高州市2010年学科竞赛数学试卷答案

合集下载

2010年全国大学生高等数学竞赛总决赛(答案)

2010年全国大学生高等数学竞赛总决赛(答案)

2010年全国大学生数学竞赛决赛答 tian27546这是献给博士论坛一个礼物 转载时请勿注明是博士论坛一、(20分)计算下列各题:1.求极限 211sin )1(lim n k n k n k n π∑-=→∞+解法1因211sin )1(n k n k n k π∑-=+211222sin sin 21(2sin 21n n k n k nn k πππ∑-=+=) )22cos 22(cos 1(2sin 2122112n k n k n k nn k πππππ+--+=∑-=) )22cos 22(cos 1(22112nk n k n k n n k πππππ+--+≈∑-=) 2112211222cos 1(22cos 1(n k nk n n k n k n n k n k ππππππ++--+=∑∑-=-=)) 222211222cos 11(22cos 1(n k n k n n k n k n nk n k ππππππ--+--+=∑∑=-=))2122222222cos 12)12(cos 11(2cos )11(n k n n n n n n n n n n n k πππππππ-+--+-+=∑-=) 21222222)12(cos 2)12(cos 12(2cos )11(nk n n n n n n n n n k ππππππ-+---+=∑-=)(*) 而2122)12(cos n k n k π-∑-=212222sin 2)12(cos22sin 21n n k nn k πππ∑-=-=])1(sin [sin2sin2121222n k n k nn k πππ--=∑-= 2222sin 2sin )1(sinn n n n πππ--=222sin2)2(sin 2cos n n n n πππ-=(**) 将(**)代入(*),然后取极限,得原式]2sin2)2(sin2cos2)12(cos 12(2cos )11([lim 222222n n n nn n n n n n n n n ππππππππ-+---+=→∞)]2)2(sin 2cos 2)8)12(1(12()11([lim 22342222n n n n n n n n n n n ππππππ-+----+=∞→) ]2)2(sin 2cos 2)21(12()11([lim 2232222n n n n n n n n n n ππππππ-+---+=∞→) )]48)2(2)2()(81(2)21(12()11([lim 633222232222nn n n n n n n n n n n πππππππ----+---+=∞→))]482)(81(2)21(12()11([lim 33222232222n n n n n n n n n n n ππππππππ---+---+=∞→) 65π=上式中含2n 的项的系数为0121=+-πππ,含n 的项的系数为0)2(111=-++πππ,常数项系数为656824ππππππ=-=--解法2 Step 1因∑-=112sin n k n k π211222sinsin 22sin 21n nk nn k πππ∑-==)22cos 22(cos2sin2122112n k n k nn k πππππ+--=∑-=)2)12(cos2(cos2sin21222n n n n πππ--=故)2)12(cos 2(cos 2sin 21lim sinlim 222112n n n nn k n n k n ππππ--=→∞-=→∞∑)2)12(cos2(cos1lim222n n n n n πππ--=→∞nn n n n 2sin 2)1(sin2lim22πππ-=→∞n n n n n 22)1(2lim22πππ-=∞→2π= Step 2因222)12(cosn k nk π-∑=22222sin 2)12(cos22sin21n n k nnk πππ∑=-=])1(sin [sin2sin212222nk n k nnk πππ--=∑= 2222sin 2sinsin n n n n πππ-=2222sin 2)1(sin 2)1(cos nn n n n πππ-+=因此∑-=112sin n k n k nk π211222sin sin 22sin 21n n k n k n n k πππ∑-== ]2)12(cos 2)12(cos [2sin 212112112n k n k n k n k nn k n k πππ+--=∑∑-=-= ]2)12(cos 12)12(cos [2sin 21222112n k n k n k n k nnk n k πππ----=∑∑=-=⎥⎦⎤⎢⎣⎡-+---=∑-=2122222)12(cos 12)12(cos 12cos 12sin 21n k n n n n n n n nn k ππππ ⎥⎦⎤⎢⎣⎡-+--=∑=222222)12(cos 12)12(cos 2cos 12sin 21n k n n n n nnnk ππππ(*) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++--=2222222sin 2)1(sin 2)1(cos 2)12(cos 2cos 12sin 21nn n n n n n n n n n ππππππ 于是∑-=→∞112sin lim n k n n k nk π⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++--=→∞2222222sin 2)1(sin 2)1(cos 2)12(cos 2cos 12sin 21lim nn n n n n n n n n n n ππππππ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---=→∞n n n n n n n n n n 22)1(sin2)1(cos 8)12(11lim 224222πππππ)( ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---+-++-=∞→n n n n n n n n n n n 2)48)1(2)1()(8)1(1211lim 6332422222ππππππ(⎥⎦⎤⎢⎣⎡----++-=∞→)24)1(1)(81211lim 52322222n n n n n n n n n ππππ( ⎥⎦⎤⎢⎣⎡---++-=∞→)241()(81211lim 2222222n n n n n n n n ππππ( ⎥⎦⎤⎢⎣⎡---++-=∞→)2411)(81211lim 2222222n n n n n n n ππππ( )(222222282411211lim n n n n n n n ππππ---++-=→∞ )(22222228242lim n n n n n ππππ--=∞→62ππ-=3π=原式6532πππ=+=2.计算⎰⎰∑++++2222)(zy x dxdya z axdydz ,其中 ∑为下半球面222y x a z ---= 的上侧, 0>a .解 记1∑为平面 222,0a y x z ≤+= 的上侧,2∑为下半球面 222y x a z ---= 的下侧,Ω是由1∑和2∑所围成的立体,则422222211)(adxdy a dxdy a dxdy a z axdydz ay x ⎰⎰⎰⎰⎰⎰≤+∑∑===++π,设,sin ,cos θθr y r x ==则⎰⎰∑+∑++212)(dxdy a z axdydz ⎰⎰⎰Ω+++=dxdydz a z a )220(⎰⎰⎰Ω+=dxdydz a z )32(⎰⎰⎰≤+---+=2222220)32(a y x y x a dz a z dxdy⎰⎰≤+---+=22222202]3[a y x y x a dxdy az z⎰⎰≤+--+++-=222)3(222222a y x dxdy y x a a y x a ⎰⎰≤≤≤≤-++-=πθθ2002222d d )3(ar r r r a a r a⎰-++-=a r r r a a r a 02222d )3(2π ⎰-++-=ar r a a r a 022222)d()3(π⎰-++-=22122d ))(3(a u u a a u a π223222)(42a u a a uu a ⎥⎦⎤⎢⎣⎡--+-=π274a π=⎰⎰∑++++2222)(zy x dxdya z axdydz⎰⎰⎰⎰∑∑+∑+++++-=12122)(1)(1dxdy a z axdydz a dxdy a z axdydz a 227333a a a πππ-=+-=3.现 设计一个容积为V 的圆柱体容器. 已知上下两底的材料费为单位面积a元,而侧面的材料费为单位面积b 元. 试给出最节省的设计方案;即高与的上下底直径之比为何值时所需费用最少?解 设圆柱体的底半径为r ,高为h ,则h r V 2π=,2rVh π=总造价为222r a rh b P ππ+=222r a rbVπ+=, 则2322242r r a bV r a r bV P ππ--=+-=',由0='P 知,解得312⎪⎭⎫⎝⎛=πa bV r ,312⎪⎭⎫ ⎝⎛=ππa bV V h , 因为是惟一的驻点,所以当3122323131222222:2⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=Vab a bV V a bV a bV V h r ππππππ 时,所需费用最少.4.已知 x x x f 33cos sin 1)(+=',)21,41(∈x ,求)(x f 解 因x x x f 33cos sin 1)(+=',)21,41(∈x ,故 ⎰+=x xx x f d cos sin 1)(33⎰+-+=x x x x x x x d )cos )(sin cos sin cos (sin 122⎰+-=x x x x x d )cos )(sin cos sin 1(1⎰+-=x x x d )4sin()2sin 211(21π⎰+⎪⎭⎫ ⎝⎛++=x x x d )4sin()22cos(211121ππ⎰+⎪⎭⎫ ⎝⎛++=x x x d )4sin()4(2cos 211121ππ 令)4(21π+=x t ,则⎰+=t tt x f d 2sin )4cos 211(2)(⎰+=t tt t d cos sin )4cos 2(2⎰-+=t t t t t d cos sin )2sin 2cos 2(222⎰+=t t t t t d cos sin )2sin 2cos 3(222 ⎰+-=t tt t t t t d cos sin )cos sin 4)sin (cos 3(222222⎰-++=t t t t t t t t t d cos sin )cos sin 2sin 3cos 3()cos (sin 22244222 ⎰-+++=t t t t t t t tt t t d cos sin )cos sin 2sin 3cos 3(cos sin 2sin cos 222442244⎰-+++=t t t t tt tan d tan )tan 2tan 33(tan 2tan 122424 令t u tan =,2u v =,则⎰-+++=u u u u u u x f d )233(212)(2424⎰-+++=224224d )233(2122u u u u u u ⎰-+++=v v v v v v d )233(212222⎰+-++=v v v v v v d )323(122222 令)()323(1222v R vAv v v v v +=+-++,则31=A ,)323(332336331)323(12)(22222+--+-++=-+-++=v v v v v v v v v v v v v v R )323(382+-=v v 因此⎰⎰+-+=323d 324d 62)(2v v vv v x f ⎰+-+=323d 324ln 622v v vv ⎰+-+=98)31(d 924ln 622v v v C v v +-+=32231arctan 3221924ln 62C v v +-+=2213arctan 32ln 62 C t t +-+=221tan 3arctan 32tan ln 6222C t t +-+=221tan 3arctan 32tan ln 6222C x x +-+++=221)82(tan 3arctan 32)82(tan ln 6222ππ 二、(10分)求下列极限1.⎪⎭⎫ ⎝⎛-+∞→e n n n n )11(lim解 设xx x f 1)1()(+=, 则))1ln()1(1()1()(21xx x x x x f x+-++=')1()1ln()1()(2x x x x x x f +++-= 原式=)(lim )1(lim010x f x e x x xx '=-+→→)()(lim )(lim 00x f x f x f x x '=→→)1()1ln()1(lim)(lim 20x x x x x x f x x +++-=→→20)1ln()1(limx x x x e x ++-=→22)1ln(lim 0e x x e x -=+-=→2.nnn n n c b a ⎪⎪⎪⎭⎫⎝⎛++∞→3lim 111,其中0>a ,0>b ,0>c 解 因300ln 3ln ln ln 3ln ln ln lim 33lim abc c b a c c b b a a x c b a x x x x x x x x =++=++=-++→→ 故 原式=333lim)13(1lim 10003lim abc ee c b a x c b a c b axxxx x x x x x x xx xx ===⎪⎪⎭⎫⎝⎛++-++-++→→→三、(10分)设)(x f 在1=x 处可导,0)1(=f ,2)1(='f ,求xx x x x f x tan )cos (sin lim 220++→ 解 设)(x f 在1=x 处可导,0)1(=f ,2)1(='f ,则xx x f x x f x x x x x f x x tan )1()cos (sin lim tan )cos (sin lim 220220+-+=++→→ 1cos sin )1()cos (sin lim 1cos sin lim tan lim 220220220-+-+-++=→→→x x f x x f x x x x x x x x x x 1cos sin )1()cos (sin lim 2sin cos sin 2lim cos 111lim220020-+-+-+=→→→x x f x x f x x x x xx x x 1cos sin )1()cos (sin lim 2sin cos sin 2lim 212200-+-+-=→→x x f x x f x x x x x x 1cos sin )1()cos (sin lim 21cos 2lim sin lim 2122000-+-+-=→→→x x f x x f x x x x x x1cos sin )1()cos (sin lim 41220-+-+=→x x f x x f x 1)1()(lim 411--=→t f t f t )1(41f '=21= 四、(10分)设)(x f 在),0[+∞上连续,⎰+∞0d )(x x f 收敛,求⎰+∞→yy x x xf y 0d )(1lim.解 令⎰=xt t f x G 0d )()(,则因⎰+∞0d )(x x f 收敛,故)(lim y G y +∞→,不妨设R A y G y ∈=+∞→)(lim ,则[]}d )()(1{lim )(d 1lim d )(1lim0000⎰⎰⎰-==+∞→+∞→+∞→y yy y y y y x x G x xG yx G x y x x xf y)d )(1)((lim 0⎰-=+∞→yy x x G yy G ⎰+∞→-=yy x x G y A 0d )(1lim 0)(lim =-=-=+∞→A A y G A y五、(12分)设函数)(x f 在]1,0[上连续,在)1,0(内可微,且0)1()0(==f f ,1)21(=f ,证明:(1)存在⎪⎭⎫⎝⎛∈1,21ξ使得ξξ=)(f ;(2)存在()ξη,0∈使得1)()(+-='ηηηf f .证 (1)记x x f x F -=)()(,则函数)(x F 在]1,21[上连续,且1)1(-=F ,21)21(=F ,故由零点存在性定理知存在⎪⎭⎫⎝⎛∈1,21ξ使得0)(=ξF ,即ξξ=)(f . (2)因x x x f x f e x d )1)()((⎰+-'--x e x xe x x f e x x f e x x x x d d d )(d )(⎰⎰⎰⎰----+-'-= x e e x x f e x x f e x x x x d d )(d d )(⎰⎰⎰⎰----++-=x x xe x f e --+-=)(故令x e x x f x F --=))(()(, 则函数)(x F 在],0[ξ上连续,在()ξ,0内可微,0)0(=F ,0)(=ξF ,x x e x x f e x f x F -----'='))(()1)(()(, 故由罗尔定理知,存在()ξη,0∈使得0)(='ηF , 1)()(+-='ηηηf f .六、设)(x f 在),(+∞-∞上有定义,在0=x 的某邻域内有一阶连续导数,且0)(lim 0>=→a x x f x ,证明级数∑∞=-1)1()1(n n n f 条件收敛. 证 因 0)(lim>=→a xx f x ,故存在一个正数δ,使得当δ<-<00x 时,有 2)(aa x x f <-因此x x f a )(2<(δ<-<00x ),于是,当δ1>n 时, δ<-<010n ,nn f a 1)1(2<,n a n f 2)1(>,这表明级数∑∞=1)1(n n f 发散,即级数∑∞=-1)1()1(n n n f 发散.下证原级数收敛:由0)(lim0>=→a xx f x 知,0)(lim lim )(lim )0(000====→→→a x x f x x f f x x x ,0)(lim )0()(lim )0(00>==-='→→a xx f x f x f f x x由)(x f 在0=x 的某邻域内有一阶连续导数知,)(lim )0(0x f f a x '='=→,因此存在一个正数η,使得当η<-0x 时,有2)(aa x f <-' 因此)(20x f a '<<(),(ηη-∈x ). 特别地,)(x f 在),0(η上单调增,于是当η1>n 时,)1()11(n f n f <+,且0)0()1(lim ==∞→f nf .最后由Leibniz 判别法知,原级数收敛.综上可知,原级数条件收敛.六、(14分)设1>n 为整数,⎰⎪⎪⎭⎫ ⎝⎛++++=-x n tt n t t t e x F 02d !!2!11)( ,证明:方程 2)(n x F =在⎪⎭⎫⎝⎛n n ,2内至少有一个根. 证 记!!2!11)(2n t t t t p nn ++++= ,)!!2!11()(2n t t t e t r ntn ++++-= ,则)()(t r e t p n t n -=,且当0>t 时,0)(>t p n , 0)(>t r n ,0)(>-t r e n t .记2)()(n x F x -=ψ,则⎰--=n n t t t r e nx 0d )(2)(ψ,因⎰⎪⎪⎭⎫⎝⎛++++=-x n tt n t t t e x F 02d !!2!11)( ,故函数)(x ψ在],2[n n 上连续,在⎪⎭⎫⎝⎛n n ,2内可微,且2)2()2(n n F n -=ψ⎰⎰<-=--=--20200d )(2d ))(1(nn t n n tt t r e n t t r e ,2d )()(0nt t p e n nn t -=⎰-ψ⎰⎰⎰⎰----+-=+--=202220d )(d )(d )(2d ))(1(n nn n t n t n n n t n n t tt p e t t r e tt p e nt t r e⎰⎰++-=---20202d )2(d )(n n n n t n tt n t p et t r e⎰⎰+++-=---20202d )2(d )!1(1nnn nt t t n t p e t e e n ξ ⎰⎰+-++-=+---202022d ))2((d )!1(1nnn nt nt t t n t r e e t e e n ξ ⎰⎰+---+-+-=202022d )!1(1d )!1(121nnnnt t t e e n t e e n n ξξ ⎰⎰--+-+-=2020d )!1(1d )!1(121n nt t t e e n t e e n n ξξ ⎰-+->202d )!1(22n nt t e e n n []202)!1(22nt ne e n n -++= )1()!1(222-+-=ne n n )!1(2)!1(222+++-=n n e n n )!1(22)!1(2222+-=+->n en n e n n n012>->n(若2>n ,则左边的两个不等式都成立) ()()⎰⎰-+-=-+=-=--101021d 121d 121)1()1(t te t t t e F ψ()[]⎰-++-=--101021d 1t e e t t t 032321)1(2111>-=--+-=--ee e 031)2(>->eψ01223!4223)3(1223144144314923232333>-=->⇒>⇒>>>e e e e ψ 01232452!522)4(2>->->->e e e ψ,0122212e e 12)(>->++->n n n n n e n n ψ 故由零点存在性定理知, 存在),2(n n ∈ξ使得0)(=ξψ, 即2)(nF =ξ.七、(12分)是否存在R 中的可微函数)(x f 使得53421))((x x x x x f f --++=? 若存在,请给出一个例子;若不存在,请给出证明.解 不存在假如存在R 中的可微函数)(x f 使得54321))((x x x x x f f -+-+=,则4325432)))((x x x x x f x f f -+-=''(, 若1)1(=f ,则025432)1))1(()]1[2<-=-+-=''='((f f f f 矛盾。

广东省高州市2010届初三缅茄杯学科竞赛模拟试卷数学试题

广东省高州市2010届初三缅茄杯学科竞赛模拟试卷数学试题

高州市2010年学科竞赛数 学 模 拟 试 卷(七)一、 精心选一选:(下面每小题均给出四个供选择答案,其中只有一个正确的,把你认为正确的答案代号填放下表相应题号下空格内,每小题4分,共40分)1. 设23-=a ,32-=b ,25-=c ,则a ,b ,c 的大小关系是A a b c >>B a c b >>C c b a >>D b c a >>2.函数y ax b =+图象经过一、二、三象限,且与x 轴交于点(一2,0),求ax>b 的解集A .X>-2B .X<2C .X>2D .X<-23.若a 是两位数,b 是一位数(0b ≠),把b 放在a 的左边组成三位数,则这个三位数是A 、baB 、b a +C 、10b a +D 、100b a +4. 如图,设计一个商标图案(图中阴影部分),长方形ABCD 中,AB=2BC,且AB=8㎝,以点A 为圆心,AD 长为半径作半圆,则商标图案面积等于 A 、()248cm π+ B 、()238cm π+ C 、()2316cm π+ D 、()2416cm π+5.如图,若AB=AC ,BG=BH ,AK=KG ,则∠BAC 度数为A .30°B .36° C .32° D .40°6.多边形每一个内角都等于150º,则从此多边形一个顶点出发引出的对角线共有A 11条B 10条C 9条D 8条7.如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC // 且8=DBCE S 四边形ADE S ∆ 那么:AE AC 等于A 、1 : 9B 、1 : 3C 、1 : 8D 、1 : 2 BA DEA 、第一、二象限B 、第二、三象限C 、第三、四象限D 、第一、四象限9. 甲乙丙丁四位同学站成一横排照相,如果任意安排四位同学的顺序,那么恰好甲乙相临且甲在乙左边的概率是A 、121 B 、81 C 、61 D 、41 10.下列命题:①若直角△的两条边长为3与4,则第三边长是5;②若点(,)P a b 在第三象限,则点)1,(+--b a Q 在第一象限;③函数11-=x y 的图象平移后可以和函数11+=xy 的图象重合;④两边及其第三边上的中线对应相等的两个三角形全等.正确的有:A 1个B 、2个C 、3个D 、4个11.已知a -b =b -c =53,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 . 12.化简:.______________)5()4(22=---+x x13.如图,已知:△AEC 是以正方形ABCD 的对角线为边的等边三角形,EF ⊥ AB ,交AB 延长线于F ,则∠BEF 度数为______________14.某人在同一条路上来回一次共用2小时. 来时步行,平均速度 是5千米/小时; 回去的时坐公共汽车, 平均速度是 20千米/小时, 则这条路长是___________千米.15.观察右面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律,第6个图形共有________个正方形.三、细心做一做:(本大题共5小题,每小题8分,共40分)16.如图,最大的正方形由九个小正方形拼成.在图中画一个顶点都在小正方形的顶点上的三角形,且使它的面积是最大正方形面积的49.17.已知一次函数y=a x+b的图象经过点A(3,8),B(-2,3),C(-3,c)。

2010年全国高中数学联赛试题及答案

2010年全国高中数学联赛试题及答案

2010年全国高中数学联合竞赛一试 试题参考答案及评分标准(B 卷)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次。

一、填空题(本题满分64分,每小题8分) 1. 函数x x x f 3245)(---=的值域是 ]3,3[-.解:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-. 2. 已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是 1223≤≤-a .解:令t x =sin ,则原函数化为t a att g )3()(2-+-=,即a att g )3()(3-+-=.由 3)3(3-≥-+-t a at , 0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即 3)(2-≥+t t a (1)当1,0-=t 时(1)总成立; 对20,102≤+<≤<t t t ; 对041,012<+≤-<<-t t t . 从而可知 1223≤≤-a .3. 双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 9800 .解:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为 98009848512=+⨯.4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα3.解:设}{n a 的公差为}{,n b d 的公比为q ,则 ,3q d =+ (1) 2)43(3q d =+, (2)(1)代入(2)得961292++=+d dd ,求得9,6==q d .从而有 βα+=-+-19log )1(63n n 对一切正整数n 都成立,即 βα+-=-9log )1(36n n 对一切正整数n 都成立.从而 βαα+-=-=9log3,69log,求得 3,33==βα, 333+=+βα.5. 函数)1,0(23)(2≠>-+=a a a a x f xx在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 41-.解:令,y a x =则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的.当10<<a 时,],[1-∈a a y ,211m ax 1()32822g y aaa a ---=+-=⇒=⇒=,所以 412213)21()(2min -=-⨯+=y g ;当>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以 412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是1217.解:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为+⨯+⨯+127)125(127)125(1274217121442511127=-⨯=.7. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin4.解一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=P B A B BP BA .设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则 ⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x BP m z x BA m ⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x P B n x A B n 由此可设 )3,1,0(),1,0,1(==n m ,所以cos m n m n α⋅=⋅,2cos cos 4αα=⇒=.所以 410sin =α.解二:如图,PB PA PC PC ==11, .设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ . 11,,PA PB PO AB =⊥因为 所以从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E . 连结E B 1,则EO B 1∠为二面角11B P A B --的平面角. 设21=AA ,则易求得3,2,5111=====PO O B O A PA PB .在直角O PA 1∆中,OE P A PO O A ⋅=⋅11, 即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OEO B E B O B .4105542sin sin 111===∠=EB O B EO B α.8. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 336675 .解:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类:(1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知 100420096100331⨯=+⨯+k ,OEP1B 1A 1CBA110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 3356713343351003=-⨯=k . 从而满足z y x ≤≤的正整数解的个数为 33667533567110031=++. 二、解答题(本题满分56分)9.(本小题满分16分)已知函数)0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值.解一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得(4分) )21(4)1(2)0(23f f f a '-'+'=. (8分)所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤8≤, 38≤a . (12分)又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.(16分)解二:c bx ax x f ++='23)(2.设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g . 设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b a z ba z a z g z h . (4分)容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . (8分) 从而当11≤≤-z 时,22)()(0≤-+≤z h z h ,即 21434302≤++++≤c b a z a ,从而0143≥+++c b a ,2432≤za ,由 102≤≤z 知38≤a . (12分)又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.(16分)10.(本小题满分20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.解一:设线段AB 的中点为),(00y x M ,则2,22210210y y y x x x +==+=,1221221212123666y y y yyy y x x y y k AB =+=--=--=.线段AB 的垂直平分线的方程是 )2(300--=-x y y y . (1)易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(. (5分)由(1)知直线AB 的方程为 )2(300-=-x y y y ,即 2)(300+-=y y y x . (2)(2)代入x y 62=得12)(2002+-=y y y y ,即 012222002=-+-y y y y .(3)依题意,21,y y 是方程(3)的两个实根,且1y 22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+=]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=.定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==. (10分)2020209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆)9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤ 7314=. (15分)当且仅当20202249y y -=+,即0y =,33A B 或33A B -++时等号成立.所以ABC ∆面积的最大值为7314. (20分)解二:同解一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.(5分)设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, (10分) 2222122112))656665(21(t t t t t t S ABC --+=∆221221)5()(23+-=t t t t)5)(5)(24(23212121++-=t t t t t t3)314(23≤,7314≤∆ABC S , (15分)当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t 6572+-=t,33A B 或33A B -时等号成立.所以ABC ∆面积的最大值是7314. (20分)11.(本小题满分20分)数列{}n a 满足),2,1(1,312211 =+-==+n a a a a a n n nn .求证:nn n a a a 2212312131211-<+++<-- . (1)证明:由1221+-=+n n nn a a a a 知111121+-=+nnn a a a ,)11(1111-=-+nn n a a a . (2)所以211,111n nn n n nna a a a a a a ++==----即 1111n n n nn a a a a a ++=---. (5分)从而 n a a a +++ 21 1133222211111111++---++---+---=n n nn a a a a a a a a a a a a11111112111++++--=---=n n n n a a a a a a .所以(1)等价于nn n n a a 2112312112131211-<--<-++-,即 nn n n a a 21123131<-<++- . (3) (10分)由311=a 及 1221+-=+n nnn a a a a 知 712=a .当1n =时 ,2216a a -=,11122363<<- ,即1n =时,(3)成立.设)1(≥=k k n 时,(3)成立,即 kk k k a a 21123131<-<++-.当1+=k n 时,由(2)知kk k k k k k k a a a a a a a 2211111223)1()1(11>->-=-+++++++; (15分)又由(2)及311=a 知)1(1≥-n a a nn均为整数,从而由 kk k a a 21131<-++ 有131211-≤-++kk k a a 即kk a 2131≤+ ,所以122211122333111+<⋅<-⋅=-+++++k kkk k k k k a a a a a ,即(3)对1+=k n 也成立.所以(3)对1≥n 的正整数都成立,即(1)对1≥n 的正整数都成立. (20分)。

广东省高州一中2009-2010学年高一学科竞赛数学

广东省高州一中2009-2010学年高一学科竞赛数学

高一数学竞赛试题一、单选题(8×5′=40′)1、已知集合{}27A x x =-≤≤,{}121B x m x m =+<<-且B ≠∅,若A B A =,则( )(A)34m -≤≤ (B)34m -<< (C)24m << (D)24m <≤2、已知()1,2a =,(),2b x =-且()a ab ⊥-,则实数x 为( ) (A)-7 (B)9 (C)4 (D)-4 3、同时掷两枚骰子,得到的点数和为6的概率是( ) (A)512 (B)536(C)19 (D)51840y m -+=与圆22220x y x +--=相切,则实数m 等于( )(C)--5、函数2sin 24y x π⎛⎫=- ⎪⎝⎭的一个单调递减区间是( )(A)37,88ππ⎡⎤⎢⎥⎣⎦(B)3,88ππ⎡⎤-⎢⎥⎣⎦(C)35,44ππ⎡⎤⎢⎥⎣⎦ (D),44ππ⎡⎤-⎢⎥⎣⎦6、一个与球心距离为1的平面截球所得圆面面积为π,则球的表面积为( )(A) (B)8π(C) (D)4π7、直线210x y -+=关于直线1x =对称的直线方程是( ) (A)210x y +-= (B)210x y +-= (C)230x y +-= (D)230x y +-=8、已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,则()6f 的值为( ) (A)-1 (B)0 (C)1 (D)2 二、填空题(6×5′=30′)9、方程()21033log 1log xx-=+的解是 。

10、正方体的内切球与其外接球的体积之比为 。

11、过点()1,3-且平行于直线230x y -+=的直线方程为 。

12、方程sin 10xx =有 个根。

13、已知()1sin 2πα+=-,则cos α= 。

14、已知()1,2a =,()2,3b =-,则a 在b 上的射影长 。

广东省高州市十校联考2010-2011学年九年级数学第一学期期末试卷 北师大版

广东省高州市十校联考2010-2011学年九年级数学第一学期期末试卷 北师大版

(第1题)2010—2011学年度第一学期期末考试试卷九年级数学(快)说明:本试卷六大题,共8页。

满分为120分。

考试时间120分钟。

答题卡1.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点, 则AP 长不可能...是( ) A .2.5 B .3 C .4 D .5 2. “a 是实数, ||0a ≥”这一事件是 ( )A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件3. 若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是( )A. 矩形B. 正方形C. 菱形D. 正三角形 4. 如图,在△ABC 中,∠C=90°,AC=8cm, AB 的垂直平分线MN 交AC 于D ,连结BD ,若53cos =∠BDC ,则BC 的长是( )A .4cmB .6cmC .8cmD .10cm5. 在一次夏令营活动中,小霞同学从营地A 点出发,要到距离A 点1000m 的C 地去,先沿北偏东70︒方向到达B 地,然后再沿北偏西20︒方向走了500m 到达目的地C ,此时小霞在营地A 的( )A.北偏东20︒方向上B. 北偏东30︒方向上C.北偏东40︒方向上D.北偏西30︒方向上6.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A .(cmB .(cmC .22cmD .18cm 7.反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 8.如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( )A .aB .a 54C .a 22D . a 239.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线 n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 点C 的横坐标最小值为3-,则点D 的横坐标最大值为 A .-3 B .1 C .5 D .810. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 征数为 [2m ,1 – m , –1– m ] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; 时,y 随x 的增大而减小; ④ 当m ≠ 0其中正确的结论有( )A. ①②③④B. ①②④C. ①③④一、精心选一选(本大题共10小题,每小题3分,共30分。

2010年大学生数学竞赛试题及解答

2010年大学生数学竞赛试题及解答

(1)计算积分222,0,0.xxee dx xαβαβ--+∞->>⎰解 方法一 直接利用分部积分法得222xxee dx xαβ--+∞-⎰221()()xxeedx xαβ+∞--'=--⎰221(22)()xxxexe dx xαβαβ+∞--=--+-⎰22(22)xxeedx αβαβ+∞--=--⎰)22(2πβπα⋅-⋅-=)(αβπ-=;方法二 不妨设0αβ<<,由于dyexe e yxxx⎰---=-βαβα2222,而积分2yxe dx +∞-⎰关于y 在[,]αβ上一致收敛,故可交换积分次序222xxee dx xαβ--+∞-⎰2yxdx edy βα+∞-=⎰⎰2yxdy edxβα+∞-=⎰⎰dy y⎰=βαπ21)(αβπ-=;方法三 将0β>固定,记222(),0xxee I dx xαβαα--+∞-=>⎰ , 可证()I α在(0,)+∞上收敛.设[,),0αδδ∈+∞> , 因为22xxe eαδ--≤,而2xedx δ∞-⎰+0收敛,所以由Weierstrass 判别法知道2xedx α∞-⎰+0对[,)αδ∈+∞一致收敛.所以可以交换微分运算和积分运算的次序, 即222()()xxee I dx xαβαα--+∞∂-'=∂⎰2()xedx α+∞-=-⎰12πα=-.由δ的任意性,上式在(0,)+∞上成立. 所以 ()I C απα=-+,由于()0,,I C βπβ==所以)()(αβπα-=I ,即dx xe exx⎰∞+---0222βα)(αβπ-=.(2)若关于x 的方程211kx x +=,()0k >在区间()0,+∞内有唯一的实数解,求常数k.解:设()211f x kx x=+-,则有()32f x k x'=-,当1320,x k ⎛⎫⎛⎫ ⎪∈ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当132,x k ⎛⎫⎛⎫ ⎪∈+∞ ⎪ ⎪⎝⎭⎝⎭时,()0f x '>. 由此()f x 在132x k ⎛⎫= ⎪⎝⎭处达到最小值,又()211f x kx x=+-在()0,+∞内有唯一的零点,必有1320f k ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭⎝⎭,13322102k k k ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭, 3212331214k ⎛⎫⎛⎫ ⎪+= ⎪ ⎪⎝⎭⎝⎭,22714k ⋅=, 所以233k =.(3)设函数()f x 在区间[],a b 上连续,由积分中值公式,有()()()xaf t dt x a f ξ=-⎰,()a x b ξ≤≤≤,若导数()f a +'存在且非零,求lim x aax aξ+→--.解:()()()()()()()xaf t f a dt x a f f a ξ-=--⎰,()()()()()()21xaaa f t f a dt x af f a x a ξξξ--=⋅----⎰, 由条件,可知()()()1l i m x aaf f a f a ξξ+→+-='-,()()()()()()()()21lim lim 22xax ax af t f a dtf x f a f a x a x a +++→→--'==--⎰,故有1lim 2x aax aξ+→-=-.二、设函数()f x 在0x =附近可微,()00f =,()0f a '=,定义数列22212n n x f f f n n n ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证明:{}n x 有极限并求其值.证明:由导数的定义, 对于任意0ε>,存在0δ>,当0||x δ<<时,有()f x a xε-<.于是()()()a x f x a x εε-<<+,()0x δ<<从而,当1nδ->时,有21k nnδ<<,()()222kk k a f a n n n εε⎛⎫-<<+ ⎪⎝⎭,其中1,2,,k n = .对于上式求和,得到()()2211nnn k k k k a x a nnεε==-<<+∑∑,即()()1122n n n a x a nnεε++-<<+,令n →∞,有()()11lim lim 22nn n n a x x a εε→∞→∞-≤≤≤+,由0ε>的任意性,得到 lim 2n n a x →∞=.设()f x 在()1,1-上有定义,在0x =处可导,且()00f =.证明:()210lim2nn k f k f n →∞='⎛⎫= ⎪⎝⎭∑.三、设函数f在[0,)+∞上一致连续,且对任何[0,1]x ∈,有()0limn f x n →∞+=,证明:()0lim x f x →+∞=。

广东省高州市—度七年级数学第一学期学科联赛试卷 人教版

广东省高州市2009—2010学年度第一学期学科联赛七年级数学试卷【温馨的提示】时间:120分钟 全卷共_6 _大题 共_ 8 _页 满分:120分温馨提示:亲爱的同学,当你打开这份试题时,请静下心来仔细阅读题目,明确每道题的答题要求。

对于个别稍难的题目,你也不必着急,只要用心多想一想,问题就会迎刃而解。

当你写下每一个答案时,请尽1、已知54320a b c d e <,下列判断一定正确的是( ) (A )0abcde <(B )20ab cde <(C )240ab cd e < (D )40abcd e <2、如图1,老年人活动中心麻将馆门口的拐角处放着一个招牌,这个招牌是由 三个特大号的骰子摞在一起而成的,如图1所示,其中可看见7个面,而11个面是看不到的,则看不见的面其点数总和是( ) A.4B.41C.22D.213、若20002020002000⨯=+x ,则x 等于( ).(A)20或21- (B)20-或21 (C)19-或21 (D)19或21-4、2009减去它的21,再减去剩余的,31再减去剩余的,41……依次类推,一直减去剩余的20091则最后剩下的数是( ) (A )20091 (B )1 (C )20081(D )无法计算 5、如图,在数轴上有A 、B 、C 、D 、E 五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE ,若A 、E 两点表示的数的分别为 13-和12,那么,该数轴上上述五个点所表示的整数中,离线段AE 的中点最近的整数是…………………( )(第5题)A 、2-B 、1-C 、0D 、26、已知关于023,034,045=+-=+-=+-c x b x a x x 有两个解无解的方程只有一个解,则化简图1ABCDEb a bc c a ---+-的结果是…………………( )A 、a 2B 、0C 、c 2D 、b 2 7、如右图,把10个相同的小正方体按如图的位置堆放,它的外表会有若干个小正方形,如果将图中标有字母P 的一个小正方体搬去,这时外表含有的小正方形的个数与搬动前相比( )A .不增不减B .减少一个C .减少2个D .减少3个8、若“学”、“科”、“能”、“力”这四个汉字中每个汉字分别代表一个非零的个位数,对于运算符号“∆”有:学科能力∆1=科学能力;学科能力∆2=能力科学,那么1234∆1∆2 = . A. 4312 B. 4321 C. 3412 D. 34219、当3=x 时,代数式13++bx ax 的值为2009,则当3-=x 时,代数式13++bx ax 的值为( )A 、2008-B 、2008C 、2009D 、2007- 10、20092008的末位数字是…………………( )A 、8B 、6C 、4D 、2二、耐心填一填(每小题3分,共15分)11、若2x =是方程122x k kx ++=-的解, 则200820072...kk k +++k +=_________12、已知1=a ,2=b ,3=c ,且a >b >c ,则c b a -+= 13、观察这一列数:43,75-, 910, 1713-, 3316,1965-…依此规律第n 个数是__________ 14、一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是15、根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有 ________个点.三、细心做一做(每小题5分,共15分)(1)(2)(3)(4)(5)……第14题 主视图左视图16、数学家发明了一个魔术盒,当任意实数对),(b a 进入其中时,会得到一个新的实数:12++b a 。

广东省高州市2009-2010学年八年级数学上学期学科联考试题人教版

2009-2010学年度第一学期学科联考数学试卷友情提示:HI ,亲爱的同学,你好!今天又是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!请注意:1.考试时间120分钟,全卷共6页五大题合28小题,满分120分. 2.答题时要冷静思考、仔细检查.预祝你取得优异成绩! 题号 一 二 三 四 五 总分 得分一、精心选一选,慧眼识金!(本大题共10小题. 每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1、下列各式中,正确的是()(A)2)2(2-=- (B) 9)3(2=- (C) 393-=- (D) 39±=±2、下列计算中,错误的是 ()A 、(3-)2=3 B 、228=- C 、221=2 D 、211-=1+2 3、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)4、已知M (a ,b )和N (2,8)关于y 轴对称,则( ) A .a =2,b =-8 B .a =-2,b =8 C .a =-2,b =-8 D .a =8,b =25、如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )(A )400 cm 2(B )500cm 2(C )600cm 2(D )4000cm 26、足球比赛的记分规则是: 胜一场记3分, 平一场记1分, 负一场记0分. 一支中学生足球队参加了15场比赛, 负了4场, 共得29分, 则这支球队胜了 ( )(A) 5场 (B) 7场 (C) 9场 (D) 11场得分评卷人A BCD LQ M P R KST7、如图4,矩形纸片ABCD 的边AD =9,AB =3,将其折叠,使点D 与点B 重合,则折叠后DE 的长与折痕EF 的长分别为( ) A .4,10B .5,10 C .4,23D .5,238、如图5,把正方形ABCD 沿着对角线AC 的方向移动到正方形A ′B ′C ′D ′的位置,它们重叠的部分(图中阴影部分)的面积是正方形ABCD 面积的一半.若AC =2,则正方形移动的距离AA ′是( ) A .2-B .2 C .2-D .以上都不对9、把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,找开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A .(10213)+cmB .(1013)+cmC .22cmD .18cm10、如图:矩形花园ABCD 中,a AB =,b AD =,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。

缅茄杯数学试题及答案

缅茄杯数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个圆的半径是5,那么它的周长是多少?A. 10πB. 20πC. 30πD. 40π答案:B3. 如果一个数的平方等于16,那么这个数是?A. 4B. -4C. 4或-4D. 16答案:C4. 一个等差数列的首项是3,公差是2,那么第6项是多少?A. 15B. 17C. 13D. 11答案:A5. 一个三角形的三个内角分别是40度、60度和80度,这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:A二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可以是________。

答案:5或-57. 一个长方体的长、宽、高分别是2、3和4,那么它的体积是________。

答案:248. 一个分数的分子是7,分母是14,化简后是________。

答案:1/29. 一个数列的前三项是2、4、6,这个数列是________数列。

答案:等差10. 一个圆的直径是10,那么它的面积是________。

答案:25π三、解答题(每题10分,共30分)11. 证明:对于任意实数x,x²≥0。

证明:根据实数的性质,实数的平方总是非负的。

设x为任意实数,x²表示x乘以自身,由于实数乘法的结合律和交换律,x²总是非负的。

因此,对于任意实数x,x²≥0。

12. 解不等式:3x + 5 > 14。

解:首先将不等式两边同时减去5,得到3x > 9。

然后将不等式两边同时除以3,得到x > 3。

所以,x的解集是所有大于3的实数。

13. 计算:(2 + 3i)(1 - 4i)。

解:根据复数乘法的规则,我们有:(2 + 3i)(1 - 4i) = 2(1) + 2(-4i) + 3i(1) + 3i(-4i)= 2 - 8i + 3i - 12i²= 2 - 5i + 12(因为i² = -1)= 14 - 5i四、应用题(每题15分,共30分)14. 一个农场主有一块长100米,宽50米的长方形土地。

高州市2009-2010学年度第一学期七年级数学联赛试卷答案

七年级数学试卷答案11、0 12、2或0 13、1312)1(1++-+n n n 14、62cm 15、12+-n n16、答案:将实数对)2,3(-放入其中得到实数m =1212)3(2=++-,… 3分再将)2,12(-放入后得到的实数为:1431)2(122=+-+…… …………5分17、答案:由x m mx )2(82+=- 解得28-=m x ,……………… 2分因为x 是正整数,则2-m 是6的正因数,故2-m 的值只能取以下1,2,4,8,……4分 那么整数m 的值是3,4,6,10…………………………………………………………5分18、解:如图所示(主视图3分,左视2分)19、答案:由021=-+-ab a 知01=-a ,得1=a …………1分02=-ab 得2=b …………………………………………2分 将2,1==b a 代入方程,有10042009200797755331=⨯++⨯+⨯+⨯+⨯xx x x x (4分1004)200920071971751531311(=⨯++⨯+⨯+⨯+⨯ x … 5分 1004)2009120071(21)9171(21)7151(21)5131(21)311(21=⎥⎦⎤⎢⎣⎡-+-+-+-+- x 6分 1004)2009120071917171515131311(21=-+-+-+-+- x 1004)200911(21=-x ……………………… 7分 10042009200821=⨯x ∴2009=x ………………………………… 8分20、解:⑴若这个整数为1,则(1×2+7)×3-21=6;故,小明所说的结论正确; …………………………… 3分 ⑵设这个整数为a ,则(a ×2+7)×3-21 ………………………………………………5分 =3(2a +7)-21……………………………………………………6分 =6a +21-21=6a ………………………………………… 7分 ∴6a 一定是6的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高州市2010年学科竞赛
数 学 答 案
一、精心选一选:(本大题共10小题,每小题3分,共30分。

每小题给出四个答案,其中只有
11.120 12.2(3)x y - 13.40 14.20- 15. 12
三、细心做一做:(本大题共5小题,每小题7分,共35分。


16.解:=原式……………………1分
…………………………………………2分
3分
=a b
a b +-………………………………………………4分
当44a b ==时
原式5分
…………………………………………6分
=7分
17.
(2分) (2分) (3分)
(注:其他正确的分割方法相应给分。


18.解:作DE ⊥BC 于E ,DF ⊥AB 于F ,……………………1分
则30,60DCE ADF ∠=∠=
四边形DEBF 为矩形,……………………………………2分
在,1000500Rt CDE CD DE =∴= 中米米
500FB ∴=米…………………………3分
45,30ACB DCB ∠=∠= 15ACD ∴∠=
90B ∠= 又 45CAB ∴∠=
又453015CAD CAB DAF ∠=∠-∠=-=
ACD CAD ∴∠=∠
1000AD CD ∴==米………………………………4分 在3,sin 6010005003()2
Rt ADF AF AD =⋅=⨯= 中米…………5分 …………………………6分
答:山高AB 为50031)米……………………………………7分
19、解:设甲工种招x 人,两工种每月要付工资总额为y 元,则乙工种招(150-x )人, (1)

依题意得1502,x x -≥………………2分
得050x ≤≤…………………………3分
10015015x ≤-≤………………4分
即:甲工种招工不多于50人,乙工种不少于100人时,每月所付工资总额最少。

……5分 又8001000(150)150000200(050)y x x x x =+-=-≤≤
50,140000(x y ∴==当时最小元)………………………………6分
答:甲工种招人不多于50人,乙工种招人不少于100人时,
工资总额最少。

最少工资总额是140000
元。

………………………………7分
20、次数 6 12 15 18 20 25 27 30 32 36
人数 1 1 7 18 10 5 2 2 2 2
(2)答:测试标准应是绝大多数学生经努力能达到。

这一
次求样本的中位数和众数都是18,且每分钟17次以
上的同学占了82%,所以定16至18次为及格标准较
合适。

(16、17、18均算正确)…………………7分
(注:此问酌情给分)
四、沉着冷静,周密考虑:(本大题共5小题,每小题8分,共40分)
21、(1)①、(21)(32)x x +-………………1分 2132-⨯…………………………2分
②、(1)(32)x x +-………………3分 21,3
-………………4分 (2)解方程两边都乘以2(3)x -,得22(3)20x x -+=, 化简得42320x x -+=……5分
设2y x =,则原方程为2320y y -+=,解这个方程得121,2y y ==………………6分 即22
12x x ==或
解这两个方程得12341,1,x x x x ==-==…………………………7分
经检验,12341,1,x x x x ==-=均为原方程的根……………………8分
(注:不同方法可相应给分。


22、解:(1)正确。

……………………1分
如图所示,在,ABC A B C AB A B '''''= 与中, ,AC A C AD A D ''''=⋅分别为BC 、B C ''
上的中线,且AD A D ''=,
求证:ABC A B C '''≅ 。

……………………2分
证明:D 、D '分别为BC 、B C ''的中点,把ACD A C D ''' 和分别绕D 、D '点按顺时针旋转180
可得到ABE 与A B E ''' ………………………………………………3分 ,,AB A B BE B E AE A E ''''''∴===
,,ABE A B E BAE B A E ''''''∴≅∴∠=∠ ……………………4分
同理可得,,CAD C A D BAC B A C ''''''∠=∠∴∠=∠…………………5分
ABC A B C '''∴≅ ………………………………………………6分
(2)不正确。

…………7分,如三边长分别为8,12,18和12,18,27的两个三角形显然相拟,
且有5个元素相等,但它们不全等。

……………………8分
23、解:(1)男、女两队行进的速度比为3:2;…………………………1分
(2)设山脚距山顶的路程为x 米,依题意得3,6002
x x =-………………2分 解得1800x =(米)……………………………………………………3分
经检验,1800x =是所列方程的根。

答:山脚距山顶1800米;………………………………………………4分
(3)可提出问题“B 处距山顶小于多少米?”或“男队从B 处下到山脚的路程要超过多少米?”…………………………………………………………5分
按前面的问题,设B 处与山顶路程为a 米(0)a >,男队速度为3k 米/时,女队速度为2k 米/时,依题意得60032a a k k
-<,……………………………………6分 解得:360a <(米)……………………………………………………………7分
答:B 处与山顶的路程小于360米。

………………………………………8分
24、(1)证明:连结BE , AE 为直径,90ABE ∴∠=
………………1分 AD 是ABC 的高,ACD AEB ∠=∠…………………………2分 Rt ABE ∴ ∽Rt ADC ……………………………………3分 ,AB AE AB AC AE AD AD AC
∴=∴⋅=⋅……4分 (2)要使AB ⋅AC=AE ⋅AD 成立,
须增加条件BAE CAD ∴∠=∠……5分
此时的图形有两种情况,
如图a 、图b ,在图a 中连结BE ,
可得ABE ∽ADC ,推得
AB ⋅AC=AE ⋅AD …………………7分
图b 中同理可得…………………8分
(增加条件为CAE BAD ∠=∠也正确)
25、解:(1)依题意a 的取值必须满足2(21)4(1)0(1)0
a a a a a ⎧+-+>⎨+≠⎩………………1分
解得a 为不等于0和1-的任意实数;………………………………2分
(2)设A 、B 两点坐标为1(,0)A x 、2(,0)B x ,则12,x x 是方程2(1)(21)10a a x a x +-++=的
两个不等实根………………………………………………3分
则AB 的长为12||x x -= 1212211,(1)(1)
a x x x x a a a a ++==++ ………………………………4分
代入①式得1|||(1)|
AB a a ==+……………………5分 1||(1)
a AB a a ∴=+ 为正整数,…………………………………………6分 (3)当a 依次取1,2, …,2010时,所截得的线段长分别为111||12A B =
⨯,221||,23A B =⨯ …,201020101||20102011
A B =⨯,………………………………7分
1111112010(1)()()12232010201120112011
=-+-+⋅⋅⋅+-=-=…………8分。

相关文档
最新文档