液态成形与连接理论基础-张鸿老师作业答案

合集下载

第一章 金属液态成形理论基础

第一章 金属液态成形理论基础

第一节 液态金属充型能力与流动性
0、什么是液态金属的充型能力
1)定义:
液体金属充满铸型型腔,获得尺寸精确、轮廓清晰的 成型件的能力,称为充型能力。
2)充型能力对成型的影响
充型能力不足时,会产生浇不足、冷隔、夹渣、气孔 等缺陷。
3)影响充型能力的因素
充型能力首先取决于金属本身的流动性(流动能力),同 时又受铸型性质、浇注条件和铸件结构等因素影响。
一、铸件的凝固方式
在铸件凝固过程中,其断面上一般存在三个区 域:固相区、凝固区和液相区。
1、分类
依据对铸件质量影响较大的凝固区的宽窄划分 铸件的凝固方式为如下三类:
(1)逐层凝固
纯金属和共晶成分的合金在凝固过程中不存在液、固并 存的凝固区,随着温度下降,固体层不断加厚,液体不 断减少,直达铸件中心,这种凝固方式称为逐层凝固。
机械应力
二、铸件的变形及其防止
1、变形的原因:
铸件内部残余内应力。 只有原来受拉伸部分产生压缩 变形、受压缩部分产生拉伸变 形,才能使铸件中的残余内应 力减小或消除。
平板铸件的变形
杆件的变形
床身铸件的变形
粱形铸件的弯曲变形
2、防止措施:
减小应力; 将铸件设计成对称结构,使其内应力互相平衡; 采用反变形法; 设置拉肋; 时效处理。
2、冷裂纹的特征
裂纹细小,呈连续直线状,裂缝内有金属光泽或轻 微氧化色。
3、防止措施
凡是能减少铸件内应力和降低合金脆性的因素 均能防止冷裂。 设置防裂肋亦可有效地防止铸件裂纹。
防裂肋
三、合金的吸气性
液态合金中吸入的气体,若在冷凝过程中不能溢 出,滞留在金属中,将在铸件内形成气孔。
一)气孔的危害
气孔破坏了金属的连续性,减少了其承载的有效 截面积,并在气孔附近引起应力集中,从而降低 了铸件的力学性能。 弥散性气孔还可促使显微缩松的形成,降低铸件 的气密性。

材料成形原理习题集及解答

材料成形原理习题集及解答

6.3 Mg、S、O 等元素如何影响铸铁中石墨的生长。 7.1 界面作用对人工复合材料的凝固有何影响/ 7.2 任意一种共晶合金能制取自生复合材料吗?为什么? 8.1 铸件典型宏观凝固组织是由哪几部分构成的,它们的形成机理如何? 8.2 常用生核剂有哪些种类,其作用条件和机理如何? 8.3 试分析影响铸件宏观凝固组织的因素,列举获得细等轴晶的常用方法。 8.4 何谓“孕育衰退”,如何防止? 9.1 说明焊接定义,焊接的物理本质是什么?采取哪些工艺措施可以实现焊 接? 9.2 传统上焊接方法分为哪三大类?说明熔焊的定义。 9.3 如何控制焊缝金属的组织和性能? 9.4 给出 HAZ 的概念。焊接接头由哪三部分组成? 10.1 何为快速凝固,其基本原理是什么? 10.2 定向凝固技术有哪些应用?
=有一高为 H 的圆柱体,先均匀拉伸到 2H,再均匀压缩回 H,设在
变形过程中体积保持不变,试分别求出这两个阶段的对数应变、等效
对数应变及最终的对数应变、等效对数应变?
3、设薄球壳的半径为 R,厚度为 t( t ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

材料成型理论基础练习题上解读

材料成型理论基础练习题上解读

第1章 液态金属的结构与性质1.液体原子的分布特征为 无序、 有序,即液态金属原子团的结构更类似于 。

2.实际液态金属内部存在 起伏、 起伏和 起伏 。

3.物质表面张力的大小与其内部质点间结合力大小成 比,界面张力的大小与界面两侧质点间结合力大小成 比。

衡量界面张力大小的标志是润湿角θ的大小,润湿角θ越小,说明界面能越 。

4.界面张力的大小可以用润湿角来衡量,两种物质原子间的结合力 ,就润湿,润湿角 ;而两种物质原子间的结合力 ,就不润湿,润湿角 。

5.影响液态金属表面张力的主要因素是 , ,和 。

6.钢液中的MnO ,当钢液的温度为1550℃时,3/0049.0m s N⋅=η,3/81.97000m N g ⨯=液ρ,3/81.95400m N g ⨯=杂ρ,对于r=0.0001m 的球形杂质,其上浮速度是多少?参考答案:0.0071m/s7.影响液态金属充型能力的因素可归纳为 合金本身性质 、 铸型性质 、 浇注方面 、 铸件结构方面 四个方面的因素。

8.影响液态金属黏度的因素有 合金成分 、 温度 、 非金属夹杂物 。

9.合金流动性:合金本身的流动能力;充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。

10.液态合金的流动性和充型能力有何异同?如何提高液态金属的充型能力?答:液态金属的流动性和充型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的充型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。

而充型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。

提高液态金属的充型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度大,导热率小;④粘度、表面张力小。

(2)铸型性质方面:①蓄热系数小;②适当提高铸型温度;③提高透气性。

(3)浇注条件方面:①提高浇注温度;②提高浇注压力。

(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。

1-材料成形理论基础

1-材料成形理论基础

材料成形工艺基础1第一章 材料成形理论基础液态成形--铸造 固态成形--锻造 固态连接--焊接21第一节 液态成形基础1、液态金属的结构液态金属在结构上更象固态而不是汽态,原子之间 仍然具有很高的结合能。

液态金属的结构特征 液态金属内存在近程有序的原子集团。

这种原子集团是不稳定 的,瞬时出现又瞬时消失。

所以,液态金属结构具有如下特 点: l)液态金属是由游动的原子团构成。

2)液态金属中的原子热运动强烈,原子所具有的能量各不相 同,且瞬息万变,这种原子间能量的不均匀性,称为能量起 伏。

3)由于液态原子处于能量起伏之中,原子团是时聚时散,时 大时小,此起彼伏的,称为结构起伏。

3第一节 液态成形基础1、液态金属的性质液态金属是有粘性的流体。

粘度的物理本质是原子间作 相对运动时产生的阻力。

表面张力:在液体表面内产生的平行于液体表面、且各 向均等的张力421.2铸件的凝固组织合金从液态转变成固态的过程,称为一次结晶 或凝固。

当液态金属冷却至熔点以下,经过一定时间的孕 育,就会涌现一批小晶核,随后这些晶核按原子规则 排列的各自取向长大,与此同时又有另一批小晶核生 成和长大,直至液体全部耗尽为止。

51.2铸件的凝固组织合金从液态转变成固态的过程,称为一次结晶 或凝固。

一次结晶从物理化学观点出发,研究液态金属的 生核Formation of stable nuclei 、长大Growth of crystals、结晶组织的形成规律。

凝固从传热学观点出发,研究铸件和铸型的传热过 程、铸件断面上凝固区域的变化规律、凝固方式与 铸件质量的关系、凝固缺陷形成机制等。

631.2铸件的凝固组织凝固组织分宏观和微观。

宏观组织:铸态晶粒的形态、大小、取向、分布 微观组织:晶粒内部的亚结构的形状/大小/相 对分布/缺陷等 晶粒越细小均匀,金属材料的强度和硬度越高,塑 性和韧性越好。

71.3铸件的凝固方式和控制铸件的工艺原则铸件的凝固方式逐层凝固方式(skin-forming solidification) 糊状凝固方式(mushy solidification) 中间凝固方式(middle solidification)。

材料成型基础第一章液态成形理论基础

材料成型基础第一章液态成形理论基础

29
防止和减小铸造应力的措施
①合理设计铸件结构 铸件的形状愈复杂,各部分 壁厚相差愈大,冷却时温度愈不均匀,铸造应力愈 大。因此,在设计铸件时应尽量使铸件形状简单、 对称、壁厚均匀。 ②尽量选用线收缩率小、弹性模量小的合金。 ③采用同时凝固的工艺 所谓同时凝固是指采取一 些工艺措施,使铸件各部分温差很小,几乎同时进 行凝固,如下图所示。因各部分温差小,不易产生 热应力和热裂,铸件变形小。
凝固组织: 晶粒形态、大小、分布(宏观) 晶粒内部结构的形态、大小、分布(微观)
影响因素:炉料、铸件冷却速度、生产工艺
3
2、铸件的凝固方式
铸件的凝固一般存在3个区:固相、凝固、液相; 凝固区的宽度S决定了凝固方式。 (1)逐层凝固
动画3
只发生在纯金属或共晶成分合金 (2)糊状凝固
动画4
发生在结晶温度范围很宽的合金 (3)中间凝固
4
动画5
3、影响铸件凝固方式的主要因素: (1)合金的结晶温度范围
5
(2)铸件的温度梯度
(陡平程度)
6





铸件的温度梯度主要取决于: 1)铸造合金的性质。如铸造合金的导热性愈好、 结晶潜热愈大,则铸件均匀温度的能力愈强,温 度梯度就愈小。 2)铸型的蓄热能力好,对铸件的激冷能力愈强, 使铸件的温度梯度愈大。 3)提高浇注温度,会降低铸型的冷却能力,从 而降低铸件的温度梯度。 总之,合金的结晶温范围愈小,铸件断面的温 度梯度愈大,铸件愈倾向于逐层凝固方式,也愈 容易铸造;所以铸造倾向于糊状凝固的合金铸件 时,如锡青铜和球墨铸铁等,应采用适当的工艺 措施,减小其凝固区。
热应力 相变应力
24
热应力
铸件因壁厚不均匀,或铸件中存在着较大的温差,在同 一时间内铸件各部分收缩不同,先冷却的部位阻碍了后 冷却部位的收缩,在其内部产生了内应力。

材料成型技术基础课后答案

材料成型技术基础课后答案

第一章金属液态成形‎1.①液态合金的充‎型能力是指熔‎融合金充满型‎腔,获得轮廓清晰‎、形状完整的优‎质铸件的能力‎。

②流动性好,熔融合金充填‎铸型的能力强‎,易于获得尺寸‎准确、外形完整的铸‎件。

流动性不好,则充型能力差‎,铸件容易产生‎冷隔、气孔等缺陷。

③成分不同的合‎金具有不同的‎结晶特性,共晶成分合金‎的流动性最好‎,纯金属次之,最后是固溶体‎合金。

④相比于铸钢,铸铁更接近更‎接近共晶成分‎,结晶温度区间‎较小,因而流动性较‎好。

2.浇铸温度过高‎会使合金的收‎缩量增加,吸气增多,氧化严重,反而是铸件容‎易产生缩孔、缩松、粘砂、夹杂等缺陷。

3.缩孔和缩松的‎存在会减小铸‎件的有效承载‎面积,并会引起应力‎集中,导致铸件的力‎学性能下降。

缩孔大而集中‎,更容易被发现‎,可以通过一定‎的工艺将其移‎出铸件体外,缩松小而分散‎,在铸件中或多‎或少都存在着‎,对于一般铸件‎来说,往往不把它作‎为一种缺陷来‎看,只有要求铸件‎的气密性高的‎时候才会防止‎。

4 液态合金充满‎型腔后,在冷却凝固过‎程中,若液态收缩和‎凝固收缩缩减‎的体积得不到‎补足,便会在铸件的‎最后凝固部位‎形成一些空洞‎,大而集中的空‎洞成为缩孔,小而分散的空‎洞称为缩松。

浇不足是沙型‎没有全部充满‎。

冷隔是铸造后‎的工件稍受一‎定力后就出现‎裂纹或断裂,在断口出现氧‎化夹杂物,或者没有融合‎到一起。

出气口目的是‎在浇铸的过程‎中使型腔内的‎气体排出,防止铸件产生‎气孔,也便于观察浇‎铸情况。

而冒口是为避‎免铸件出现缺‎陷而附加在铸‎件上方或侧面‎的补充部分。

逐层凝固过程‎中其断面上固‎相和液相由一‎条界线清楚地‎分开。

定向凝固中熔‎融合金沿着与‎热流相反的方‎向按照要求的‎结晶取向进行‎凝固。

5.定向凝固原则‎是在铸件可能‎出现缩孔的厚‎大部位安放冒‎口,并同时采用其‎他工艺措施,使铸件上远离‎冒口的部位到‎冒口之间建立‎一个逐渐递增‎的温度梯度,从而实现由远‎离冒口的部位‎像冒口方向顺‎序地凝固。

2020年智慧树知道网课《材料成形原理》课后章节测试满分答案

2020年智慧树知道网课《材料成形原理》课后章节测试满分答案

绪论单元测试1【判断题】(2分)材料成形主要包括液态成形、连接成形、塑性成形及粉末冶金成形。

A.错B.对2【判断题】(2分)液态成形俗称铸造。

A.对B.错3【判断题】(2分)液态成形是将液态金属浇注、压射或吸入到具有一定形状的铸型中冷却凝固,获得具有型腔形状铸件的成形方法。

A.对B.错4【判断题】(2分)铸件形成的方法很多,但基本特点不同。

A.对B.错5【判断题】(2分)液态成形在材料成形过程中,具有不可取代的首要地位。

A.对B.错6【判断题】(2分)液态成形的零件尺寸范围大。

A.错B.对7【判断题】(2分)铸造能采用的材料范围广。

A.错B.对8【判断题】(2分)液态成形的零件壁厚范围大。

A.错B.对9【判断题】(2分)连接成形是通过加热或加压,或两者并用,并且使用或不用填充材料,使焊件达到原子结合的一种加工方法。

A.对B.错10【判断题】(2分)连接成形俗称锻压。

A.错B.对11【判断题】(2分)焊接应用范围广,适用性强,但成本不低。

A.错B.对12【判断题】(2分)塑性成形是利用金属能够产生塑性变形的能力,使金属在外力作用下,加工成一定形状的成形方法。

A.对B.错13【判断题】(2分)塑性成形俗称锻压。

A.错B.对14【判断题】(2分)塑性成形应用范围很广。

A.对B.错15【判断题】(2分)材料成形在装备制造中,具有不可替代的重要作用。

A.错B.对第一章测试1【判断题】(2分)晶界产生粘性流动,固体熔化成液体。

A.错B.对2【判断题】(2分)偶分布函数是距离某一粒子r处,找到另一粒子的几率。

A.对B.错3【判断题】(2分)液体与非晶固体衍射特征不同。

A.对B.错4【判断题】(2分)能量起伏表现为原子团簇在游动过程中,能量也发生变化。

A.对B.错5【判断题】(2分)动力粘度η在凝固过程中补缩起主要作用。

A.对B.错6【判断题】(2分)表面非活性物质越多,粘度越低。

A.错B.对7【判断题】(2分)A.对B.错8【判断题】(2分)表面非活性元素,引起表面张力增加。

材料成形基本原理课后习题答案

材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二讲
1、哪些现象说明金属的熔化并不是原子间结合力的全部破坏?
答:以下现象说明金属的熔化并不是原子间结合力的全部破坏:(1)物质熔化时体积变化、熵变(及焓变)一般均不大。

[注意:简答题此部分可略:如金属熔化时典型的体积变化△Vm/V(多为增大)为3~5%左右,表明液体原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

](2)金属熔化潜热比其汽化潜热小得多(1/15~1/30),表明熔化时其内部原子结合键只有部分被破坏。

3、雷诺数: 流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。

用符号Re
表示。

Re是一个无因次量。

层流:流体流动时,如果流体质点的轨迹(一般说随初始空间坐标x、y、z和时间t而变)是有规则的光滑曲线(最简单的情形是直线),这种流动叫层流。

紊流:在一定雷诺数下,流体表现在时间和空间上的随机脉动运动,流体中含有大量不同尺度的涡旋(eddy)。

4、流动性与充型能力的联系和区别。

影响流动性的因素。

答: 区别:①二者概念不同。

铸造工艺学中的流动性指在规定的铸型条件和浇注条件下,试样的长度或薄厚尺寸;而充型能力是指液态金属充满铸型型腔,并使铸件形状完整、轮廓清晰的能力。

②影响因素有区别。

流动性是液态金属本身的流动能力,与金属的成分、温度、杂质含量,及其物理性质有关;而充型能力除了取决于金属本身的流动能力外,还受外界条件,如铸型性质、浇注条件、铸件结构等因素的影响。

联系:①流动性好的合金充型能力强;流动性差的合金充型能力亦差,但是,可以通过改善外界条件提高其充型能力。

②可认为合金的流动性是在确定条件(试样结构、铸型性质、浇注条件)下的充型能力。

影响流动性的因素:金属的成分、温度、杂质含量、物理性质。

5、用同一种合金浇注同一批、同一种铸件,其中有一两件出现“浇不足”缺陷,可能是什么原因造成的?
答:因为是用同一种合金浇注同一批、同一种铸件,所以合金性质、铸件结构相同,但可能由于一两件的铸型温度、浇注温度偏低(后浇的因为温降而温度略低)、或者浇注速度偏高、充型压头小等原因,都会造成“浇不足”缺陷。

6、用螺旋形试样测定合金的流动性时,为了使测得数据稳定和重复性好,应控制哪些因素?答:应控制的因素包括:合金成分、温度恒定,铸型温度保持不变,浇注温度、速度、充型压头保持恒定。

三讲
1、试述均质形核与异质形核之间的联系和区别。

答:均质形核与异质形核是晶体两种不同的形核方式。

前者是依靠过冷液相中的结构起伏进行形核的方式,而后者则依靠外来质点进行形核。

均质形核需要很大的过冷度和更高的形核功,所以实际金属和合金中很难发生均质形核,而多是异质形核。

二者的临界形核半径相同,异质形核形核功△Ghe*与均质形核形核功△Gho*之间有如下关系:△Ghe*=f(θ) △Gho*,其中,θ为新生固相与基底的夹角。

θ<180°时,为异质形核;θ=180°时,为均质形核。

四讲
2、A-B二元合金原始成分为C0=C B=2.5%,k0=0.2,m L=5,自左向右单向凝固,固相无扩散而液相仅有有限扩散(D L=3×10-5cm2/s),达到稳定态凝固时,求:
(1)固液界面的C S *和C L *;
(2)固液界面保持平整界面的条件。

解:(1)C S *=C 0=2.5%,C L * =C 0/k 0=2.5%/0.2=12.5%
(2) 固液界面保持平整界面的条件是成分过冷度△T C 为0,成分过冷区宽度x 0为0,即满足条件:
△T C =0,x 0=0
则:
0)1(22200200=-+=R
k mC D G k R D x L L L 可得:
G L /R = 5×2.5%×(1-0.2)/(3×10-5×0.2)
G L /R = 1.67×104
4、说明成分过冷与热过冷的联系与区别。

答:热过冷是仅由熔体实际温度分布所决定的过冷状态,成分过冷则是由溶质再分配导致界面前方熔体成分及其凝固温度发生变化而引起的过冷。

二者之间的根本区别是前者仅受传热过程控制,后者则同时受传热过程和传质过程制约。

如令成分过冷判别式中的C 0=0,则成分过冷判据就变为热过冷判据。

因此,在晶体生长中,界面前方的热过冷只不过是成分过冷在C 0=0时的一个特例而已,二者本质上是一样的。

相关文档
最新文档