2014北京市高考压轴卷理科数学试题和答案

合集下载

2014年北京高考理科数学试题含答案(Word版)

2014年北京高考理科数学试题含答案(Word版)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D 2.下列函数中,在区间(0,)+∞上为增函数的是( ).A y = 2.(1)B y x =- .2x C y -= 0.5.l o g (1)D y x =+ 3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ) .A 在直线2y x =上 .B 在直线2y x =-上.C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠(C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好, 且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________. 10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.试题分析:对等比数列}{n a ,若1 q ,则当0,1a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则二.填空题:本大题共6小题,每小题5分,共30分.请将答案天灾答题卡对应题的位置上,答错位置,书写不清,模棱两可均不得分.9.【答案】1-【解析】 试题分析:i i i i i i i ==+-+=-+22)1)(1()1(112,所以1)11(22-==-+i ii . 10.【答案】5【解析】三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率.(2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,.(1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分) 已知函数()cos sin ,[0,]2f x x x x x π=-∈, (1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.19.(本小题14分)已知椭圆22:24C x y +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).。

2014年普通高等学校招生全国统一考试(北京卷)数学试题(理科)解析版

2014年普通高等学校招生全国统一考试(北京卷)数学试题(理科)解析版

2014年普通高等学校招生全国统一考试(北京卷)数学(理科)一.选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =I ( )A.{0} B .{0,1} C .{0,2} D .{0,1,2} 【答案】C【解析】∵{}2,0=A ,∴{}{}{}2,02,1,02,0==I I B A .2. 下列函数中,在区间(0,)+∞为增函数的是( )A .1y x =+B .2(1)y x =-C .2x y -=D .0.5log (1)y x =+【答案】A【解析】由初等函数的性质得选项B 在()1,0上递减,选项C 、D 在()+∞,0为减函数,所以排除B 、C 、D.3.曲线1cos 2sin x y θθ=-+⎧⎨==⎩,(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上 【答案】B【解析】试题分析:参数方程⎩⎨⎧+=+-=θθsin 2cos 1y x 所表示的曲线为圆心在)2,1(-,半径为1的圆,其对称中心为)2,1(-,逐个代入选项可知,点)2,1(-满足x y 2-=,故选B. 4. 当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .8405.设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】试题分析:对等比数列}{n a ,若1>q ,则当0,1a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C.6. 若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12 D .12- 【答案】D【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A 点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .7.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S == B .21S S =且23S S ≠ C .31S S =且32S S ≠ D .32S S =且31S S ≠ 【答案】D【解析】设顶点D 在三个坐标面xoy 、yoz 、zox 的正投影分为'1D 、'2D 、'3D ,则211='='BD AD ,2=AB ,∴2222211=⨯⨯⨯=S ,2222122=⨯⨯=='OCD S S ,2222133=⨯⨯=='OAD S S .8.学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲2=-+y x 02=+-y kx A=-x y的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人 【答案】B【解析1】试题分析:用A 、B 、C 分别表示优秀、及格和不及格,依题意,事件A 、B 、C 中都最多只有一个元素,所以只有AC ,BB ,CA 满足条件,故选B.【解析2】假设AB 两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.因为数学成绩只有3种,因而同学数量最大为3.即 3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件.二.填空题:本大题共6小题,每小题5分,共30分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.二、填空题9. 复数211i i +⎛⎫= ⎪-⎝⎭________.【答案】1-【解析】()()()122111112222-=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛-+i i i i i i . 10.已知向量a r 、b r 满足1a =r,()2,1b =r ,且()0a b R λλ+=∈r r ,则λ=________.【答案】5【解析】∵0=+b a λ,∴b a -=λ,∴515||||===a b λ. 11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.【答案】112322=-y x ;x y 2±= 【解析】设双曲线C 的方程为λ=-224x y ,将()2,2代入λ=-=-324222,∴双曲线方程为112322=-y x .令0422=-x y 得渐近线方程为x y 2±=.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 【答案】8【解析】∵038987>=++a a a a ,098107<+=+a a a a ,∴0,098<>a a ,∴8=n 时数列{}n a 前n 和最大.13. 把5件不同产品摆成一排,若产品A 与产品B 相邻,产品A 与产品C 不相邻,则不同的摆法有_____种. 【答案】36【解析】36326132233=⨯⨯=A A A .14.设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 【答案】π【解析】结合图象得26223224ππππ+-+≥T ,即π≥T .三、解答题共6小题,共80分。

2014年北京高考理科数学试题逐题详解 (纯word解析版)

2014年北京高考理科数学试题逐题详解 (纯word解析版)

2014年北京高考理科数学试题逐题详解 (纯word 解析版)一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)【2014年北京卷(理01)】已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D【答案】C【解析】∵A={x|x 2﹣2x=0}={0,2},B={0,1,2},∴A ∩B={0,2}故选C【2014年北京卷(理02)】下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+【答案】A【解析】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x ﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log 0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件, 故选:A【2014年北京卷(理03)】曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上【答案】B 【解析】曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,【2014年北京卷(理04)】当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D【答案】C【解析】解:由程序框图知:算法的功能是求S=7×6×…×k 的值,当m=7,n=3时,m ﹣n+1=7﹣3+1=5,∴跳出循环的k 值为4, ∴输出S=7×6×5=210.【2014年北京卷(理05)】设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D【解析】等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但“{a n }”不是递增数列,充分性不成立.若a n =﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q >1”是“{a n }”为递增数列的既不充分也不必要条件,故选:D【2014年北京卷(理06)】若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -【答案】D【解析】由约束条件作出可行域如图,由kx ﹣y+2=0,得x=,∴B (﹣).由z=y ﹣x 得y=x+z .由图可知,当直线y=x+z 过B (﹣)时直线在y 轴上的截距最小,即z 最小.此时,解得:k=﹣.故选:D【2014年北京卷(理07)】在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx坐标平面上的正投影图形的面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠【答案】D 【解析】设A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,),则各个面上的射 影分别为A',B',C',D',在xOy 坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S 1=.在yOz 坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S 2=.在zOx 坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(1,0,),S 3=,则S 3=S 2且S 3≠S 1,故选:D【2014年北京卷(理08)】有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5【答案】B【解析】用ABC 分别表示优秀、及格和不及格,显然语文成绩得A 的学生最多只有1个,语文成绩得B 得也最多只有一个,得C 最多只有一个,因此学生最多只有3人, 显然(AC )(BB )(CA )满足条件,故学生最多有3个.故选:B二、填空题(共6小题,每小题5分,共30分)【2014年北京卷(理09)】复数211i i +⎛⎫= ⎪-⎝⎭________.【答案】﹣1 【解析】()2=.故答案为:﹣1【2014年北京卷(理10)】已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.【答案】【解析】设=(x ,y ).∵向量,满足||=1,=(2,1),且+=(λ∈R ),∴=λ(x ,y )+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:【2014年北京卷(理11)】设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________. 【答案】y=±2x 【解析】与﹣x 2=1具有相同渐近线的双曲线方程可设为﹣x 2=m ,(m ≠0),∵双曲线C 经过点(2,2),∴m=,即双曲线方程为﹣x 2=﹣3,即,对应的渐近线方程为y=±2x ,故答案为:,y=±2x【2014年北京卷(理12)】若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.【答案】8【解析】由等差数列的性质可得a 7+a 8+a 9=3a 8>0,∴a 8>0,又a 7+a 10=a 8+a 9<0,∴a 9<0,∴等差数列{a n }的前8项为正数,从第9项开始为负数,∴等差数列{a n }的前8项 和最大,故答案为:8【2014年北京卷(理13)】把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.【答案】36【解析】根据题意,分3步进行分析:①、产品A 与产品B 相邻,将AB 看成一个整体,考虑AB 之间的顺序,有A 22=2种情况,②、将AB 与剩余的2件产品全排列,有A 33=6种情况,③、产品A 与产品C 不相邻,C 有3个空位可选,即有3种情况, 故不同的摆法有12×3=36种【2014年北京卷(理14)】 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在学科网区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 【答案】π 【解析】由f ()=f (),可知函数f (x )的一条对称轴为x=,则x=离最近对称轴距离为.又f ()=﹣f (),且f (x )在区间[,]上具有单调性,∴x=离最近对称轴的距离也为.函数图象的大致形状如图,∴.则T=π.故答案为:π三.解答题(共6题,满分80分)【2014年北京卷(理15)】如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长解:(I )在ADC ∆中,因为17COS ADC ∠=,所以43sin 7ADC ∠=。

2014年高考理科数学北京卷(含详细答案)

2014年高考理科数学北京卷(含详细答案)
如图建立空间直角坐标系 ,则 , , , , ,
.
设平面ABF的法向量为 ,则 ,即 .
令 ,则 .所以 ,设直线BC与平面ABF所成角为 ,
则 .
设点H的坐标为
因为点H在棱PC上,所以可设 ,即 ,
所以 .
因为 是平面ABF的法向量,所以 ,即 .
解得 ,所以点H的坐标为ቤተ መጻሕፍቲ ባይዱ
所以 .
【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解.
圆心 到直线AB的距离 .此时直线AB与圆 相切.
当 时,直线AB的方程为 ,即 ,
圆心 到直线AB的距离 .
又 , ,故 ,
此时直线AB与圆 相切.
【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.
【考点】圆与圆锥曲线的综合,椭圆的简单性质
20.【答案】(1)
A.2人
B.3人
C.4人
D.5人
第Ⅱ卷(非选择题共110分)
二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.
9.复数 .
10.已知向量a,b满足 a ,b ,且 a b 0 ,则 .
11.设双曲线 经过点 ,且与 具有相同渐近线,则 的方程为;渐近线方程为.
12.若等差数列 满足 , ,则当 时, 的前 项和最大.
【提示】由循环语句、条件语句执行程序,直至结束.
【考点】循环结构
5.【答案】D
【解析】当 时,数列 递减;当 ,数列 递增时, ,故选D.
【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.
【考点】充分、必要条件,等比数列的性质

2014年北京高考数学理科(含答案)

2014年北京高考数学理科(含答案)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =I ( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2xC y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.C 1.D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a r 、b r 满足1a =r ,()2,1b =r ,且()0a b R λλ+=∈r r,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在学科网区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小学科网(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.对于数对序列1122(,),(,),,(,)n n P a b a b a b L,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤L ,其中112max{(),}k k T P a a a -+++L 表示1()k T P -和12k a a a +++L 两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分) (9)-1 (10(11)221312x y -= 2y x =± (12)8(13)36 (14)π三、解答题(共6小题,共80分) (15)(共13分)解:(I )在ADC ∆中,因为17COS ADC∠=,所以sin ADC ∠=。

2014年北京市高考数学试卷(理科)(含解析版)

2014年北京市高考数学试卷(理科)(含解析版)

绝密★启用前2014年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2} 2.(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S 1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1 8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=时,{a n}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k﹣1(P)和a1+a2+…+a k两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a 和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).2014年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)【考点】4O:对数函数的单调性与特殊点.【专题】51:函数的性质及应用.【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论.【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【考点】QK:圆的参数方程.【专题】17:选作题;5S:坐标系和参数方程.【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【考点】E7:循环结构.【专题】11:计算题;5K:算法和程序框图.【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件;87:等比数列的性质.【专题】54:等差数列与等比数列;5L:简易逻辑.【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{a n}不是递增数列,充分性不成立.若a n=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{a n}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【考点】7C:简单线性规划.【专题】31:数形结合;59:不等式的解法及应用.【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S 1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【考点】JG:空间直角坐标系.【专题】5H:空间向量及应用.【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=﹣1.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案.【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为y=±2x.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m ≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】可得等差数列{a n}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种.【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π.【考点】H1:三角函数的周期性;HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】57:三角函数的图像与性质.【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【考点】HR:余弦定理.【专题】58:解三角形.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.【考点】MI:直线与平面所成的角.【专题】11:计算题;14:证明题;5F:空间位置关系与距离;5G:空间角.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF 的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF 的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【考点】6E:利用导数研究函数的最值.【专题】53:导数的综合应用.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx <0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx <0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x(0,x0)x0(x0,)g′(x)+﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【考点】K4:椭圆的性质;KJ:圆与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k﹣1(P)和a1+a2+…+a k两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a 和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【考点】F9:分析法和综合法.【专题】23:新定义;48:分析法.【分析】(Ⅰ)利用T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)根据数对序列(4,6),(11,11),(16,11),(11,8),(5,2),可得T1(P)=4+6=10;T2(P)=11+15=26;T3(P)=31+11=42;T4(P)=8+42=50;T5(P)=2+50=52;逐一检验可得,此数对序列使T5(P)最小.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键,属于难题.。

北京市高考数学压轴卷 理(含解析)1

北京市高考数学压轴卷 理(含解析)1

2014北京市高考压轴卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +的共轭复数为( ) A .12i + B .12i - C .2i + D .2i -2.已知函数3()f x x x =--,123,,x x x R ∈,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值为()A.正B.负C.零D.可正可负3.已知某几何体的三视图如下,则该几何体体积为( )A .4+52π B .4+32π C .4+2π D .4+π 4.如图所示为函数π()2sin()(0,0)2f x x ωϕωϕ=+>≤≤的部分图像,其中A ,B 两点之间的距离为5,那么(1)f -=( )A .-1B .CD .15.(5分)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m、n是两条异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.6.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B.C. D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,B D8.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且x∈[0,1]时,,则方程在区间[﹣3,3]上的根的个数为()9.已知集合{}{}22,1,3,3,21,1A a aB a a a=+-=--+,若{}3A B=-,则实数a的值为________________.10.已知如图所示的流程图(未完成),设当箭头a指向①时输出的结果S=m,当箭头a指向②时,输出的结果S=n,求m+n的值.11.若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 . 12.展开式中有理项共有 项.13.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是_______14.设a ∈R ,若x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0,则a= .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.已知向量)4cos ,4(cos ),1,4sin 3(2x x n x m ==.记x f ⋅=)( (I)求)(x f 的周期;(Ⅱ)在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2a —c)cos B=b cosC , 若12f (A )=,试判断∆ABC 的形状. 16.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)(Ⅰ)据此判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?(Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.已知甲、乙、丙三人都参加“排球小组”. ①求在甲被抽中的条件下,乙丙也都被抽中的概率;②设乙、丙两人中被抽中的人数为X ,求X 的分布列及数学期望E(X).下面临界值表供参考:参考公式:2()()()()K a b c d a c b d =++++命题意图:考查分类变量的独立性检验,条件概率,随机变量的分布列、数学期望等,中等题. 17.已知正四棱柱1111-ABCD A B C D 中,12,4==AB AA . (Ⅰ)求证:1BD AC ⊥;(Ⅱ)求二面角11--A AC D 的余弦值;(Ⅲ)在线段1CC 上是否存在点P ,使得平面11ACD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.18.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,点B 为短轴的一个端点,260OF B ∠=︒. (Ⅰ)求椭圆C 的方程;(Ⅱ)如图,过右焦点2F ,且斜率为(0)≠k k 的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线,AE AF 分别交直线3=x 于点,M N ,线段MN 的中点为P ,记直线2PF 的斜率为'k .求证: '⋅k k 为定值.19.已知数列{}n a 的各项均为正数,记12()n A n a a a =+++L ,231()n B n a a a +=+++L ,342(),1,2,n C n a a a n +=+++=L L .(Ⅰ)若121,5a a ==,且对任意n ∈*N ,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈*N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.已知函数2()2ln f x x x ax =-+(a ∈R ).(Ⅰ)当2a =时,求()f x 的图象在1x =处的切线方程;(Ⅱ)若函数()()g x f x ax m =-+在1[e]e ,上有两个零点,求实数m 的取值范围;(Ⅲ)若函数()f x 的图象与x 轴有两个不同的交点12(0)(0)A x B x ,,,,且120x x <<, 求证:12()02x x f +'<(其中()f x '是()f x 的导函数).2014北京市高考压轴卷数学理word 版参考答案 1. 【答案】D 【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D . 2. 【答案】B【解析】∵3()f x x x =--,∴函数()f x 在R 上是减函数且是奇函数,∵120x x +>,∴12x x >-,∴12()()f x f x <-,∴12()()f x f x <-,∴12()()0f x f x +<, 同理:23()()0f x f x +<,31()()0f x f x +<,∴123()()()0f x f x f x ++<.3. 【答案】A【解析】该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分2π,所以该几何体的体积为52213422πππ⨯⨯+-=+.故选A . 4. 【答案】A. 【解析】5. 【答案】C【解析】①若m⊥n,m⊥α,则n 可能在平面α内,故①错误 ②∵m⊥α,m∥n,∴n⊥α,又∵n⊥β,∴α∥β,故②正确 ③过直线m 作平面γ交平面β与直线c , ∵m、n 是两条异面直线,∴设n∩c=O, ∵m∥β,m ⊂γ,γ∩β=c∴m∥c, ∵m ⊂α,c ⊄α,∴c∥α,∵n ⊂β,c ⊂β,n∩c=O,c∥α,n∥α ∴α∥β;故③正确④由面面垂直的性质定理:∵α⊥β,α∩β=m ,n ⊂β,n⊥m,∴n⊥α.故④正确 故正确命题有三个, 故选C6. 【答案】C. 【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选7. 【答案】C.【解析】设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得 b2m2+a2n2=a2b2②,把①代入②得 m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又 m2≤a2,∴≤a2,∴≤0,a2﹣2c2≥0,∴≤.综上,≤≤,故选 C.8. 【答案】A.【解析】由f(1+x)=f(1﹣x)可得函数f(x)的图象关于x=1对称,方程在区间[﹣3,3]根的个数等价于f(x)与y=图象的交点的个数,而函数y=图象可看作y=的图象向下平移1个单位得到,作出它们的图象如图:可得两函数的图象有5个交点,故选A9. 【答案】a=-1.【解析】若a-3=-3,则a=0,此时:}1,1,3{},3,1,0{--=-=B A ,}3,1{-=⋂∴B A ,与题意不符,舍 若2a-1=-3,则a=-1,此时:}2,4,3{},3,1,0{--=-=B A ,}3{-=⋂∴B A ,∴a=-1 若a2+1=-3,则a 不存在 综上可知:a=-1 10. 【答案】20.【解析】当箭头指向①时,计算S 和i 如下. i =1,S =0,S =1; i =2,S =0,S =2; i =3,S =0,S =3; i =4,S =0,S =4; i =5,S =0,S =5; i =6结束. ∴S=m =5.当箭头指向②时,计算S 和i 如下. i =1,S =0, S =1; i =2,S =3; i =3,S =6; i =4,S =10; i =5,S =15; i =6结束. ∴S=n =15. ∴m+n =20. 11. 【答案】44【解析】由83456786520S S a a a a a a -=++++==,解得64a =,又由611111611211()114422a a aS a ⨯+==== 12. 【答案】3. 【解析】展开式通项公式为T r+1==若为有理项时,则为整数,∴r=0、6、12,故展开式中有理项共有3项, 故答案为:3 13.【答案】4.【解析】设过坐标原点的一条直线方程为y kx =,因为与函数xx f 2)(=的图象交于P 、Q 两点,所以0k >,且联列解得,P Q ⎛ ⎝,所以4PQ ==≥14. 【答案】【解析】(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y=0,得M (,0),∴a>1;考查函数y 2=x 2﹣ax ﹣1,显然过点M (,0),代入得:,解之得:a=,或a=0(舍去). 故答案为:15.【解析】211()cos cos cos 4442222x x x x x f x +++1sin 262x π⎛⎫=++⎪⎝⎭(I )π4=T(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-= 12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒=∵()f A =∴1sin 262263A A πππ⎛⎫+++= ⎪⎝⎭或23π3A π⇒=或 π 而203A π<<,所以3A π=,因此∆ABC 为等边三角形.……………12分16. 【解析】(Ⅰ)由表中数据得K 2的观测值k =42×(16×12-8×6)224×18×20×22=25255≈4.582>3.841. ……2分所以,据此统计有95%的把握认为参加“篮球小组”或“排球小组”与性别有关.……4分 (Ⅱ)①由题可知在“排球小组”的18位同学中,要选取3位同学. 方法一:令事件A 为“甲被抽到”;事件B 为“乙丙被抽到”,则P(A∩B)=33318C C ,P(A)=217318C C .所以P(B|A)=P(A∩B )P(A)=33217C C =217×16 =1136. ……7分 方法二:令事件C 为“在甲被抽到的条件下,乙丙也被抽到”,则P(C)=22217C C =217×16=1136. ②由题知X 的可能值为0,1,2.依题意P(X =0)=316318C C =3551;P(X =1)=21162318C C C =517;P(X =2)=12162318C C C =151. 从而X 的分布列为……10分于是E(X)=0×3551+1×517+2×151=1751=13. ……12分 17. 【解析】证明:(Ⅰ)因为1111ABCD A B C D -为正四棱柱,所以1AA ⊥平面ABCD ,且ABCD 为正方形. ………1分因为BD ⊂平面ABCD ,所以1,BD AA BD AC ⊥⊥. ………2分 因为1AA AC A =,所以BD ⊥平面1A AC . ………3分 因为1AC ⊂平面1A AC , 所以1BD AC ⊥. ………4分(Ⅱ) 如图,以D 为原点建立空间直角坐标系-D xyz .则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B 11(0,2,4),(0,0,4)C D ………5分所以111(2,0,0),(0,2,4)D A DC ==-u u u u r u u u r . 设平面11A D C 的法向量111(,,)x y z =n .所以 1110,0D A D C ⎧⋅=⎪⎨⋅=⎪⎩uuuu r uuu r n n .即1110,240x y z =⎧⎨-=⎩……6分 令11z =,则12y =.所以(0,2,1)=n .由(Ⅰ)可知平面1AAC 的法向量为 (2,2,0)DB =u u u r . ……7分所以cos ,5DB <>==uu u r n . ……8分 因为二面角11--A AC D 为钝二面角,所以二面角11--A AC D的余弦值为. ………9分 (Ⅲ)设222(,,)P x y z 为线段1CC 上一点,且1(01)CP PC λλ=≤≤uu r uuu r .因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---uu r uuu r .所以222222(,2,)(,2,4)x y z x y z λ-=---. ………10分 即22240,2,1x y z λλ===+. 所以4(0,2,)1P λλ+. ………11分 设平面PBD 的法向量333(,,)x y z =m . 因为4(0,2,),(2,2,0)1DP DB λλ==+uu u r uu u r ,所以 0,0DP DB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu u r m m .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩. ………12分 令31y =,则3311,2x z λλ+=-=-. 所以1(1,1,)2λλ+=--m . ………13分 若平面11ACD ⊥平面PBD ,则0⋅=m n .即1202λλ+-=,解得13λ=. 所以当113CP PC =时,平面11ACD ⊥平面PBD . ………14分 18.【解析】(Ⅰ)由条件2,a b ==…………2分 故所求椭圆方程为13422=+y x . …………4分 (Ⅱ)设过点2(1,0)F 的直线l 方程为:)1(-=x k y . …………5分 由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩可得:01248)34(2222=-+-+k x k x k …………6分 因为点2(1,0)F 在椭圆内,所以直线l 和椭圆都相交,即0>∆恒成立.设点1122(,),(,)E x y F x y ,则34124,34822212221+-=+=+k k x x k k x x . …………8分 因为直线AE 的方程为:)2(211--=x x y y , 直线AF 的方程为:)2(222--=x x y y , ………9分 令3x =,可得)2,3(11-x y M ,)2,3(22-x y N , 所以点P 的坐标12121(3,())222y y x x +--. ………10分 直线2PF 的斜率为12121()0222'31y y x x k +---=- 12121()422y y x x =+-- 122112121212()42()4x y x y y y x x x x +-+=⋅-++1212121223()4142()4kx x k x x k x x x x -++=⋅-++ …………12分 2222222241282341434341284244343k k k k k k k k k k k -⋅-⋅+++=⋅--⋅+++ 34k=- 所以k k '⋅为定值43-. …………13分 19. 【解析】 (Ⅰ) 因为对任意n *∈N ,三个数(),(),()A n B n C n 是等差数列, 所以()()()()B n A n C n B n -=-. ………1分所以1122n n a a a a ++-=-, ………2分 即21214n n a a a a ++-=-=. ………3分 所以数列{}n a 是首项为1,公差为4的等差数列. ………4分 所以1(1)443n a n n =+-⨯=-. ………5分(Ⅱ)(1)充分性:若对于任意n *∈N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()()B n qA n C n qB n ==. ………6分 所以[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即2121n n a qa a qa ++-=-. ………7分因为当1n =时,由(1)(1),B qA =可得21a qa =, ………8分 所以210n n a qa ++-=.因为0n a >, 所以2211n n a a q a a ++==. 即数列{}n a 是首项为1a ,公比为q 的等比数列, ………9分(2)必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=. ………10分 因为0n a >,所以(),(),()A n B n C n 均大于0.于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ ………11分 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ ………12分 即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………13分综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………14分20. 【解析】(Ⅰ)当2a =时,2()2ln 2f x x x x =-+,2()22f x x x'=-+,切点坐标为(11),, 切线的斜率(1)2k f '==,则切线方程为12(1)y x -=-,即21y x =-. 2分 (Ⅱ)2()2ln g x x x m =-+,则22(1)(1)()2x x g x x x x-+-'=-=, ∵1[e]e x ∈,,故()0g x '=时,1x =.当11ex <<时,()0g x '>;当1e x <<时,()0g x '<. 故()g x 在1x =处取得极大值(1)1g m =-. 4分 又211()2e e g m =--,2(e)2e g m =+-,2211(e)()4e 0e eg g -=-+<,则1(e)()e g g <, ∴()g x 在1[e]e,上的最小值是(e)g . 6分 ()g x 在1[e]e ,上有两个零点的条件是2(1)10,11()20,e eg m g m =->⎧⎪⎨=--≤⎪⎩解得2112e m <≤+, ∴实数m 的取值范围是21(12]e +,. 8分 (Ⅲ)∵()f x 的图象与x 轴交于两个不同的点12(0)(0)A x B x ,,,,∴方程22l n 0x x a x -+=的两个根为12x x ,,则211122222l n 0,2l n 0,x x a x x x a x ⎧-+=⎪⎨-+=⎪⎩两式相减得1212122(ln ln )()x x a x x x x -=+--.又2()2ln f x x x ax =-+,2()2f x x a x '=-+,则1212124()()2x x f x x a x x +'=-+++1212122(ln ln )4x x x x x x -=-+-. 下证1212122(ln ln )40x x x x x x --<+-(*),即证明2111222()ln 0x x x x x x -+<+,12x t x =, ∵120x x <<,∴01t <<,即证明2(1)()ln 01t u t t t -=+<+在01t <<上恒成立. 10分 ∵22222(1)2(1)114(1)()(1)(1)(1)t t t u t t t t t t t -+---'=+=-=+++,又01t <<,∴()0u t '>, ∴()u t 在(0,1)上是增函数,则()(1)0u t u <=,从而知2111222()ln 0x x x x x x -+<+, 故(*)式<0,即12()02x x f +'<成立………….12分。

2014年高考真题——数学理(北京卷) (word有答案)

2014年高考真题——数学理(北京卷) (word有答案)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D 2.下列函数中,在区间(0,)+∞上为增函数的是( ).A y = 2.(1)B y x=- .2x C y -= 0.5.l o g (1)D y x =+ 3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上.C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠(C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,学科 网且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________. 10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率.(2)从上述比赛中选择一个主场和一个客场,学科 网求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,.(1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分) 已知函数()cos sin ,[0,]2f x x x x x π=-∈, (1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.19.(本小题14分)已知椭圆22:24C x y +=,(1)求椭圆C 的离心率. (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,学科 网对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014北京市高考压轴卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +的共轭复数为( ) A .12i + B .12i - C .2i + D .2i -2.已知函数3()f x x x =--,123,,x x x R ∈,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值为()A.正B.负C.零D.可正可负3.已知某几何体的三视图如下,则该几何体体积为( )A .4+52π B .4+32π C .4+2π D .4+π 4.如图所示为函数π()2sin()(0,0)2f x x ωϕωϕ=+>≤≤的部分图像,其中A ,B 两点之间的距离为5,那么(1)f -=( )A .-1B .CD .15.(5分)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m、n是两条异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确命题的个数是()6.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B.C. D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()B8.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且x∈[0,1]时,,则方程在区间[﹣3,3]上的根的个数为()9.已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,则实数a 的值为________________.10.已知如图所示的流程图(未完成),设当箭头a 指向①时输出的结果S =m ,当箭头a 指向②时,输出的结果S =n ,求m +n 的值.11.若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 . 12.展开式中有理项共有 项.13.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是_______14.设a ∈R ,若x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0,则a= .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.已知向量)4cos ,4(cos ),1,4sin 3(2x x x ==.记x f ⋅=)( (I)求)(x f 的周期;(Ⅱ)在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2a —c)cos B=b cosC , 若f (A )=,试判断∆ABC 的形状. 16.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)(Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.已知甲、乙、丙三人都参加“排球小组”. ①求在甲被抽中的条件下,乙丙也都被抽中的概率;②设乙、丙两人中被抽中的人数为X ,求X 的分布列及数学期望E(X). 下面临界值表供参考:参考公式:2()()()()K a b c d a c b d =++++命题意图:考查分类变量的独立性检验,条件概率,随机变量的分布列、数学期望等,中等题. 17.已知正四棱柱1111-ABCD A BC D 中,12,4==AB AA . (Ⅰ)求证:1BD AC ⊥;(Ⅱ)求二面角11--A AC D 的余弦值;(Ⅲ)在线段1CC 上是否存在点P ,使得平面11ACD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.18.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,点B 为短轴的一个端点,260OF B ∠=︒. (Ⅰ)求椭圆C 的方程;(Ⅱ)如图,过右焦点2F ,且斜率为(0)≠k k 的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线,AE AF 分别交直线3=x 于点,M N ,线段MN 的中点为P ,记直线2PF 的斜率为'k .求证: '⋅k k 为定值.19.已知数列{}n a 的各项均为正数,记12()n A n a a a =+++L ,231()n B n a a a +=+++L ,342(),1,2,n C n a a a n +=+++=L L .(Ⅰ)若121,5a a ==,且对任意n ∈*N ,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈*N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.已知函数2()2ln f x x x ax =-+(a ∈R ).(Ⅰ)当2a =时,求()f x 的图象在1x =处的切线方程;(Ⅱ)若函数()()g x f x ax m =-+在1[e]e ,上有两个零点,求实数m 的取值范围;(Ⅲ)若函数()f x 的图象与x 轴有两个不同的交点12(0)(0)A x B x ,,,,且120x x <<, 求证:12()02x x f +'<(其中()f x '是()f x 的导函数).2014北京市高考压轴卷数学理参考答案1. 【答案】D 【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D . 2. 【答案】B【解析】∵3()f x x x =--,∴函数()f x 在R 上是减函数且是奇函数,∵120x x +>,∴12x x >-,∴12()()f x f x <-,∴12()()f x f x <-,∴12()()0f x f x +<, 同理:23()()0f x f x +<,31()()0f x f x +<,∴123()()()0f x f x f x ++<.3. 【答案】A【解析】该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分2π,所以该几何体的体积为52213422πππ⨯⨯+-=+.故选A . 4. 【答案】A. 【解析】5. 【答案】C【解析】①若m⊥n,m⊥α,则n 可能在平面α内,故①错误②∵m⊥α,m∥n,∴n⊥α,又∵n⊥β,∴α∥β,故②正确 ③过直线m 作平面γ交平面β与直线c , ∵m、n 是两条异面直线,∴设n∩c=O, ∵m∥β,m ⊂γ,γ∩β=c∴m∥c, ∵m ⊂α,c ⊄α,∴c∥α,∵n ⊂β,c ⊂β,n∩c=O,c∥α,n∥α ∴α∥β;故③正确④由面面垂直的性质定理:∵α⊥β,α∩β=m ,n ⊂β,n⊥m,∴n⊥α.故④正确 故正确命题有三个,故选C6.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选7.【答案】C.【解析】设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又m2≤a2,∴≤a2,∴≤0,a2﹣2c2≥0,∴≤.综上,≤≤,故选C.8.【答案】A.【解析】由f(1+x)=f(1﹣x)可得函数f(x)的图象关于x=1对称,方程在区间[﹣3,3]根的个数等价于f(x)与y=图象的交点的个数,而函数y=图象可看作y=的图象向下平移1个单位得到,作出它们的图象如图:可得两函数的图象有5个交点,故选A【解析】①若a-3=-3,则a=0,此时:}1,1,3{},3,1,0{--=-=B A ,}3,1{-=⋂∴B A ,与题意不符,舍 ②若2a-1=-3,则a=-1,此时:}2,4,3{},3,1,0{--=-=B A ,}3{-=⋂∴B A ,∴a=-1 ③若a2+1=-3,则a 不存在 综上可知:a=-1 10. 【答案】20.【解析】当箭头指向①时,计算S 和i 如下. i =1,S =0,S =1; i =2,S =0,S =2; i =3,S =0,S =3; i =4,S =0,S =4; i =5,S =0,S =5; i =6结束. ∴S=m =5.当箭头指向②时,计算S 和i 如下. i =1,S =0, S =1; i =2,S =3; i =3,S =6;i =4,S =10; i =5,S =15; i =6结束. ∴S=n =15. ∴m+n =20. 11. 【答案】44【解析】由83456786520S S a a a a a a -=++++==,解得64a =,又由611111611211()114422a a a S a ⨯+====【解析】展开式通项公式为T r+1==若为有理项时,则为整数,∴r=0、6、12,故展开式中有理项共有3项, 故答案为:3 13.【答案】4.【解析】设过坐标原点的一条直线方程为y kx =,因为与函数xx f 2)(=的图象交于P 、Q 两点,所以0k >,且联列解得,P Q ⎛ ⎝,所以4PQ ==≥14. 【答案】【解析】(1)a=1时,代入题中不等式明显不成立.(2)a ≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y=0,得M (,0),∴a >1;考查函数y 2=x 2﹣ax ﹣1,显然过点M (,0),代入得:,解之得:a=,或a=0(舍去).故答案为:15. 【解析】211()cos cos cos 4442222x x x x x f x +=++1sin 262x π⎛⎫=++⎪⎝⎭(I )π4=T(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-=12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒=∵()f A =∴1sin 262263A A πππ⎛⎫++=+= ⎪⎝⎭或23π3A π⇒=或 π 而203A π<<,所以3A π=,因此∆ABC 为等边三角形.……………12分16. 【解析】(Ⅰ)由表中数据得K 2的观测值k =42×(16×12-8×6)224×18×20×22=25255≈4.582>3.841. ……2分 所以,据此统计有95%的把握认为参加“篮球小组”或“排球小组”与性别有关.……4分 (Ⅱ)①由题可知在“排球小组”的18位同学中,要选取3位同学. 方法一:令事件A 为“甲被抽到”;事件B 为“乙丙被抽到”,则P(A∩B)=33318C C ,P(A)=217318C C .所以P(B|A)=P(A∩B )P(A)=33217C C =217×16 =1136. ……7分 方法二:令事件C 为“在甲被抽到的条件下,乙丙也被抽到”, 则P(C)=22217C C =217×16=1136. ②由题知X 的可能值为0,1,2.依题意P(X =0)=316318C C =3551;P(X =1)=21162318C C C =517;P(X =2)=12162318C C C =151. 从而X 的分布列为……10分 于是E(X)=0×3551+1×517+2×151=1751=13. ……12分17. 【解析】证明:(Ⅰ)因为1111ABCD A BC D -为正四棱柱,所以1AA ⊥平面ABCD ,且ABCD 为正方形. ………1分 因为BD ⊂平面ABCD ,所以1,BD AA BD AC ⊥⊥. ………2分因为1AA AC A =,所以BD ⊥平面1A AC . ………3分因为1AC ⊂平面1A AC , 所以1BD AC ⊥. ………4分 (Ⅱ) 如图,以D 为原点建立空间直角坐标系-D xyz .则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B11(0,2,4),(0,0,4)C D ………5分所以111(2,0,0),(0,2,4)D A DC ==-uuuu r uuu r . 设平面11A D C 的法向量111(,,)x y z =n .所以 1110,D A D C ⎧⋅=⎪⎨⋅=⎪⎩uuuu ruuu rn n .即1110,240x y z =⎧⎨-=⎩……6分 令11z =,则12y =. 所以(0,2,1)=n .由(Ⅰ)可知平面1AAC 的法向量为 (2,2,0)DB =u u u r. ……7分所以cos ,DB <>==uu u rn ……8分 因为二面角11--A AC D 为钝二面角,所以二面角11--A AC D的余弦值为. ………9分 (Ⅲ)设222(,,)P x y z 为线段1CC 上一点,且1(01)CP PC λλ=≤≤uu r uuu r. 因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---uu r uuu r.所以222222(,2,)(,2,4)x y z x y z λ-=---. ………10分即22240,2,1x y z λλ===+. 所以4(0,2,)1P λλ+. ………11分 设平面PBD 的法向量333(,,)x y z =m .因为4(0,2,),(2,2,0)1DP DB λλ==+uu u r uu ur ,所以 0,0DP DB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu u rm m .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩. ………12分 令31y =,则3311,2x z λλ+=-=-. 所以1(1,1,)2λλ+=--m . ………13分 若平面11ACD ⊥平面PBD ,则0⋅=m n . 即1202λλ+-=,解得13λ=. 所以当113CP PC =时,平面11ACD ⊥平面PBD . ………14分 18.【解析】(Ⅰ)由条件2,a b =…………2分故所求椭圆方程为13422=+y x . …………4分 (Ⅱ)设过点2(1,0)F 的直线l 方程为:)1(-=x k y . …………5分由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩可得:01248)34(2222=-+-+k x k x k …………6分因为点2(1,0)F 在椭圆内,所以直线l 和椭圆都相交,即0>∆恒成立. 设点1122(,),(,)E x y F x y ,则34124,34822212221+-=+=+k k x x k k x x . …………8分因为直线AE 的方程为:)2(211--=x x y y , 直线AF 的方程为:)2(222--=x x y y , ………9分 令3x =,可得)2,3(11-x y M ,)2,3(22-x yN , 所以点P 的坐标12121(3,())222y y x x +--. ………10分直线2PF 的斜率为12121()0222'31y y x x k +---=-12121()422yy x x =+-- 122112121212()42()4x y x y y y x x x x +-+=⋅-++ 1212121223()4142()4kx x k x x kx x x x -++=⋅-++ …………12分 2222222241282341434341284244343k k k k k k k k k k k -⋅-⋅+++=⋅--⋅+++ 34k =-所以k k '⋅为定值43-. …………13分19. 【解析】 (Ⅰ) 因为对任意n *∈N ,三个数(),(),()A n B n C n 是等差数列,所以()()()()B n A n C n B n -=-. ………1分 所以1122n n a a a a ++-=-, ………2分 即21214n n a a a a ++-=-=. ………3分 所以数列{}n a 是首项为1,公差为4的等差数列. ………4分 所以1(1)443n a n n =+-⨯=-. ………5分(Ⅱ)(1)充分性:若对于任意n *∈N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()()B n qA n C n qB n ==. ………6分所以[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即2121n n a qa a qa ++-=-. ………7分因为当1n =时,由(1)(1),B qA =可得21a qa =, ………8分所以210n n a qa ++-=. 因为0n a >, 所以2211n n a a q a a ++==. 即数列{}n a 是首项为1a ,公比为q 的等比数列, ………9分 (2)必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=. ………10分因为0n a >,所以(),(),()A n B n C n 均大于0.于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ ………11分 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ ………12分即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………13分综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………14分20. 【解析】(Ⅰ)当2a =时,2()2ln 2f x x x x =-+,2()22f x x x'=-+,切点坐标为(11),, 切线的斜率(1)2k f '==,则切线方程为12(1)y x -=-,即21y x =-. ····························· 2分(Ⅱ)2()2ln g x x x m =-+,则22(1)(1)()2x x g x x xx-+-'=-=,∵1[e]e x ∈,,故()0g x '=时,1x =.当11ex <<时,()0g x '>;当1e x <<时,()0g x '<.故()g x 在1x =处取得极大值(1)1g m =-. ·············································································· 4分 又211()2e e g m =--,2(e)2e g m =+-,2211(e)()4e 0e e g g -=-+<,则1(e)()eg g <,∴()g x 在1[e]e,上的最小值是(e)g . ······················································································· 6分()g x 在1[e]e ,上有两个零点的条件是2(1)10,11()20,eeg m g m =->⎧⎪⎨=--≤⎪⎩解得2112e m <≤+, ∴实数m 的取值范围是21(12]e+,. ··························································································· 8分(Ⅲ)∵()f x 的图象与x 轴交于两个不同的点12(0)(0)A x B x ,,,,∴方程22ln 0x x ax -+=的两个根为12x x ,,则211122222ln 0,2ln 0,x x ax x x ax ⎧-+=⎪⎨-+=⎪⎩两式相减得1212122(ln ln )()x x a x x x x -=+--.又2()2ln f x x x ax =-+,2()2f x x a x'=-+,则1212124()()2x x f x x a x x +'=-+++1212122(ln ln )4x x x x x x -=-+-. 下证1212122(ln ln )40x x x x x x --<+-(*),即证明2111222()ln 0x x x x x x -+<+,12x t x =, ∵120x x <<,∴01t <<,即证明2(1)()ln 01t u t t t -=+<+在01t <<上恒成立. ·················· 10分 ∵22222(1)2(1)114(1)()(1)(1)(1)t t t u t t t t t t t -+---'=+=-=+++,又01t <<,∴()0u t '>, ∴()u t 在(0,1)上是增函数,则()(1)0u t u <=,从而知2111222()ln 0x x x x x x -+<+, 故(*)式<0,即12()02x x f +'<成立………….12分。

相关文档
最新文档