面SAD . 设2DA =,则3ME =,2NE =,,10MD =,5ND =.在MDN ∆中,由余弦定理,从而,所以MDN ∆面积为72. 又ADM ∆面积为12332⨯⨯=. 设A 点到平面MDN 的距离为d ,由得732d NE =, 因为2NE =,所以A 点到平面MDN 的距离127d =. 21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,3PA =,//AB CD ,AB AD ⊥,,2AB =,E 为侧棱PA 上一点.(Ⅰ)若13PE PA =,求证:PC //平面EBD ; (Ⅱ)求证:平面EBC ⊥平面PAC ;(Ⅲ)在侧棱PD 上是否存在点F ,使得AF ⊥平面PCD ?若存在,求出线段PF 的长;若不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,线段PF 长32. 【解析】 (Ⅰ)设,连结EG ,由已知AB//CD ,DC 1=,AB 2=,得.由1PE PA 3=,得AE 2EP=. 在ΔPAC 中,由AE AGEP GC=,得EG //PC . 因为EG ⊂平面EBD ,PC ⊄平面EBD , 所以PC //平面EBD .(Ⅱ)因为PA ⊥平面ABCD ,BC ⊂平面ABCD , 所以BC PA ⊥. 由已知得AC 2=,BC 2=,AB 2=,所以.所以BC AC ⊥. 又,所以BC ⊥平面PAC .因为BC ⊂平面EBC , 所以平面EBC ⊥平面PAC .(Ⅲ)在平面PAD 内作AF PD ⊥于点F ,由DC PA ⊥,DC AD ⊥,,得DC ⊥平面PAD .因为AF ⊂平面PAD ,所以CD AF ⊥. 又,所以AF ⊥平面PCD .由PA 3=,AD 1=,PA AD ⊥, 得3PF 2=. 22.已知三棱柱的底面ABC 是等边三角形,侧面AA C C ''⊥底面ABC ,D 是棱BB '的中点.(1)求证:平面DA C '⊥平面ACC A '';(2)求平面DA C '将该三棱柱分成上下两部分的体积比. 【答案】(1)见证明;(2)1:1 【解析】(1)取,AC A C ''的中点,O F ,连接OF 与C A '交于点E , 连接DE ,,OB B F ',则E 为OF 的中点,,且,所以BB FO '是平行四边形.又D 是棱BB '的中点,所以DE OB .。
年高考数学北京卷理科试题及答案

学习改变命运,思考成就未来!
高考网 联系电话:62164116、82618899
在 [120,130),[130,140),[140,150) 三组内的学生中,用分层抽样的方法选取 18 人参加一 项活动,则从身高在 [140,150] 内的学生中选取的人数应为________.
(I) ( II)
(III)
证明: A, B,C Sn ,有 A B Sn ,且 d ( A C, B C) d ( A, B) ;
证 明 : A, B,C Sn , d ( A, B), d ( A,C), d (B,C) 三 个 数 中 至 少 有 一 个 是 偶
数;
设 P Sn , P 中有 m(m 2) 个元素,记 P 中所有两元素间距离的平均值为
与 BP 的斜率之积等于 1 . 3
(I)
求动点 P 的轨迹方程;
(II)
设直线 AP 和 BP 分别与直线 x 3 交于点 M , N ,问:是否存在点 P 使得 PAB
与 PMN 的面积相等?若存在,求出点 P 的坐标;若不存在,说明理由.
20,(本小题共 13 分)
已 知 集 合 Sn X | X x1, x2 ,..., xn , xi 0,1,i 1, 2,..., n (n 2) .对 于
13, 4,0 , y 3x
解 析 : 双 曲 线 焦 点 即 为 椭 圆 焦 点 , 不 难 算 出 为 4, 0 , 又 双 曲 线 离 心 率 为 2, 即
c a
2, c
4
,故
a
2, b
2
3
,渐近线为
y
b a
x
3x
2010北京高考数学真题(理科)及答案

(A )(B ) (C ) (D ) 2010北京高考数学真题(理科) 第I 卷 选择题(共40分)一、 本大题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1, 集合{}{}2|03,|9P x Z x M x R x =∈≤<=∈≤,则P M =(A ){}1,2(B ){}0,1,2(C ){}|03x x ≤<(D ){}|03x x ≤≤2,在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m = (A )9 (B )10 (C )11 (D )12 3,一个长方体去掉一个小长方体,所得集合体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为4,8名学生和2位老师站成一排合影,2位老师不相邻的排法总数为(A )8289A A (B )8289A C (C )8287A A(D )8289A C 5,极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线(D )一条直线和一条射线6,,a b 为非零向量,“a b ⊥”是“函数()()()f x xa b xb a =+∙-为一次函数”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件7,设不等式组1103305390x y x y x y +-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数x y a =的图象上存在区域D 上的点,则a 的取值范围是(A )(1,3](B )[]2,3(C )(1,2](D )[3,)+∞正(主)视图 侧(左)视图8,如图,正方体1111ABCD A B C D -的棱长为2,动点E ,F 在棱11A B 上,动点P ,Q 分别在棱,AD CD 上,若11,,,E F A E x D Q y D P z ====(,,x y z 大于零),则四面体PEFQ 的体积 (A ) 与,,x y z 都有关(B ) 与x 有关,与,y z 无关 (C ) 与y 有关,与,x z 无关 (D ) 与z 有关,与,x y 无关第II 卷 (共110分)二、填空题:本大题共6小题,每题5分,共30分。
2010年高考《数学(理科)》试题及参考答案(北京卷)

2010年普通高等学校招生全国统一考试(北京卷)数学(理科)考试说明:本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
(1)答题前,考生先将自己的姓名、准考证号码填写清楚。
(2)请按照题号顺序在各题目的答题区内作答,在草稿纸和试卷上答题视为无效。
(3)保持卡面清洁,不得折叠、不要弄皱,不准使用涂改液和刮纸刀等用具。
第Ⅰ卷(选择题共60分)一.选择题(每题5分,共12小题,满分60分,每小题只有一个选项正确。
)1. 若集合,则A. B. C. D.2. 复数的共轭复数是A. B. C. D.3.已知,则的值是A. B. C. D.4. 抛物线的准线与双曲线的两条渐近线所围成的三角形面积是A. B. C. D.5. A、B两名同学在4次数学考试中的成绩统计如下面的茎叶图所示,若A、B的平均成绩分别是、,则下列结论正确的是A.>,B比A的成绩稳定B.<,B比A的成绩稳定C.>,A比B的成绩稳定D.<, A比B的成绩稳定6. 双曲线的左、右焦点分别为、,离心率为,过的直线与双曲线的右支交与A、B两点,若是以A为直角顶点的等腰直角三角形,则A. B. C. D.7. 函数在定义域内可导,其图像如图所示,记的导函数为,则不等式的解集为A.B.C.D.8.执行下面的程序框图,若,则输出的A.B.C.D.9. 已知某个几何体的三视图如图(正视图中的弧线是半圆),根据图中标出的尺寸,可得这个几何体的表面积是(单位:)A.B.C.D.10.现将一个边不等的凸五边形的各边进行染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则共有()种染色方法A.30 B.36 C.48 D.5011.下列命题中正确的一项是A.“”是“直线与直线相互平行”的充分不必要条件B.“直线垂直平面内无数条直线”是“直线垂直于平面”的充分条件C.已知a,b,c为非零向量,则“a•b=a•c”是“b=c”的充要条件D.,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试数学(理)(北京卷)解析本试卷分第I卷和第n卷两部分。
第I卷1至2页、第n卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第I卷(选择题共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)集合P={x^Z 0Exc3}, M ={x w Rx2兰9},则PI M =(A) {1,2} (B) {0,1,2} (C){x|0 w x<3} (D) {x|0 < x < 3}1, B •解析:P Jo,1,2〉, M = I-3 4,3】,因此P^M hb,1,2"(2)在等比数列taj中,印=1 ,公比q H1 .右a m = 8182838485,则m=解析:很容易看出这是一个面向我们的左上角缺了一小块长方体的图形,不难选出答案。
(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为3—个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该4A .解析:基本的插空法解决的排列组合问题,几何体的俯视图为(A ) 9(B) 10(C) 11(D) 122, C.8m二內比比印比=q qm =11(B ) A8C9 AX (D ) A8C7将所有学生先排列,有A种排法,然后将两位老师插入9个空解析:2 3 4 10 10q q =q = ,因正(主)視图此有中,共有A 9种排法,因此一共有 A 8A 9种排法。
(5) 极坐标方程(;?-1 )^-7:) =0 ( T _0)表示的图形是(B )两条直线解析:原方程等价于 '二1或-二,前者是半径为1的圆,后者是一条射线。
(6)若a , b 是非零向量,“ a 丄b ”是“函数f (x)二(xa - b)・(xb - a)为一次函数”的(A )两个圆(C ) 一个圆和一条射线(D ) —条直线和一条射线(A )充分而不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件6, B .解析:f (x) =(xa b)L(xb2—a) =(a b)x +(b— a )x —a ,b ,如a 丄b ,则有a ,b=0,如果同时有 b = a ,则函数恒为0,不是一次函数,因此不充分,而如果 f(x)为一次函数,则a ^0,因此可得a _b ,故该条件必要。
x y -11 _0I 『(7)设不等式组3X - y • 3 一 0 表示的平面区域为 D ,若指数函数5x -3y 9 汕y=a x 的图像上存在区域D 上的点,贝U a 的取值范围是(1,3](B )[2,3] (C ) (1,2](D )[ 3, •::]7, A .解析:这是 道略微灵活的线性规划问题,作出区域xD 的图象,联系指数函数 y = a 的图象,能够看出,当图象经过区域的边界点 (2,9)时,a 可以取到最大值 3,而显然只要a 大于1,图象必然经过区域内的点。
(8)如图,正方体ABCD- ABQD!的棱长为2,动点E 、F 在棱A^上,动点P , Q 分别在棱AD , CD 上, 若 EF=1 , A 1E=x , DQ=y , D P = z(x,y,(A)与x,y,z 都有关 (E)与x 有关,与y,z 无关 (C) 与y 有关,与x,z 无关 (D) 与z 有关,与x,y 无关8, D .大于零),则四面体PE FQ 的体积解析:首先由割线定理不难知道 AB AC =AD AE ,于是AE =8,DE =5,又BD _AE ,故BE 为直径,因此• C =90,由勾股定理可知CE 2 =AE 2 -AC 2 =28,故CE解析:这道题目延续了北京高考近年 8,14,20的风格,即在变化中寻找不变, 从图中可以分析出,.:EFQ1的面积永远不变,为面 ABCD 面积的4,而当P 点变化时,它到面 ABCD 的距离是变化的,因此会导致 四面体体积的变化。
第II 卷(共110分)、填空题:本大题共6小题,每小题5分,共30分。
旦对应的点的坐标为1 -i(9)在复平面内,复数 9,( -1,1).2i 2i(1 i)=i(1 i) - -1 i解析:〜(―汎1i)')(10)在厶 ABC 中,若 b = 1,c =、、3,. C ^—,则 a = 3 10, 1。
sin B-^ ・b=^x1 今B「,A=「解析:c32,因此 66(11)从某小学随机抽取100名同学,将他们的身高(单 位:厘米)数据绘制成频率分布直方图(如图) 。
由图中 数据可知a = ___________ 。
若要从身高在[120 , 130), [130,140) , [140,150]三组内的学生中,用分层抽样的 方法选取18人参加一项活动,则从身高在 [140,150] 内的学生中选取的人数应为 ___________ 。
11,0.030, 3解析:由所有小矩形面积为1不难得到a =0.030,而三组身高区间的3:2:1,由分层抽样的原理不难得到140-150区间内的人数为 3人。
(12)如图,LI O 的弦 ED ,CB 的延长线交于点 A 。
若 BD — AE ,AB = 4, BC = 2, AD = 3,则 DE = ____________CE = _________12, 5,2.7 人数比为2 2 2 2(⑶已知双曲线才『1的离心率为2,焦点与椭圆詁的焦点相同,那么双曲线的焦点坐标为 _______ ;渐近线方程为13(现0 ), y = ±T3x解析:双曲线焦点即为椭圆焦点,不难算出为 -4,0,又双曲线离心率为 y =±b x =±j3x 渐近线为 a(14)如图放置的边长为 1的正方形PABC 沿x 轴滚动。
设顶点P ( x ,y )的轨迹方程是y = f (x ),则f (x )的最小正周 为 ___________ ; y 二f (x )在其两个相邻零点间的图像与 x 轴 所围区域的面积为。
说明:“正方形PABC 沿x 轴滚动”包括沿x 轴正方向和沿x 轴负方向滚动。
沿x 轴正方向滚动指的是先以 顶点A 为中心顺时针旋转,当顶点 B 落在x 轴上时,再以顶点 B 为中心顺时针旋转,如此继续。
类似地, 正方形PABC 可以沿x 轴负方向滚动。
14, 4,二1解析:不难想象,从某一个顶点(比如 A )落在x 轴上的时候开始计算,到下一次 A 点落在x 轴上,这个 过程中四个顶点依次落在了 x 轴上,而每两个顶点间距离为正方形的边长 1,因此该函数的周期为 4。
下 面考察P 点的运动轨迹,不妨考察正方形向右滚动, P 点从x 轴上开始运动的时候,首先是围绕 A 点运动14个圆,该圆半径为1,然后以B 点为中心,滚动到 C 点落地,其间是以 BP 为半径,旋转90°,然后以 C 为圆心,再旋转90°,这时候以CP 为半径,因此最终构成图象如下:因此不难算出这块的面积为 7:12,即a三、解答题:本大题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题共13分)2已知函数f(x) = 2cos 2x sin x-4cosx。
(I)求f (§)的值;(n)求f (x)的最大值和最小值。
15(I)兀2兀2兀兀 3 9f ( ) =2cos sin 4cos 1 2 二3 3 3 34 4(2)2 2f(x) =2(2cos x -1) (1-cos x) -4cosx2= 3cos x - 4cos x -1gV x R2 7♦cos x 一———因为cosx」-"l,所以当cosx=—1时,f(x)取最大值6;当3时,取最小值3。
(16)(本小题共14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE丄AC,EF// AC,AB= 2,CE=EF=1. (I)求证:AF//平面BDE(n)求证:CH平面BDE(川)求二面角A-BE-D的大小。
16证明:(I)设AC与BD交于点G,因为EF // AG,且EF=1 1AG= 2AC=1,所以四边形AGEF为平行四边形。
所以AF // EG。
因为EG P平面BDE,AF 一平面BDE,所以AF //平面BDE。
(II )因为正方形ABCD和四边形ACEF所在的平面互相垂直,且CE丄AC,所以CE丄AC,所以CE丄平面ABCD。
如图,以C为原点,建立空间直角坐标系C-xyz。
则C(0,0,2+ 0 +0), A (迈,施,0) , D O/2 , 0, 0), E (0,2.2 — 20,1), F ( 2 ,2, 1)o 所以 CF =( 21),BE =( 0,— d ,1 = 0。
所以 CF 丄BE , CF 丄DE ,所以CF 丄平面1)。
所以 CF .BE = 0-1+仁o , CF .DE =—i BDE2辽(HI )由(II )知,CF = ( 2 , 2, 1),是平面则 n ・BA =o , n BE =0 o(x, y,z) (、、2,0,0) =0即(x, y, z) (0, -迈⑴=0所以 X=0 ,且 Z 八 2 y 。
令 y=1 ,则 z= ' 2。
所以 n= ( 0,1,2),从而 COS ( n , 兀因为二面角A-BE-D 为锐角,所以二面角 A-BE-D 为6。
(17) (本小题共13分)某同学参加3门课程的考试。
假设该同学第一门课程取得优秀成绩的概率为4 ,第二、第三门课程取5得优秀成绩的概率分别为 p , q ( p > q ),且不同课程是否取得优秀成绩相互独立。
记E 为该生取得优秀成绩的课程数,其分布列为E 01 2 3P6 125ab24 125(n )求p , q 的值; (川)求数学期望E E 。
17解:事件A ,表示该生第i 门课程取得优异成绩”,i=1,2,3。
由题意可知4P(AJ,P(A 2)=p,P(A 3)=q. 5(I)由于事件 该生至少有一门课程取得优异成绩”与事件“ =0 ”是对立的,所以该生至少有一门课程取1) , DE =(- -2 , 0, BDE 的一个法向量, 设平面ABE 的法向量n = (x,y,z ),CF得优秀成绩的概率是戶 6 119 1 -P( =0)=1125 125 (II)由题意可知,2+ 0 +p ( =0)二p (A 1A 2A 3)J (i — p )(i —q)二532 ,q=整理得pq= 5 5 。