材料成型理论基础练习1到11章
材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。
而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。
材料成形原理习题集及解答

6.3 Mg、S、O 等元素如何影响铸铁中石墨的生长。 7.1 界面作用对人工复合材料的凝固有何影响/ 7.2 任意一种共晶合金能制取自生复合材料吗?为什么? 8.1 铸件典型宏观凝固组织是由哪几部分构成的,它们的形成机理如何? 8.2 常用生核剂有哪些种类,其作用条件和机理如何? 8.3 试分析影响铸件宏观凝固组织的因素,列举获得细等轴晶的常用方法。 8.4 何谓“孕育衰退”,如何防止? 9.1 说明焊接定义,焊接的物理本质是什么?采取哪些工艺措施可以实现焊 接? 9.2 传统上焊接方法分为哪三大类?说明熔焊的定义。 9.3 如何控制焊缝金属的组织和性能? 9.4 给出 HAZ 的概念。焊接接头由哪三部分组成? 10.1 何为快速凝固,其基本原理是什么? 10.2 定向凝固技术有哪些应用?
=有一高为 H 的圆柱体,先均匀拉伸到 2H,再均匀压缩回 H,设在
变形过程中体积保持不变,试分别求出这两个阶段的对数应变、等效
对数应变及最终的对数应变、等效对数应变?
3、设薄球壳的半径为 R,厚度为 t( t ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
材料成型理论基础练习题

第1章液态金属的结构与性质1.液体原子的分布特征为无序、有序,即液态金属原子团的结构更类似于。
2.实际液态金属内部存在起伏、起伏与起伏。
3.物质表面张力的大小与其内部质点间结合力大小成比,界面张力的大小与界面两侧质点间结合力大小成比。
衡量界面张力大小的标志是润湿角θ的大小,润湿角θ越小,说明界面能越。
4.界面张力的大小可以用润湿角来衡量,两种物质原子间的结合力,就润湿,润湿角;而两种物质原子间的结合力,就不润湿,润湿角。
5.影响液态金属表面张力的主要因素是,,与。
6. 影响液态金属充型能力的因素可归纳为合金本身性质、铸型性质、浇注方面、铸件结构方面四个方面的因素。
7. 影响液态金属黏度的因素有合金成分、温度、非金属夹杂物。
8. 合金流动性:合金本身的流动能力;充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。
9.液态合金的流动性与充型能力有何异同?如何提高液态金属的充型能力?答:液态金属的流动性与充型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的充型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而充型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的充型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度大,导热率小;④粘度、表面张力小。
(2)铸型性质方面:①蓄热系数小;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
第2章 凝固温度场1.铸件的凝固方式可以分为 、 与三种不同形式,影响合金凝固方式的两个主要因素是: 与 。
2.合金的凝固温度区间越大,液态合金充型过程中流动性越差 ,铸件越容易呈 体积(或糊状) 凝固方式。
3. “平方根定律”公式为22K ξτ=,写出公式中三个符号所代表的含义 τ:凝固时间 、 ζ:凝固层厚度 、 K:凝固系数4. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。
材料成型习题共11页文档

《材料成形工艺基础》要点第一章金属的液态成形第一节液态成形理论基础1.三种凝固方式(逐层、糊状、中间)及其影响因素(结晶温度范围、温度梯度)2.合金的流动性及其影响因素(合金成分)a)为什么共晶合金的流动性好?3.合金的充型能力对铸件质量的影响(浇不足、冷隔)4.影响充型能力的主要因素(合金的流动性、浇注条件、铸型条件)5.合金收缩的三个阶段(液态、凝固、固态)6.缩孔、缩松产生的原因、规律(逐层:缩孔;糊状:缩松;位置:最后凝固部位)7.缩孔与缩松防止(定向凝固原则;措施:加冒口、冷铁)8.铸造应力产生的原因和种类(热应力、机械应力或收缩应力)9.热应力的分布规律(厚:拉;薄:压)及防止(同时凝固原则)10.铸造残余应力产生的原因(热应力)及消除措施(时效处理)11.铸件变形与裂纹产生的原因(故态收缩,残余应力)12.变形防止办法(同时凝固;反变形;去应力退火)13.热裂纹与冷裂纹的特征第二节液态成形方法1.常用手工造型方法(五种最基本的方法:整模、分模、活块、挖砂、三箱)的特点和应用(重在应用)2.机器造型:实现造型机械化的两个主要方面(紧砂、起模)3.熔模铸造的原理(理解)、特点(理解)和应用。
a)为什么熔模铸件精度高,表面光洁?b)为什么熔模铸造适合于形状复杂的铸件?c)为什么熔模铸造适合于难于加工的合金铸件?4.金属型铸造的原理(理解)、特点(理解)和应用。
a)为什么金属型铸件精度高,表面光洁?b)为什么金属型铸造更适合于非铁合金铸件的生产?5.压力铸造的原理(理解)、特点(理解)和应用。
6.低压铸造的原理(理解)、特点(理解)和应用。
7.离心铸造的原理(理解)、特点(理解)和应用。
第三节液态成形件的工艺设计1.浇注位置的概念及其选择原则(重在理解和应用)2.分型面的选择原则(重在理解和应用)3.铸造成形工艺参数(加工余量、拔模或起模斜度、收缩率)4.铸造工艺图(能用规定的符号和表达方式正确画出)第四节液态成形件的结构设计1.铸件壁厚设计(大于最小壁厚;小于临界壁厚;壁厚均匀;由薄到厚均匀过渡)a)为什么要大于最小壁厚?b)为什么要小于临界壁厚?c)壁厚不均匀会产生什么问题?2.铸件壁间连接(圆角;避免锐角)3.铸件筋条设计(避免十字交叉)4.铸件外形设计和铸件内腔设计(理解;重在应用)5.结构斜度的设计(结构斜度与起模斜度的区别;重在应用)第二章金属的塑性成形第一节塑性成形工艺基础1.常用的六类塑性成形方法(轧制、拉拔、挤压、自由锻、模锻、板料冲压)2.与铸造比较,塑性成形法的最显著的特点(性能好,但形状不能太复杂)3.塑性变形对金属组织和性能的影响(冷变形条件下和热变形条件下;纤维组织及其性能特点)4.金属可锻性的衡量指标(塑性、变形抗力)及影响因素(成分;组织;温度)5.金属加热缺陷(过热、过烧、脱碳、过渡氧化)与碳钢始锻温度(低于固相线200℃)第二节热锻成形工艺1.自由锻基本工序(镦粗、拔长、冲孔、弯曲、切割、扭转)2.自由锻件结构工艺性3.模锻的基本原理(理解)及特点4.胎模锻的概念及特点(理解)第三节板料冲压1.两大类基本工序(分离工序和变形工序)2.冲裁的概念;冲裁变形过程(弹性变形阶段、塑性变形阶段、断裂分离阶段)及冲裁件断面特征(塌角或圆角带;光亮带;断裂带)3.切断的概念4.弯曲变形的特点(内:压;外:拉);弯曲的质量问题(弯裂;回弹);弯裂的防止办法(限制最小弯曲半径;弯曲线与纤维方向垂直);回弹的防止办法(模具角度比弯曲件角度小一个回弹角值)5.拉深的概念;拉深和冲裁工序所使用的凸、凹模之间的区别(间隙大小;圆角)拉深件质量问题(拉裂与起皱)6.拉深系数的概念及计算7.三类冲模的概念四种挤压方式第三章材料的连接成形第一节焊接成形工艺基础1.三大类焊接方法(熔化焊;压焊;钎焊);2.熔焊的冶金特点(理解)及保证焊接质量的基本措施(保护焊接区;渗加合金元素;脱氧脱硫);3.焊接接头的概念(焊缝加热影响区);4.焊接热影响区的概念(焊接过程中,焊缝两侧受焊接热作用而发生组织与性能变化的区域);5.低碳钢焊接热影响区的组成及其特点(熔合区;粗晶,性能差;过热区:粗晶,性能差;正火区:细晶,性能好;部分相变区:性能稍差);6.焊接应力与变形产生的原因(局部加热);7.防止和减少焊接应力的措施(焊前预热;焊接次序;焊后缓冷;焊后去应力退火);8.焊接变形的形式(收缩变形;角变形;弯曲变形;扭曲变形;波浪变形);9.防止和减小焊接变形的措施(刚性固定;反变形;焊接次序;焊前预热;焊后缓冷;矫正);10.焊接缺陷的种类及其检验方法(理解);第二节焊接方法1.焊条的组成及作用(焊芯和药皮;焊芯:作电极和焊缝的填充金属;药皮:稳定电弧燃烧;保护焊接区;渗加合金元素;脱氧脱硫);a)为什么焊条药皮中要加脱氧剂?2.两种重要的焊条(J422、J507);焊条选用原则(重在应用)3.埋弧焊的原理(理解)、特点和应用范围(水平位置焊接长直焊缝;大直径环形焊缝)b)埋弧焊的生产率为什么高于焊条电弧焊?c)埋弧焊与焊条电弧焊相比,为什么可以节省材料?d)埋弧焊为什么不能实现全位置焊接?4.氩弧焊的原理、特点及其应用;5.二氧化碳气体保护焊的原理、特点及其应用(注意与氩弧焊比较理解)e)二氧化碳保护焊时焊丝的成分有何要求,为什么?6.电渣焊的原理(电阻热)及其应用。
材料成型技术基础习题答案

作业1 金属材料技术基础1-1 判断题(正确的画O,错误的画×)1.纯铁在升温过程中,912℃时发生同素异构转变,由体心立方晶格的α-Fe转变为面心立方晶格的γ-Fe。
这种转变也是结晶过程,同样遵循晶核形成和晶核长大的结晶规律。
(O )2.奥氏体是碳溶解在γ-Fe中所形成的固溶体,具有面心立方结构,而铁素体是碳溶解在α-Fe中所形成的固溶体,具有体心立方结构。
(O )3.钢和生铁都是铁碳合金。
其中,碳的质量分数(又称含碳量)小于0.77%的叫钢,碳的质量分数大于2.11%的叫生铁。
(×)4.珠光体是铁素体和渗碳体的机械混合物,珠光体的力学性能介于铁素体和渗碳体之间。
(O )5.钢中的含碳量对钢的性能有重要的影响。
40与45钢相比,后者的强度高,硬度也高,但后者的塑性差。
(O )6.为了改善低碳钢的切削加工性能,可以用正火代替退火,因为正火比退火周期短,正火后比退火后的硬度低,便于进行切削加工。
(×)7.淬火的主要目的是为了提高钢的硬度。
因此,淬火钢就可以不经回火而直接使用。
(×)8.铁碳合金的基本组织包括铁素体(F)、奥氏体(A)、珠光体(P)、渗碳体(Fe3C)、马氏体(M)、索氏体(S)等。
(×)1-2 选择题1.铁碳合金状态图中的合金在冷却过程中发生的(F )是共析转变,(B )是共晶转变。
A.液体中结晶出奥氏体;B.液体中结晶出莱氏体;C.液体中结晶出一次渗碳体;D.奥氏体中析出二次渗碳体;E.奥氏体中析出铁素体;F.奥氏体转变为珠光体。
2.下列牌号的钢材经过退火后具有平衡组织。
其中,( C )的σb最高,(D )的HBS最高,(A )的δ和a k最高。
在它们的组织中,(A )的铁素体最多,( C )的珠光体最多,(D )的二次渗碳体最多。
A.25;B.45;C.T8;D.T12。
3.纯铁分别按图1-1所示不同的冷却曲线冷却。
其中,沿( D )冷却,过冷度最小;沿(D )冷却,结晶速度最慢;沿(A )冷却,晶粒最细小。
材料成形原理课后习题解答

材料成型原理第一章(第二章的内容)第一部分:液态金属凝固学1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
1.2答:液态金属的表面张力是界面张力的一个特例。
表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。
表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。
附加压力是因为液面弯曲后由表面张力引起的。
1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;④粘度、表面张力大。
(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
1.4 解:浇注模型如下:则产生机械粘砂的临界压力ρ=2σ/r显然 r =21×0.1cm =0.05cm 则 ρ=410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000=0.08m 1.5 解: 由Stokes 公式 上浮速度 92(2v )12r r r -= r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s 3.1解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ 临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成材料成型原理第 3 页 共 16 页3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m △G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。
材料成型技术基础课后答案

第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
《材料成形理论基础Ⅰ》课后题答案

确定,则转角ϕ 也就被确定了,已知某一条滑移线上一点的平均应力σ m ,则沿该条滑移线
上任意一点的平均应力均可求出。由于两族滑移线是相互正交的,因此,整个塑性区内各点 的平均应力均可以求出,确定出整个塑性区内各点的应力状态。
8 滑移线场有哪些典型的应力边界条件?
自由表面、无摩擦的接触表面、摩擦切应力达到最大值 k 的接触表面、当 0 < τ f < k 时
⎢⎣0 0 0⎥⎦
⎢⎣1 1 1⎥⎦
(1)求外法线方向与三个坐标轴等倾斜截面上的应力分量; (2)求该点的应力张量不变量; (3)求该点的主应力,并画出主应力简图; (4)求主偏应力,并画出主偏应力简图; (5)求最大切应力 (6)求等效应力。
(1)σ N = 2(MPa) ,τ N = 2(MPa) ;σ N = 3(MPa) ,τ N = 0
0
20
− 15⎥⎥(MPa )
;σ ij
=
⎢ ⎢
30
0 − 30⎥⎥(MPa)
⎢⎣15 −15 0 ⎥⎦
⎢⎣− 80 − 30 110 ⎥⎦
试将其分解为应力偏张量及应力球张量,并计算应力偏张量的第二不变量。
⎡ 0 0 15 ⎤
⎡10 0 0 ⎤
σ i′j
=
⎢ ⎢
0
10
−15⎥⎥ ;
σ m δ ij
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 液态金属的结构与性质1.液体原子的分布特征为 远程 无序、 近程 有序,即液态金属原子团的结构更类似于 。
2.实际液态金属内部存在 起伏、 起伏和 起伏 。
3.物质表面张力的大小与其内部质点间结合力大小成 比,界面张力的大小与界面两侧质点间结合力大小成 比。
衡量界面张力大小的标志是润湿角θ的大小,润湿角θ越小,说明界面能越 。
4.界面张力的大小可以用润湿角来衡量,两种物质原子间的结合力 ,就润湿,润湿角 ;而两种物质原子间的结合力 ,就不润湿,润湿角 。
5.影响液态金属表面张力的主要因素是 , ,和 。
6.钢液中的MnO ,当钢液的温度为1550℃时,3/0049.0m s N ⋅=η,3/81.97000m N g ⨯=液ρ,3/81.95400m N g ⨯=杂ρ,对于r=0.0001m 的球形杂质,其上浮速度是多少?参考答案:0.0071m/s7.影响液态金属充型能力的因素可归纳为 合金本身性质 、 铸型性质 、 浇注方面 、 铸件结构方面 四个方面的因素。
8.影响液态金属黏度的因素有 合金成分 、 温度 、 非金属夹杂物 。
9.合金流动性:合金本身的流动能力;充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。
10.液态合金的流动性和充型能力有何异同?如何提高液态金属的充型能力?答:液态金属的流动性和充型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的充型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而充型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的充型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度大,导热率小;④粘度、表面张力小。
(2)铸型性质方面:①蓄热系数小;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
11.设凝固后期枝晶间液体相互隔绝,液膜两侧晶粒的拉应力为1.5×103Mpa ,液膜厚度为1.1×10-6mm ,根据液膜理论计算产生热裂的液态金属临界表面张力σ= 0.825 N/m 。
12.表面张力:表面上平行于表面切线方向且各方向大小相等的张力。
13.粘度表达式:dy dv x =η,雷诺数:ηυρνυD D R e ==第2章 凝固温度场1.铸件的凝固方式可以分为 、 和 三种不同形式,影响合金凝固方式的两个主要因素是: 和 。
2.合金的凝固温度区间越大,液态合金充型过程中流动性越 差 ,铸件越容易呈 体积(或糊状) 凝固方式。
3.研究铸件温度场的方法有数学解析法 、 数值模拟法和 实测法 等。
4. “平方根定律”公式为22K ξτ=,写出公式中三个符号所代表的含义 τ:凝固时间 、 ζ:凝固层厚度 、 K:凝固系数 5.比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。
解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球<A 块<A 板<A 杆根据K R =τ 与 11A V R =,所以凝固时间依次为: t 球>t 块>t 板>t 杆。
6.右图为一灰铸铁底座铸件的断面形状,其厚度为30mm ,利用“模数法”分析砂型铸造时底座的最后凝固部位,并估计凝固终了时间.解:将底座分割成A 、B 、C 、D查表2-3得:K=0.72(m in cm /)对A 有:RA= VA /AA=1.23cmτA=RA²/KA²=2.9min对B 有: RB= VB /AB=1.33cmτB=RB²/KB²=3.4min对C 有:RC= VC /AC=1.2cmτC=RC²/KC²=2.57min对D 有:RD= VD /AD=1.26cmτD=RD²/KD²=3.06min7.写出平方根定律和折算厚度法则的公式,并解释两个公式的差别。
答:1)平方根定律:22K ξτ=即τξK =;折算厚度法则:τK R =2)ξ代表铸件凝固层厚度,适应薄板类铸件;SV R =为折算厚度,可适用各种形状的铸件。
8. 影响铸件凝固方式的因素是什么?凝固方式与铸造性能和铸件质量之间有什么关系? 答:1)影响铸件凝固方式的因素:结晶温度范围和温度梯度;2)a 逐层凝固:集中缩孔大,易补缩,铸件较致密;热裂倾向小;流动性好。
所以,铸件质量好。
b 体积凝固:不易补缩,易形成缩孔;流动性差;热裂倾向大;铸件不致密,性能较差。
c 中间凝固:介于以上两者之间第3章 金属凝固热力学与动力学1.金属结晶形核时,系统自由能变化△G 由两部分组成,其中相变驱动力为 ,相变阻力为 。
2.非均质形核过程,晶体与杂质基底的润湿角 θ越小,非均质形核功*he G ∆越 ,形核率越 ;非均质形核临界半径*he r 与均质形核的关系为*ho r 。
3.为什么金属必须要有一过冷度才能发生液-固相变?4.什么是溶质平衡分配系数?设状态图中液相线和固相线为直线,证明其k 0为常数。
特定温度*T 下固相合金成分浓度*s C 与液相合金成分浓度*LC 达到平衡时的比值**0L S C C k =如上图:液相线:T *-Tm =L m (C l *-0) ① 固相线:T *-Tm =S m (C s *-0) ② ②÷①得:Tm T Tm T --**=**L L S S C m C m =1即 **LS C C =S L m m =k 05.名词解释1)非均质形核与均质形核 答:非均质形核:液态金属中新相以外来质点为基底进行形核的方式。
均质形核 :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也称“自发形核”。
2)粗糙界面与光滑界面答:粗糙界面:a≤2,固液界面上有一半点阵位置被原子占据,另一半位置则空着,微观上是粗糙的;光滑界面:a >2,界面上的位置几乎被原子占据,微观上是光滑的。
3)粗糙界面与光滑界面及其判据答:固-液界面固相一侧的点阵位置有一半左右被固相原子所占据,形成凸凹不平的界面结构,称为粗糙界面;固-液界面固相一侧的点阵位置几乎全被固相原子所占据,只留下少数空位或台阶,称为光滑界面。
根据jachson 因子(⎪⎭⎫ ⎝⎛∆=νηαm mkT H )大小可以判断: α ≤2的物质,凝固时固-液界面为粗糙面,α >5的物质,凝固时界面为光滑面,6.液态金属(合金)凝固的驱动力由 提供,而凝固时的形核方式有 、 两种。
7.对于溶质平衡分配系数K 0>1时,K 0越大,最终凝固组织的成分偏析越 。
常将∣1- K 0∣称为 。
8.设理想液体在凝固时形成的临界核心是边长为a*的立方体形状;(1)求均质形核时的a*和△G*的关系式。
(2)T H T V a m m s LS ∆∆=σ4*9.设Ni 的最大过冷度为319℃,已知Tm =1453℃,△Hm=1870J/mol ,摩尔体积为Vs=6.6cm3.求△G*均和r*均参考答案:r*均=8.59*10-9 m △G*均=6.95*10-17 J10.晶体长大时,有三种长大方式,长大速度按顺序依次为: 连续 、 缺陷 、和 二维形核 。
金属从其自身熔体中结晶,一般以 连续 方式长大。
11.为什么均质生核和非均质生核的临界晶核半径相同,而临界生核功不同?答:临界晶核半径的含义:当晶核达到此半径时,如液相原子向此堆砌生长,造成的表面能的增加比体积自由能的下降小,即自由能下降,此时,晶体生长是稳定的,所以晶核能逐渐长大。
如是均质生核,临界晶核是近似球形,其所包含的原子数较多,所需要的能量起伏较大,即生核功较大;如是非均质生核,临界晶核的大小与润湿角有关,同样的晶核半径时,当晶体与衬底的润湿角越小,晶核所包含的原子个数越少,因此所需的形核功越小。
所以,虽然均质生核和非均质生核的临界晶核半径相同,而临界生核功不同。
12.从原子尺度看,固液界面结构有哪几种?它们与生长机理有何联系?答:⑴有两种固液界面结构:平整界面和粗糙界面⑵平整界面的生长机理:a.理想的平整界面依靠平整界面上生产二维晶核,然后在晶核周围的台阶上生长;b.当界面上有缺陷时,可依靠螺旋位错、旋转孪晶、反射孪晶等缺陷提供的台阶生长。
⑶粗糙界面由于液相原子堆砌而被弹回的几率很小,因此生长速度较大,此时称为连续生长或正常生长。
14. 随颗粒尺寸的减小,金属的熔点会下降,其原因是什么?这种效应通常在什么尺寸量级才会明显地表现出来?参考:表面能(张力)作用突显,纳米,m m s r H kT V T ∆=∆σ2第4章第5章1.根据成份过冷理论的分析,由于过冷程度的不同就会使焊缝组织出现不同的结晶形态,主要有平面结晶、胞状结晶、胞状树枝结晶、树枝状结晶和等轴结晶。
2.根据界面结构的不同,可将共晶合金分为两大类非小面-小面和非小面-非小面3.用图形表示K0<1的合金铸件单向凝固时,在以下四种凝固条件下所形成的铸件中溶质元素的分布曲线:(1)平衡凝固;(2)固相中无扩散而液相中完全混合;(3)固相中无扩散而液相中只有扩散;(4)固相中无扩散而液相中部分混合。
答:几种条件下的溶质分布如图所示:4. 内生生长和外生生长凝固自型壁行核,由外向内的生长称为外生生长,如柱状晶,胞状晶的生长;在熔体内部形核,由内向外的自由生长称为内生生长,如等轴晶的生长。
5. 共生生长和离异生长共生生长:共晶结晶时,两相相互依附,借助于对方析出的多余原子的横向扩散而同步偶合生长的方式。
离异生长:共晶的两相间没有共同生长的界面,析出和生长在时间上与空间上都相互独立的生长方式。
6.共晶组织生长中,共晶两相通过原子的横向扩散不断排走界面前沿积累的溶质,且又互相提供生长所需的组元彼此合作,并排地快速向前生长,这种共晶生长方式称为共生生长。
7. 固相无扩散、液相只有扩散情况下产身成分过冷的判据及影响成分过冷的因素,说明成分过冷对结晶形貌的影响?答:成分过冷判据:影响成分过冷的因素:液相中温度梯度GL越小,成分过冷越大;生长速度R越大,成分过冷越大;液相线斜率mL越大,成分过冷越大;合金原始成分C0越大,成分过冷越大;扩散系数DL越小,成分过冷越大;分配系数K0越小,成分过冷越大。
成分过冷对结晶形貌的影响:当C0一定时,随着GL减小,或R增大时,晶体形貌由平面晶依次发展为胞状树枝晶、柱状树枝晶、等轴树枝晶;而当GL、R一定时,随C0的增加,晶体形貌也同样由平面晶依次发展为胞状树枝晶、柱状树枝晶、等轴树枝晶。