Ti_Ni_Nb宽滞后记忆合金的研究进展

合集下载

自-镍钛形状记忆合金材料的生物相容性研究进展

自-镍钛形状记忆合金材料的生物相容性研究进展

镍钛形状记忆合金材料的生物相容性研究进展摘要:镍钛形状记忆合金作为重要的生物医用材料已经获得了广泛的应用,但镍离子在人体环境中的释放引起了人们的忧虑。

本文结合有关镍钛形状记忆合金材料生物相容性方面的研究论文, 阐述了镍钛形状记忆合金的概念、工作原理、物化性能、生物相容性、医学应用以及发展趋势等。

关键词:The niti shape memory alloy biocompatibilitySurface modification1引言生物医用材料(biomedicalmaterial)是用于对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料。

它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料己成为各国科学家竞相进行研究和开发的热点。

当代生物材料已处于实现重大突破的边缘,不远的将来,科学家有可能借助于生物材料设计和制造整个人体器官,生物医用材料和制品产业将发展成为本世纪世界经济的一个支柱产业.由生物分子构成生物材料,再由生物材料构成生物部件。

生物体内各种材料和部件有各自的生物功能。

它们是“活”的,也是被整体生物控制的。

生物材料中有的是结构材料,包括骨、牙等硬组织材料和肌肉、腱、皮肤等软组织;还有许多功能材料所构成的功能部件,如眼球晶状体是由晶状体蛋白包在上皮细胞组成的薄膜内而形成的无散射、无吸收、可连续变焦的广角透镜。

在生物体内生长有不同功能的材料和部件,材料科学的发展方向之一是模拟这些生物材料制造人工材料。

它们可以做生物部件的人工代替物,也可以在非医学领域中使用。

前者如人工瓣膜、人工关节等;后者则有模拟生物黏合剂、模拟酶、模拟生物膜等镍钛形状记忆合金因具有独特的形状记忆效应、超弹性、较高的疲劳极限、优良的耐磨性及良好的生物相容性,在医学领域获得了广泛的应用,如畸齿丝、心血管扩张支架、骨折修复材料等。

作为一种长期植入人体的生物材料,不仅要具有良好的生物力学性能,而且还要有优异的耐蚀性和生物相容性。

主要的几类记忆合金及性能

主要的几类记忆合金及性能
Cu基记忆合金成分范围 在β相区内.
进一步冷却时β′相发 生热弹性马氏体相变, 故β’相是母相.
9
• Cu基记忆合金的力学性能: • Cu基记忆合金的力学性能较差.主要因为弹性各向异性常数很大、晶粒粗大,变形时很容易产生应 力集中,导致晶界开裂. • 提高Cu基记忆合金塑性和疲劳寿命的方法: • 制备单晶或形成定向织构; • 细化晶粒:添加合金元素、控制再结晶、快速凝固、粉末冶金等.
• Cu基记忆合金中的稳定性:
• 相变点对合金成分十分敏感.
• 存在较严重的马氏体稳定化现象:淬火后合金的相变点会随着放置时间的延长增加直至达到一稳定 值.
• 热-力循环对合金的记忆效应影响显著.随热-力循环的进行,Ms、As、Af等上升,相变热滞显著 增大.
8
当将β相区成分的合金 从高温淬火冷却,β相 发生有序化相变转变为 亚稳的有序β′相.
10
• 从马氏体的形态方面考察,当达到上述要求时,铁基合金中的马氏体一般呈薄片状. 通过适当的合 金化,在铁基合金可实现热弹性或非热弹性可逆马氏体相变,进而发展出基于这两种相变的铁基形 状记忆合金.
• 基于热弹性可逆马氏体相变的铁基形状记忆合金:
• Fe-Pt: (约w(Pt)25%)、Fe-Pd: (约w (Pd )30%),昂贵未能应用.
• Fe-Ni-Co-Ti合金:Fe-w(Ni)33%-w(Co)10%-w(Ti)4%,价格偏高,Ms太低(约200K),应用受 限.
• 基于非热弹性可逆马氏体相变的铁基形状记忆合金
- • 在 F e - M n - S i 合 金 中 , 应 力 诱 发 形 成 的 薄 片 状 马 氏 体 ( 相 变 时 体 积 变 化 小 ) , 在 加 热 时 能 够 逆 转

钛合金的研究应用现状及其发展方向

钛合金的研究应用现状及其发展方向

钛合金的研究应用现状及其发展方向钛合金是以金属钛为基,加入适量的其他元素组成钛合金,其在300-600度时的比强度优于钢和铝合金。

钛的工业化生产是1948年开始的,为航空工业发展的需要,使钛工业以平均每年约8%的增长速度发展。

目前世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种。

使用最广泛的钛合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工业纯钛(TA1、TA2和TA3)。

钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。

钛及其合金不仅大量应用在航空、航天工业,而且在化工、石油、冶金、造纸、纺织,机械仪器、能源;医疗卫生等工业中也有着十分重要的应用;在民用工业中的应用也日渐增多。

1、发展历史钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。

第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75%~85%。

其他许多钛合金都可以看作是Ti-6Al-4V合金的改型。

20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。

耐热钛合金的使用温度已从50年代的400℃提高到90年代的600~650℃。

A2(Ti3Al)和r(TiAl)基合金的出现,使钛在发动机的使用部位正由发动机的冷端(风扇和压气机)向发动机的热端(涡轮)方向推进。

结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展。

另外,20世纪70年代以来,还出现了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形状记忆合金,并在工程上获得日益广泛的应用。

2、原理钛合金是以钛为基础加入其他元素组成的合金。

镍钛形状记忆合金 相变滞后

镍钛形状记忆合金 相变滞后

镍钛形状记忆合金相变滞后镍钛形状记忆合金是一种具有特殊性能的金属材料。

它能够在受到外界刺激时发生相变,并在消除刺激后恢复到原始形状。

这种材料的相变滞后是指在相变过程中,其形状改变的时间滞后于外界刺激的时间。

本文将探讨镍钛形状记忆合金的相变滞后现象,并探讨其应用领域和未来发展方向。

我们来了解一下镍钛形状记忆合金的基本特性。

镍钛形状记忆合金的相变是由于其晶体结构的改变所引起的。

在高温状态下,镍钛合金的晶体结构呈现为奥氏体结构,此时其形状可被任意改变。

当温度下降到一定程度时,镍钛合金会发生相变,晶体结构转变为马氏体结构。

在这个过程中,镍钛合金的形状会发生改变,并且能够记忆其原始形状。

当温度再次升高时,镍钛合金会再次发生相变,恢复到原始形状。

然而,镍钛形状记忆合金的相变滞后现象给其应用带来了一定的挑战。

相变滞后意味着镍钛合金的形状改变并不会立即发生,而是需要一段时间。

这种滞后现象对于一些应用来说可能是不可接受的。

因此,科学家们一直在努力研究如何减小相变滞后,以提高镍钛形状记忆合金的应用性能。

在研究中,科学家们发现,相变滞后现象与镍钛合金的组成和处理方式有关。

通过调整合金的成分,可以改变相变滞后的程度。

此外,通过优化材料的加工工艺和热处理条件,也可以改善相变滞后现象。

这些研究为减小相变滞后提供了理论基础和实验依据。

除了研究相变滞后现象本身,科学家们还在探索镍钛形状记忆合金的应用领域。

由于镍钛合金可以根据外界刺激改变形状,因此被广泛应用于医疗领域。

例如,它可以用于制造心脏支架,通过改变形状适应血管的变化。

此外,镍钛合金还可以用于制造矫正器、牙套等医疗器械,帮助矫正牙齿。

这些应用充分发挥了镍钛合金的相变滞后特性,为患者提供了更好的治疗效果。

未来,随着科学技术的不断进步,镍钛形状记忆合金的应用领域还将不断拓展。

例如,在机械工程领域,镍钛合金可以用于制造自适应结构,使机械设备能够根据工作状态自动调整形状,提高工作效率。

形状记忆合金在航空工业中的应用研究进展

形状记忆合金在航空工业中的应用研究进展

形状记忆合金在航空工业中的应用研究进展摘要 : 形状记忆合金具有高能量密度 ,作为驱动器使用不会引起重量的显著增加和空间的过度占用 ,因而在航空航天器的一些结构中具有良好的应用前景。

本文对航空工业中使用形状记忆合金作为驱动器 ,应用于飞机机翼结构、进气道结构和发动机的相关研究进行了总结 ,并提出形状记忆合金在航空工业中应用的未来研究方向。

关键词 :形状记忆合金 ;机翼 ;进气道;喷气式发动机形状记忆合金(SMA) 作为一种具有特殊性质的材料 ,在工程应用中具有良好前景。

特别是 SMA 具有很高的能量密度 ,不会引起重量的显著增加 ,使其倍受航空工业的关注。

在宏观层面下 ,SMA 具有两个基本的性质:形状记忆效应(SME) 与超弹性 (SE) 。

形状记忆效应是指 SMA 在外力作用下发生较大的塑性变形 ,在经历升温后回复到外力作用前的状态;SE 是指 SMA 在较高的温度状态下 ,在加载过程中产生较大的应变 ,在撤除载荷后仍可以恢复到原来的形状[1] 。

利用 SMA 的记忆效应提供的大回复力以及大回复位移 ,使其已应用在宇宙飞船天线形状、飞行器机翼、发动机喷口的形状控制及对这些结构的振动控制[2 ,3] ,Andrew Peter Jardine 等还利用 SMA 在提高飞行器舱门密封上获得了专利[4] 。

利用 SMA 超弹性的滞回特性 ,可以用于工程结构中的振动控制[5] 。

SMA 在不同转变温度下表现出的不同性质 ,是其内部固2固相转变造成的。

SMA 的相转变温度可以在 - 150 ℃~200 ℃之间通过合金的成分和热处理工艺进行调节 ,相变的四个关键温度点分别为 :马氏体结束温度( Mf ) ,马氏体开始温度( Ms) ,奥氏体开始温度( As ) ,奥氏体结束温度( Af ) [6] 。

SMA 在加热至奥氏体开始温度以上时 ,发生从马氏体到奥氏体的相变;当 SMA 冷却时 ,在奥氏体向马氏体转变之前还要发生中间相 R 相变[7] 。

记忆合金论文

记忆合金论文

河南农业大学机电工程学院《非金属材料》课程论文题目:形状记忆合金姓名:学号:专业班级:论文方向:任课教师:论文:形状记忆合金摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史, 介绍了形状记忆合金在工程中应用的现状以及发展前景【关键词】:形状记忆合金、形状记忆合金效应、应用前景。

正文:记忆金属又叫形状记忆合金。

上个世纪70年代,世界材料科学中出现了一种具有“记忆”形状功能的合金。

记忆合金是一种颇为特别的金属条,它极易被弯曲,我们把它放进盛着热水的玻璃缸内,金属条向前冲去;将它放入冷水里,金属条则恢复了原状。

在盛着凉水的玻璃缸里,拉长一个弹簧,把弹簧放入热水中时,弹簧又自动的收拢了。

凉水中弹簧恢复了它的原状,而在热水中,则会收缩,弹簧可以无限次数的被拉伸和收缩,收缩再拉开。

这些都由一种有记忆力的智能金属做成的,它的微观结构有两种相对稳定的状态,在高温下这种合金可以被变成任何你想要的形状,在较低的温度下合金可以被拉伸,但若对它重新加热,它会记起它原来的形状,而变回去。

这种材料就叫做记忆金属(memory metal)。

它主要是镍钛合金材料。

例如,一根螺旋状高温合金,经过高温退火后,它的形状处于螺旋状态。

在室温下,即使用很大力气把它强行拉直,但只要把它加热到一定的“变态温度”时,这根合金仿佛记起了什么似的,立即恢复到它原来的螺旋形态。

这种现象我们对应的称之为“形状记忆”形状记忆合金之所以具有变形恢复能力,是因为变形过程中材料内部发生的热弹性马氏体相变。

形状记忆合金中具有两种相:高温相奥氏体相,低温相马氏体相。

根据不同的热力载荷条件,形状记忆合金呈现出两种性能。

形状记忆效应(shape memory effect)我们又可以分为两种:单程记忆效应和双程记忆效应以及全程记忆效应。

其中:单程记忆效应。

形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。

TiNiMo形状记忆合金的相变_形状记忆效应与力学性能研究

收稿日期:2003210231;修订日期:2004205218基金项目:总装预研资助项目文章编号:100026893(2004)0620611204Ti NiMo 形状记忆合金的相变、形状记忆效应与力学性能研究丁 振,刘福顺,李 岩,徐惠彬(北京航空航天大学材料科学与工程学院,北京 100083)Study on Phase T ransformation B ehaviors ,Sha pe Memory E ffects andMechanical Properties of TiNiMo Shape Memory AlloysDIN G Zhen ,L IU Fu 2shun ,L I Yan ,XU Hui 2bin(School of Materials Science and Engineering ,Beijing University of Aeronautics andAstronautics ,Beijing 100083,China )摘 要:研究了TiNiMo 形状记忆合金的相变特性、形状记忆效应和力学性能,结果表明:TiNiMo 合金存在一个R 相变,Mo 的加入降低了TiNi 合金的马氏体相变开始温度(Ms ),Ti 50Ni 48.5Mo 1.5和Ti 50Ni 48Mo 2.0合金的Ms 分别达到了-85℃,-103℃,这两种合金分别在8.51%和8.26%的预应变下获得了8.06%和7.71%的形状记忆效应。

Ti 50Ni 48Mo 2.0合金的屈服强度和抗拉强度分别为589MPa 和799MPa ,比Ti 50Ni 48Fe 2.0的相应强度分别高73%和31%,同时Ti 50Ni 48.5Mo 1.5的力学性能也较为优异,因而TiNiMo 合金是很有发展潜力的新型的记忆合金接头材料。

关键词:TiNiMo 合金;相变特性;形状记忆效应;力学性能;管接头中图分类号:V252;TG 139+16 文献标识码:AAbstract :Phase transformation behaviors ,shape memory effects and mechanical properties of TiNiMo shape memo 2ry alloys are investigated.It is found that a R phase transformation exists in TiNiMo alloy ,and the adition of Mo will lower the martensite start (Ms )temperature of TiNi alloy ,and that the Ms temperatures of Ti 50Ni 48.5,Mo 1.5and Ti 50Ni 48Mo 2.0alloys are -85℃and -103℃,respectively.The two alloys will gain 8106%and 7.71%shape memory effects under 8.51%and 8.26%pre 2strain ,respectively.The yield strength and breaking strength of Ti 50Ni 48Mo 2.0alloy ,measured to be 589MPa and 799MPa ,are 73%higher and 31%higher than the corres ponding strengths of Ti 50Ni 48Fe 2.0,respectively.Furthermore ,Ti 50Ni 48.5Mo 1.5alloy also exhibits excellent mechanical properties.Therefore TiNiMo alloys are very potential when used as new joint materialsK ey w ords :TiNiMo alloy ;phase transformation behavior ;shape memory effect ;mechanical property ;pipe joint TiNi 基形状记忆合金具有优异的记忆特性和超弹性、良好的力学性能、耐腐蚀性、生物相容性以及高阻尼特性,因而在航空航天、生物医用等领域获得了广泛的应用[1]。

形状记忆合金的研究与展望

形状记忆合金的研究与展望摘要:形状记忆合金是新近崛起的一类高科技功能材料。

应用已遍及航天、航空、电子、机械、能源、农业、医学、机械人以至日常用品等领域。

本文简要阐述了目前主要的形状记忆合金的类别及其影响形状记忆效应的因素。

关键词:形状记忆合金;形状记忆效应;马氏体相变引言形状记忆合金(Shape Memory Alloys,简称SMA)是新近崛起的一类高科技功能材料。

这类合金在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某一温度,材料会自动回复到变形前原有的形状,能够大致上恢复至变形前的形状,这种所具有的回复原始形状的能力,称为形状记忆效应(Shape Memory Effect ,SME)[1]。

自该合金发现以来,它以独特的形状记忆效应和超弹性(Superelasticity)而引起人们的注视,并正逐渐得到日益广泛的应用,并在数量上已经跃居马氏体相变研究的首位[2]。

形状记忆合金的应用已遍及航天、航空、电子、机械、能源、农业、医学、机械人以至日常用品等领域。

在应用领域,其发展阶段大致经历了组分的变化及性能的提高。

NiTi合金和Cu基合金的开发应用主要集中在上世纪60~80年代,而铁基合金的开发应用相对较晚。

但是,这些合金的研究在今年来也一直受到关注,研究从未中断。

近年来形状记忆合金研究所取得的进展也主要体现在为NiTi,Cu基和Fe基形状记忆合金开发应用所进行的基础研究的探索上。

1. 形状记忆合金的分类1.1 钛镍形状记忆合金[3]1963年,W. Buehler等人在美国海军武器实验室发现了钛镍形状记忆合金具有可逆马氏体相变导致形状记忆效应[4],随后引起了人们的极大兴趣,并很快得到应用。

迄今为止,有TiNi形状记忆合金的研究仍在不断地开展,在一系列的国际会议上,如马氏体相变国际会议(ICOMAT)、欧洲马氏体相变会议(ECOMAT)、形状记忆与超弹性国际会议(SMST),形状记忆材料国际会议(SMM)等,都占有很大比重,在有关智能材料和结构方面的国际会议上也占有一定比重。

NiTi形状记忆合金的超弹性及医学应用研究

NiTi形状记忆合金的超弹性及医学应用研究一、本文概述本文旨在深入探讨NiTi形状记忆合金的超弹性特性及其在医学应用领域的广泛影响。

NiTi,即镍钛合金,以其独特的形状记忆效应和超弹性,在众多工程领域中占据了举足轻重的地位。

尤其在医学领域,NiTi形状记忆合金的应用已逐渐成为研究热点,其在牙科、骨科、心血管科等领域的应用前景广阔。

本文将首先介绍NiTi形状记忆合金的基本特性,包括其形状记忆效应和超弹性的原理及其产生机制。

随后,将重点讨论NiTi合金在医学领域的应用现状,包括其在牙科正畸、骨科植入物、心血管支架等方面的实际应用案例。

本文还将探讨NiTi合金在医学应用中的优势和挑战,以及未来可能的发展方向。

通过对NiTi形状记忆合金超弹性特性的深入研究,以及对其在医学应用领域的系统梳理,本文旨在为相关领域的研究者提供有价值的参考,为推动NiTi合金在医学领域的进一步发展提供理论支持和实践指导。

二、NiTi形状记忆合金的基本性质NiTi形状记忆合金,也被称为镍钛合金,是一种独特的金属合金,其特性源于其独特的晶体结构和相变行为。

NiTi合金由大约50%的镍(Ni)和50%的钛(Ti)组成,其原子比例接近等原子比,这使得它具有非凡的形状记忆效应和超弹性。

形状记忆效应:NiTi合金的形状记忆效应是指合金在经历一定的塑性变形后,通过加热到某一特定温度(即Af温度以上),能够恢复其原始形状的特性。

这种效应源于合金内部发生的可逆马氏体相变。

在低温下,合金处于马氏体相,具有较高的塑性;而在高温下,合金转变为奥氏体相,具有较低的塑性。

当合金在马氏体相下发生塑性变形后,再加热至奥氏体相,合金就能通过相变恢复其原始形状。

超弹性:NiTi合金的超弹性是指合金在受到外力作用时,能够发生大的弹性变形而不产生永久塑性变形的特性。

这种特性使得NiTi 合金在受到外力后,能够迅速恢复到原始状态,具有良好的回复性。

超弹性的产生与合金内部的应力诱发马氏体相变有关。

Ti-Ni基形状记忆合金综述

Ti-Ni基形状记忆合金综述摘要形状记忆合金是现代一种新型功能材料,本文介绍了Ti-Ni基记忆合金的的相关重要概念,并且详细介绍了Ti-Ni基合金的相变与性能特点及其影响因素,同时对其应用做了一定的描述。

关键词:Ti-Ni基形状记忆合金、功能材料、性能、影响、应用1 前言形状记忆合金是70年代开发韵新型功能材料,其中Ti-Ni合金已在航天器件、仪表、控温及医疗机具上的应用,有希望在能源工业中发挥作用。

新的形状记忆材料和一些新的用途正在不断地开拓中。

形状记忆合金及台媳陶瓷的记忆材料都由马氏体相变爰其逆相变导致形状记忆效应。

目前在总结以往工作的基础上,对形状记忆效应的机制作些理论分析,对形状记忆材料的发展作科学的展望,开拓设计形状记忆材料的思路。

TiNi形状记忆合金(SMA)在医学领域的使用在提高人类生活质量方面发挥了巨大的作用。

然而,钛合金植入人体后,在体液中不可避免地会发生腐蚀。

腐蚀不仅会降低金属材料的力学和机械性能,甚至会导致值入失效,而且,溶入体液的Al、V、Ni离子对周围组织会产生一定的副作用,严重的则引发组织病变或癌变。

因此,医用材料的耐蚀性研究对于保障其在人体的安全使用具有十分重要的现实意义。

80年代初,经历了将近20年的时间,科学研究工作者们终于突破了TiNi合金研究中的难点。

从那以后,形状记忆合金成了许多国家的热门学科,多次出现形状记忆合金学术会议的与会者暴满,甚至不得不临时变更会场。

在形状记忆合金研究方面所发表的论文数很快跃居马氏体相变研究领域之最。

不仅如此,形状记忆合金在工业界也开始受到了极大的重视。

形状记忆合金在应用开发中申请的专利已逾万件。

在市场上付诸实际应用的例子已有上百种。

应用所涉及的领域极其广泛,包括电子、机械、宇航、运输、建筑、化学、医疗、能源、家电以及日常生活用品等,几乎涉及产业界的所有领域。

2 相关概念2.1 形状记忆效应一般金属材料收到外力作用后,首先发生弹性变形,达到屈服点,金属就产生塑性变形,应力消除后就产生了永久变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档