八年级数学上册第七章平行线的证明4平行线的性质教案(新版)北师大版

合集下载

北师大版初中数学八年级上册《第七章 平行线的证明 4 平行线的性质》 优课教案_0

北师大版初中数学八年级上册《第七章 平行线的证明 4 平行线的性质》 优课教案_0
学生自主完成,教师评讲。
变式2:如图,AB∥DC,GM、HN分别∠BGH、∠DHF的平分线,GM、HN有什么位置关系?为什么?
变式3:如图,AB∥DC,GM、HM分别是∠AGH,∠GHC的平分线,GM、HM有什么位置关系?为什么?
鼓励学生积极思考,师生共同归纳总结三个结论。并强调:变式2和变式3实则证明了两个结论或是命题。
四、课前任务设计
学生课前的准备:1.认真看完所有视频,回顾平行线的性质。2看完视频后完成课前检测,让学生了解自己掌握知识的程度。
教师提供的资源内容:关于这堂课的微课和课前学习单
五、课上任务设计
第一环节:复习巩固
问题1:判别直线平行的条件有哪些?
问题2:平行线的性质有哪些?
思考:平行线的判定和性质有什么样的关系?(让学生初步感受互逆的思维过程)
①教师要求学生独立思考,并举手发言。
②引导学生分析如何证明一个命题。
③老师板书证明过程。
(师生互动)归纳命题证明的基本步骤:
审、画、写、证。
(2)“平行+角平分线”问题(巩固提高)
变式1:求证:两条平行线被第三条直线所截,内错角的平分线相互平行。
(放手学生大胆思考,大胆展示,以突破命题证明这个难点。)
2.师生一起总结:“平行+拐点”问题辅助线作法:过拐点作平行线、过拐点作截线
B
BE
AE
B
A
变式:如图,AB∥CD,试说明∠B,∠D,∠E之间的大小关系。
E
A
D
CE
C
D
E
E
B
A
AC
BC
D
C
DC
C
学生讨论得出结论,巩固辅助线的作法。
第四环节:归纳小结,反思提高

北师大版初中数学八年级上册《第七章平行线的证明4平行线的性质》优课教案_1

北师大版初中数学八年级上册《第七章平行线的证明4平行线的性质》优课教案_1

平行四边形的性质(1)说课稿1、说教材一、教材分析四边形是日常生活中常见的一种图形。

它与其它他众多的几何图形一起构成了多姿多彩的世界。

平行四边形作为最基本的几何图形,作为“空间与图形”领域中研究的主要对象,它在实际生产和生活中有着广泛的应用,这不仅表现在日常生活中有很多平行四边形的图案,还包括其性质在生产生活各领域的实际应用。

平行四边形的性质和定义是研究线段和角相等的一种重要工具,它为探究其它特殊四边形的性质奠定了基础,学生已经学习过三角形、平移与旋转及全等的相关知识,为本节课的学习奠定了基础。

本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用,平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路。

本节课的主要内容是平行四边形的概念和性质,平行四边形是一种特殊的四边形,特殊在两组对边分别平行。

由于这个特殊性导致它具有一般四边形不具有的特殊性质:这些特殊的性质有助于我们解决许多实际生活中的问题,要利用这些特殊的性质的前题是判定这个四边形是个特殊的四边形,因此研究平行四边形的三个切入点是:定义、性质、判定二、教学目标1、知识与技能目标:(1)掌握平行四边形的定义及相关概念.(2)掌握平行四边形的对边平行且相等、对角相等,邻角互补,对角线互相平分的性质,初步运用这些性质进行有关论证和计算。

2、过程与方法目标:(1)引导学生通过实践操作、探究发现平行四边形的性质,学会在实践中思考、观察、发现,培养学生的动手实践能力。

(2)知道解决平行四边形问题的基本思想是转化为三角形问题来解决,渗透转化思想。

(3)通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力。

3、情感、态度与价值观目标:1)通过活动探究、合作交流培养学生严谨科学的学习态度和勇于探索、勇于创新的精神,增强合作交流的意识。

北师大版数学八年级上册7.4 平行线的性质教案

北师大版数学八年级上册7.4 平行线的性质教案

4平行线的性质●复习导入问题:上节课我们通过推理证得了平行线的判定定理,要证明两条直线平行,有哪些方法?一个基本事实是__同位角相等__,两直线平行;两个定理分别是__内错角相等__,两直线平行;__同旁内角互补__,两直线平行.通过平行线判定的基本事实和判定定理,我们知道它们的条件是角的大小关系,结论是两直线平行.如果我们把它们的条件和结论互换,那么得到的命题是真命题吗?这节课我们就来研究“平行线的性质”.【教学与建议】教学:教师提出问题,复习回顾上节课的重点内容,迅速将学生的注意力集中于课堂.建议:让学生回顾知识,为本节课的学习做好铺垫.●悬念激趣在数学课上,好玩的张明同学不小心把一把长方形直尺折断了,善于思考的同桌想考考张明就拼成如图所示的图形.点E,D,B,F在同一条直线上,若∠ADF=55°,则∠DBC的度数为多少?∠F呢?你能帮张明同学解决这些问题吗?这些问题与我们将要学习的知识有关,这节课我们就来研究“如果两条直线平行,那么角之间会有什么关系”这一问题.【教学与建议】教学:通过趣题导入,引出“两条直线平行,内错角、同旁内角分别有怎样的大小关系”,激发学生探究知识的欲望.建议:在学生操作时,教师要引导学生进行思考、分析.命题角度1利用平行线的性质解决与三角尺、直尺有关的问题解决此类问题的关键是从图形中找准“三线八角”中对应的同位角、内错角和同旁内角.【例1】(1)如图,把一块含有45°角的直角三角尺两个顶点放在直尺的对边上,若∠1=20°,则∠2的度数是(C)A.15°B.20°C.25°D.30°[第(1)题图][第(2)题图](2)将一把直尺和一块含30°和60°角的三角尺ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为__10°__.命题角度2利用平行线的性质解决折叠问题解决折叠问题的关键是找折叠前后的对应元素,然后利用对应元素的相等关系解决问题.【例2】将一张矩形纸片折叠成如图所示的图形,若∠CAB=30°,则∠ACB的度数是(D)A.45°B.55°C.65°D.75°命题角度3平行线性质与判定的综合运用以平行线为背景的角度等量关系判定,关键是要抓住“三线八角”中角之间的数量关系,进而由角的数量关系判断直线的关系.【例3】(1)如图,直线a∥b,∠1=65°,∠2=140°,则∠3等于(B)A.100°B.105°C.110°D.115°[第(1)题图][第(2)题图](2)如图,因为DF∥AC(已知),所以∠D+__∠CBD__=180°(两直线平行,同旁内角互补).因为∠C =∠D(已知),所以∠C+__∠CBD__=180°(等量变换),所以DB∥EC(同旁内角互补,两直线平行).高效课堂教学设计1.结合图形用符号语言来表示平行线的三条性质的条件和结论.2.总结归纳出证明的一般步骤.▲重点平行线的性质的探索及应用.▲难点运用平行线的性质和判定来解决问题.◆活动1创设情境导入新课(课件)现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补判定两条直线平行这三种方法.在这一节课里,大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?这是本节课我们将要学习的内容.◆活动2实践探究交流新知【探究1】证明:两直线平行,同位角相等.已知:如图,直线AB∥CD,∠1和∠2是直线AB,CD被直线EF截出的同位角.求证:∠1=∠2.【思考】若直接用基本事实能否证明出来?证明:假设∠1≠∠2,那么我们可以过点M作直线GH,使∠EMH=∠2,如图所示.根据“同位角相等,两直线平行”,可知GH∥CD.又因为AB∥CD,这样经过点M存在两条直线AB和GH都与直线__CD__平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”相矛盾.这说明∠1≠∠2的假设不成立,所以∠1=∠2.【探究2】证明:两直线平行,内错角相等.(1)多媒体展示图形;(2)如图,直线l1∥l2,∠1和∠2是直线l1,l2被直线l截出的内错角.求证:∠1=∠2.证明:∵l1∥l2(已知),∴∠1=∠3(两直线平行,同位角相等).又∵∠2=∠3(对顶角相等),∴∠1=∠2(等量代换).【探究3】证明:两直线平行,同旁内角互补.(1)多媒体展示图形;(2)已知:如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角.求证:∠1+∠2=180°.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,内错角相等).∵∠1+∠3=180°(平角的定义),∴∠1+∠2=180°(等量代换).【归纳】证明文字叙述类命题的一般步骤:第一步:先根据命题的条件即已知事项画出图形,再把命题的结论即求证的内容在图上标出符号,还要根据证明的需要在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步:根据条件、结论、结合图形,写出已知、求证.第三步:经过分析,找出由已知推出求证的途径,写出证明过程.◆活动3开放训练应用举例【例1】(教材P176例题)已知:如图,b∥a,c∥a,∠1,∠2,∠3是直线a,b,c被直线d截出的同位角.求证:b∥c.【方法指导】平行线的性质.证明:∵b∥a(已知),∴∠1=__∠2__(两直线平行,__同位角__相等).∵c∥a(已知),∴∠3=__∠1__(两直线平行,__同位角__相等).∴∠2=∠3(等量代换)∴b∥c(__同位角__相等,两直线__平行__).【例2】如图,已知∠ABC+∠C=180°,BD平分∠ABC.∠CBD与∠D相等吗?请说明理由.【方法指导】由∠ABC+∠C=180°得到AB∥CD,再根据AB∥CD得到∠D=∠ABD.最后由角平分线得到结果.解:相等,理由:∵∠ABC+∠C=180°,∴AB∥CD.∴∠D=∠ABD.∵BD平分∠ABC,∴∠CBD=∠ABD.∴∠CBD=∠D.◆活动4随堂练习1.如图,已知直线DE经过点A,∠1=∠B,∠2=52°,则∠3的度数为(A)A.52°B.38°C.130°D.80°(第1题图)(第2题图)2.如图,已知直线a⊥c,b⊥c,∠1=140°,那么∠2的度数是(A)A.40°B.50°C.60°D.140°3.如图,在梯形ABCD中,AD∥BC,∠D=120°,∠DCA=20°,求∠BCA和∠DAC的度数.解:∠BCA=40°,∠DAC=40°.◆活动5课堂小结与作业学生活动:这节课学习了两条直线平行,同位角相等,内错角相等,同旁内角互补.教学说明:对这节课所学内容,学以致用.作业:课本P177习题7.5中的T1、T2、T4.通过生活中的事例,让学生感受数学来源于生活,通过问题的设置,训练学生语言表达的准确性和简洁性,为学生提供充分参与数学活动和探索的机会,让学生在轻松愉快的学习中掌握证明的步骤和格式.。

北师大版八年级上册7.4《平行线的性质》教案

北师大版八年级上册7.4《平行线的性质》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何图形中有着重要的地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过观察教室内的墙壁和地板,我们可以发现平行线的应用,以及它们如何帮助我们理解和构造空间。
关于学生小组讨论的部分,我觉得整体效果还是不错的。学生们能够积极参与,提出自己的观点,也能在讨论中互相学习。但我也注意到,有些学生在讨论中比较沉默,可能是因为性格原因或者是缺乏自信。在今后的教学中,我要关注这些学生,鼓励他们大胆发表自己的看法,增强他们的自信心。
最后,总结回顾环节,我觉得可以进一步优化。在今后的课堂中,我可以尝试让学生来总结今天学到的知识点,这样既能检验他们对知识的掌握程度,也能提高他们的表达能力。同时,我要提醒自己在这个环节中加强对学生的反馈,了解他们在学习过程中的困惑和问题,并及时给予解答。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如铁轨、黑板的边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
-举例:给定两条平行线和一条横截线,运用性质计算未知角度或线段长度。
2.教学难点
-理解平行线性质的推理过程:学生需要通过观察和操作,理解并掌握平行线性质的推理过程,这需要较强的逻辑思维能力。
-难点解析:如何引导学生从特殊实例中发现规律,进而推广到一般情况,并用严谨的几何语言表达出来。
-识别和应用平行线的条件:在实际问题中,学生需要能够识别哪些线段或角度与平行线有关,并运用性质来解决问题。

北师大版八年级数学上册第七章平行线的证明单元教学设计

北师大版八年级数学上册第七章平行线的证明单元教学设计
4.让学生掌握平行线与相交线的区别与联系,培养学生在实际问题中发现平行线、运用平行线的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在探索、发现、总结平行线性质的过程中,培养观察、分析、归纳的能力。
2.引导学生运用演绎推理方法,从特殊到一般,逐步掌握平行线的判定方法,提高学生的逻辑思维能力。
二、学情分析
八年级学生在经过之前的学习,已经具备了一定的几何基础,对几何图形有一定的认识和理解。在此基础上,学生对平行线的概念及性质已有初步的了解,但在判定方法、性质应用等方面仍需加强。此外,学生在演绎推理、问题解决等方面的能力有待提高。因此,在教学过程中,应关注以下学情:
1.学生对平行线性质的理解程度,注重引导学生从直观到抽象,逐步提高对平行线性质的认识。
c.解决实际问题,运用平行线性质求解。
2.学生独立完成练习题,教师巡回指导,对学生的解答进行点评,及时纠正错误,巩固所学知识。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,让学生用自己的话总结平行线的性质、判定方法及其在实际问题中的应用。
2.教师强调本节课的重点知识,提醒学生注意平行线性质及判定方法的灵活运用。
2.教师提出问题:我们已经学过直线、线段、射线等基本概念,那么如何判断两条直线是否平行?这节课我们就来探讨这个问题。
(二)讲授新知
1.教师引导学生回顾同位角、内错角、同旁内角等概念,为后续学习平行线的判定方法打下基础。
2.教师通过几何画板演示,引导学生观察并总结出平行线的性质,如同位角相等、内错角相等、同旁内角互补等。
(二)教学设想
1.创设情境,激发兴趣:
通过生活中的实例,如铁轨、教室墙壁等,引出平行线的概念,激发学生对平行线性质探究的兴趣。

北师大版八年级数学上册:7-4平行线的性质(教案)

北师大版八年级数学上册:7-4平行线的性质(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线性质的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
4.学会运用平行线性质和判定方法进行图形的证明和构造。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力,通过探索平行线的性质,使学生能够理解和掌握几何图形的内在规律,提高推理能力;
2.培养学生的空间想象力和几何直观,通过平行线性质的探究,使学生能够在脑海中构建几何图形,培养空间观念;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何图形中具有重要作用,可以帮助我们解决角度和图形线在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调平行线的性质,如同位角相等、内错角相等、同旁内角互补。对于难点部分,我会通过举例和比较来帮助大家理解。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、重要性质和应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

北师大版八年级上册第七章7.4 平行线的性质(教案)

北师大版八年级上册第七章7.4 平行线的性质(教案)

7.4平行线的性质(教案〕教学目标知识与技能:会根据“两直线平行,同位角相等〞证明“两直线平行,内错角相等〞和“两直线平行,同旁内角互补〞,并能简单地应用这些结论.过程与方法:了解性质定理与判定定理的联系,初步感受互逆的思维过程.情感态度与价值观:进一步理解证明的步骤、格式和方法,开展演绎推理能力.教学重难点【重点】理解和简单应用平行线的性质定理.【难点】运用公理、定理进行简单的推理,以及用几何语言进行表述.教学准备【教师准备】问题探索和例题的教学用图.【学生准备】复习平行线的判定定理.教学过程一、导入新课导入一:师:同学们,上课前,老师在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如下图的一局部,如果不能同时反向延长CD,EF的话,你能否利用所学的数学知识测出∠A的度数?(多媒体展示)(学生思考,互相交流解决方法)生1:根据两直线平行,同位角相等的知识,可以过C点作FE的平行线,构造∠A的同位角,那么可以测出∠A的度数.生2:根据两直线平行,内错角相等的知识,也可以过C点作FE的平行线,构造∠A的内错角.师:同学们利用平行线的性质解决这个问题的想法太棒了!那么,你知道这些性质是如何证明的吗?这节课就让我们来探究这个问题.(板书课题:4平行线的性质)[设计意图]通过趣味题导入,激发学生的探究知识的欲望,点燃学生思维的火花,使其进入最正确的学习状态.导入二:如下图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐30°,那么第二个弯应朝什么方向,才能不改变原来的方向?[处理方式]先给学生2分钟的时间自己探究,得出结论后小组讨论,最后选代表发言.学生观察,小组讨论,交流问题并发表见解,教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题.在学生探究讨论的过程中,少局部学生可能对题意理解不透彻,此时教师可以结合实际问题加以引导,引导性语言如下:(1)不改变方向,在数学中的理解应是什么;(2)在这个问题中包含了什么问题;(3)如何将它转化为数学问题.[设计意图]通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实生活,效劳于现实生活,同时也调动了学生的积极性,提高了学生的兴趣.二、新知构建[过渡语]上节课我们通过推理证得了平行线的判定定理,知道它们的条件是角的大小关系,其结论是两直线平行.如果我们把平行线的判定定理的条件和结论互换,那么得到的命题是真命题吗?(1)、两直线平行,同位角相等思路一活动内容:画出直线a的平行线b,结合画图过程思考:画出的平行线被第三条直线c所截的同位角的关系是怎样的?[处理方式]本节证明平行线的性质定理,将性质定理“两直线平行,同位角相等〞的证明作为选学内容,因此,第一局部以自学阅读的形式呈现,自学教材第175页内容(包括证明过程),学有余力的学生可以思考探究:应用平行线的性质定理“两直线平行,同位角相等〞可以得出什么?[设计意图]学生在自学的过程中,理解平行线的性质,并明确两直线平行的性质定理“两直线平行,同位角相等〞是推理论证后面两个性质定理的根底;“同位角相等〞是在“两直线平行〞的前提下才成立的,是平行线特有的性质.要防止一提到同位角就以为其相等的错误.思路二师:我们先来证明定理:两直线平行,同位角相等.你能否发现定理的条件是什么?生:两条平行直线被第三条直线所截.师:结论是什么?生:同位角相等.师:证明命题,要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为以下形式.【课件展示】:如下图,直线a∥b,∠1和∠2是直线a,b被直线c所截出的同位角.求证:∠1=∠2.请同学们自主学习教材第175页“两直线平行,同位角相等〞的证明过程.(学生阅读思考,互相交流心得)师:利用这个定理,你能证明哪些熟悉的结论?思路三【问题】:如下图,直线AB∥CD,∠1和∠2是直线AB,CD被直线EF截出的同位角.求证:∠1=∠2.【思考】(1)∠1和∠2在数量关系上有哪两种情况?(2)过直线外一点有几条直线与这条直线平行?[设计意图]为接下来用反证法证明上述定理作准备.证明:假设∠1≠∠2,那么我们可以过点M作直线GH,使∠EMH=∠2,如下图.根据“同位角相等,两直线平行〞,可知GH∥CD.又因为AB∥CD,所以此时经过点M存在两条直线AB和GH都与直线CD平行.这与根本领实“过直线外一点有且只有一条直线与这条直线平行〞相矛盾.这说明∠1≠∠2的假设不成立,所以∠1=∠2.【思考】为什么不能按如下方法证明上述定理?∵AB∥CD,∴∠2=∠AMN.又∵∠1=∠AMN,∴∠1=∠2.(2)、两直线平行,内错角相等;同旁内角互补(多媒体出示)根据同位角相等可以判定两直线平行,反过来,如果两直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?1.两条平行直线被第三条直线所截,同位角是相等的,那么内错角、同旁内角之间有什么关系呢?∵a∥b(),∴∠1=∠2(两条直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).师:由此我们又得到了平行线有怎样的性质呢?【学生活动】同学们积极举手答复以下问题.教师根据学生表达,给出板书:两条平行直线被第三条直线所截,内错角相等.2.下面请同学们自己推导同旁内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.∵a∥b(),∴∠1=∠2(两直线平行,同位角相等).∵∠1+∠4=180°(邻补角的定义),∴∠2+∠4=180°(等量代换),即两条平行直线被第三条直线所截,同旁内角互补,简单说成“两直线平行,同旁内角互补〞.师:我们知道了平行线的性质,在今后我们经常要用它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵a∥b(),∴∠1=∠2(两直线平行,同位角相等).∵a∥b(),∴∠2=∠3(两直线平行,内错角相等).∵a∥b(),∴∠2+∠4=180°(两直线平行,同旁内角互补).(板书在三条性质的对应位置上)[处理方式]在完成“两直线平行,同位角相等〞的证明后,要求学生自主证明“两直线平行,内错角相等〞“两直线平行,同旁内角互补〞,然后将学生的证明过程整理出来,与教材中的进行比照,感受证明的过程和标准格式.通过对平行线性质的探索,使学生对证明的步骤、格式有更进一步的认识,认识证明的必要性.引导学生使用符号语言,充分调动学生的主动性和积极性,开展学生的符号感.[设计意图]在前面复习引入的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,而应充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣. (3)、两类定理的比拟两条直线被第三条直线所截.平行线的判定平行线的性质条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补[处理方式]引导学生分组探究,并明确平行线的性质定理和判定定理的条件和结论正好相反.性质是由条件“平行〞得到结论“角的关系〞;判定是由条件“角的关系〞得到结论“平行〞.[设计意图]初步建立平行线的性质定理和判定定理之间的联系,初步感受互逆的思维过程.具体为:在判定中,把角相等或互补作为判断两直线是否平行的前提,角相等或互补是,结论是两直线平行,那么判定是由“角相等或互补〞推理论证“两直线平行〞.在性质中,两直线平行是条件,结论是角相等或互补,性质是用来说明两个角相等或互补的,即由“两直线平行〞推理论证“角相等或互补〞.四、平行线的传递性如果两条直线都和第三条直线平行,那么这两条直线也互相平行.:直线a,b,c被直线d所截,且a∥b,c∥b.求证:a∥c.[处理方式]学生自行尝试解答,小组合作探究后,比照不同的解法,并推荐一人答复以下问题,这样的气氛,激发了学生强烈的学习兴趣.[设计意图]对学生中出现的不同解法给予肯定,培养学生的解题能力.议一议:完成一个定理的证明,需要哪些环节?与同伴进行交流.[处理方式]引导学生回忆证明过程,梳理证明活动中的经验,小组尝试整理证明的步骤.教师强调:(1)证明的一般步骤:①理解题意;②根据题意正确画出图形;③结合图形,写出“〞和“求证〞;④分析题意,探索证明的思路;⑤依据寻求的思路,运用数学符号和数学语言条理清晰地写出证明过程;⑥检查表达过程是否正确、完善.(2)证明的思路:①可以从求证出发向追溯,也可以由向结论探索,还可以从和结论两个方向同时出发,互相接近.②对于用文字表达的命题的证明,要先分清命题的条件和结论,然后根据题意画出图形,写出和求证,证明即可.[设计意图]使学生明确证明的步骤与思路,能更好地完成几何证明题.[知识拓展]该定理的主要作用是判断两个角相等,即由两条直线之间的“位置关系〞转化为两角之间的“数量关系〞,能正确找到内错角是证明该定理的重点.如下图,AB∥CD,∠CDE=140°,那么∠A的度数为()A.140°B.60°C.50°D.40°〔解析〕∵∠CDE=140°,∴∠ADC=180°-140°=40°,∵AB∥CD(),∴∠A=∠ADC=40°(两直线平行,内错角相等).应选D.三、课堂总结四、课堂练习1.平行线的性质定理有:,,.答案:两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补2.如下图,∠4=∠C,∠1=∠2,求证BD平分∠ABC.证明:∵∠4=∠C,∴AD∥BC,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3,即BD平分∠ABC.3.如下图,CD∥OB,EF∥AO,求证∠1=∠O.证明:∵CD∥OB,∴∠1=∠2,又∵EF∥AO,∴∠2=∠O,∴∠1=∠O.五、板书设计4平行线的性质探索1两直线平行,同位角相等探索2两直线平行,内错角相等探索3两直线平行,同旁内角互补探索4平行于同一条直线的两条直线平行六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.5第4题.(2)、课后作业【根底稳固】1.如下图,由AB∥CD能得到∠1=∠2的是()2.如下图,AB∥CD,E是AB上一点,ED平分∠BEC交CD于D,∠BEC=100°,那么∠D的度数是()A.100°B.80°C.60°D.50°3.如下图,AB∥CD,DB⊥BC于B,∠2=50°,那么∠1的度数()A.40°B.50°C.60°D.140°4.如下图,AB∥CD,EF分别交AB,CD于M,N,∠EMB=50°,MG平分∠BMF,MG交CD于G,那么∠1等于()A.65°B.50°C.115°D.120°5.如下图,AB∥EF∥DC,EG∥BD,那么图中与∠1相等的角(∠1除外)有()A.6个B.5个C.4个D.2个【能力提升】6.如下图,∠1与∠2互补,∠3=100°,求∠4的度数.7.如下图,直线AB∥CD,直线EF分别交AB,CD于E,F,∠BEF的平分线与∠DFE的平分线交于P.求证∠P=90°.8.如下图,C,P,D在一条直线上,∠BAP与∠APD互补,∠1=∠2.求证∠E=∠F.【拓展探究】9.如下图,AB∥ED,∠CAB=135°,∠ACD=80°.求∠CDE的度数.【答案与解析】1.B2.D(解析:根据角平分线的定义可得∠BED=50°,再根据平行线的性质可得∠D=∠BED=50°.)3.A4.A(解析:综合运用平行线的性质和三角形内角和定理求出∠1的度数.)5.B6.解:∵∠1+∠2=180°,∠2=∠5,∴∠1+∠5=180°,∴a∥b,∴∠3=∠4,∴∠4=100°.7.证明:∵AB∥CD,∴∠BEF+∠DFE=180°.又∵EP,FP分别平分∠BEF,∠DFE,∴∠BEF=2∠PEF,∠DFE=2∠PFE.∴∠PEF+∠PFE=90°,∴∠P=90°.8.证明:∵∠BAP+∠APD=180°,∴AB∥CD.∴∠BAP=∠CPA.∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥FP,∴∠E=∠F.9.解:如下图,过点C作CF∥AB,∵CF∥AB,∴∠A+∠ACF=180°(两直线平行,同旁内角互补).而∠A=135°,那么∠ACF=45°,∴∠FCD=∠ACD-∠ACF=80°-45°=35°.又∵CF∥AB,AB∥ED,∴CF∥DE,∴∠FCD=∠CDE(两直线平行,内错角相等),∴∠CDE=35°.。

新北师大版八年级数学上册《七章 平行线的证明 4 平行线的性质》公开课教案_2

新北师大版八年级数学上册《七章 平行线的证明  4 平行线的性质》公开课教案_2

北师大版数学八年级上册第七章平行线的证明7.4《平行线的性质》教学设计一、教学内容解析平行线的性质是平面几何的一个重要内容,它是研究几何图形位置关系与数量关系的基础,它不但为三角形内角和定理的证明提供了转化的方法,也为今后学习三角形、四边形、平移变换等知识奠定基础.图形的性质是研究图形构成要素之间的关系,它和图形的判定是几何中研究的两个重要方面.平行线的性质是学生对图形性质的第一次系统研究,对今后学习其他图形性质有“示范”的作用.本节还处于证明的起始阶段,从合情推理到演绎推理的过渡要有一个坡度,逐渐让学生掌握证明的要求和格式,认识到证明的严谨性,做到步步有据,发展学生的推理能力。

二、学生学情分析授课班级数学基础较好,在初一年级已经学习了解过平行线的判定和性质。

但是,学生对于平行线的性质的研究过程和研究方法都是陌生的,所以,本节课学生需要在老师的引导下来构建平行线性质的研究过程。

三、教学目标设置1.教学目标知识与技能:掌握平行线的性质定理,会证明“两直线平行,内错角相等(或同旁内角互补)”;了解平行于同一直线的两条直线平行;了解性质定理与判定定理的联系,初步感受互逆的思维过程;过程与方法:经历从合情推理到演绎推理的过渡,进一步理解证明的格式、方法。

情感态度与价值观:了解与平行线有关的数学史内容,在体验像古人那样追根溯源的同时,增强对几何的了解和热爱,丰富数学文化内容。

2.教学重难点教学重点:掌握平行线的性质定理.教学难点:进一步理解证明的步骤、格式和方法,发展演绎推理能力。

重难点的突破:由平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性。

本节课采用数学史引入数学教育的发生教学法(华东师大,汪晓勤),让学生通过实验操作探究得出性质1,与数学家做了相同的探索,让学生产生情感共鸣,从而在理解的基础上掌握性质1。

然后在性质1的基础上经过进一步推理得到性质2和性质3,实现了由合情推理到演绎推理的过渡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第七章平行线的证明4平行线的性质教案(新
版)北师大版
一、学生知识状况分析
学生技能基础:在学习本课之前,学生对平行线的性质已经比较熟悉,也有了初步的逻辑推理能力,特别是上一节课的学习,使学生对简单的证明步骤有了更为清楚的认识,这为今天的学习奠定了一个良好的基础.
活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.二、教学任务分析
在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,上一节课安排的《平行线的判定》和本节课安排的《平行线的性质》旨在让学生从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,为此,本课时的教学目标是:
1.认识平行线的三条性质.
2.能熟练运用这三条性质证明几何题.
3.进一步理解和总结证明的步骤、格式、方法.
4.了解两定理在条件和结构上的区别,体会正逆的思维过程.
5. 进一步发展学生的合情推理能力,培养学生的逻辑思维能力.
三、教学过程分析
本节课的设计分为四个环节:情境引入——探索与应用——反馈练习——反思与
小结
第一环节:情境引入
活动内容:
一条公路两次拐弯后,和原来的方向相同,第一次拐的角
∠B是130°,第二次拐的角∠C是多少度?
说明:这是一个实际问题,要求出∠C的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.
活动目的:
通过对一个实际问题的解决,引出平行线的性质.
教学效果:
由于学生对平行线的性质比较熟悉,因此,在学生回忆起这些知识后,能很快解决实际问题.
第二环节:探索与应用
活动内容:
①画出直线AB的平行线CD,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?
②平行公理:两直线平行同位角相等.
③两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
∵a∥b(已知),
∴∠1=∠2(两条直线平行,同位角相等)
∵∠1=∠3(对顶角相等),
∴∠2=∠3(等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等.
师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.
∵a∥b(已知)
∴∠1=∠2(两直线平行,同位角相等)
∵∠1+∠4=180°(邻补角定义)
∴∠2+∠4=180°(等量代换)
即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:
∵a∥b,
∴∠1=∠2(两直线平行,同位角相等).
∵a∥b(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵a∥b(已知),
∴∠2+∠4=180°.(两直线平行,同旁内角互补)
(板书在三条性质对应位置上)
活动目的:
通过对平行线性质的探索,使学生对证明的步骤、格式有更进一步的认识,认识证明的必要性.
教学效果:
在前面复习引入的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
第三环节:课堂练习
活动内容:
①已知平行线AB、CD被直线AE所截
(1)若∠1=110°,可以知道∠2是多少度吗?为什么?
(2)若∠1=110°,可以知道∠3是多少度吗?为什么?
(3)若∠1=110°,可以知道∠4是多少度吗,为什么?
②变式训练:如图是梯形有上底的一部分,已知量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?
解:∵AD∥BC(梯形定义),
∴∠A+∠B=180°.
∠C+∠D=180°(两直线平行,同旁内角互补),
∴∠B=180°-∠A=180°-115°=65°.
∴∠C=180°-∠D=180°-100°=80°.
③变式练习:如图,已知直线DE经过点A,DE∥BC,∠B=44°,∠C=57°
(1)∠DAB等于多少度?为什么?
(2)∠EAC等于多少度?为什么?
(3)∠BAC、∠BAC+∠B+∠C各等于多少
度?
④如图,A、B、C、D在同一直线上,AD∥EF.
(1)∠E=78°时,∠1、∠2各等于多少度?为什么?
(2)∠F=58°时,∠3、∠4各等于多少度?为什么?
活动目的:
通过学生对证明的螺旋式上升的认识,更认识到数学严密性与证明的必要性,做到每一步都有根有据.
教学效果:
在教师不给任何提示的情况下,学生独立完成,把理由写成推理格式.对于学习困难一点的同学允许他们相互之间讨论后,再试着在练习本上写出解题过程.对学生中出现的不同解法给予肯定,培养学生的解题能力.
第四环节:课堂反思与小结
活动内容:
①归纳两直线平行的判定与性质
②总结证明的一般思路及步骤
活动目的:
使学生认识到平行线的判定与性质是一对互逆定理,并由感性认识上升到理性认识,归纳总结出证明题的一般思路及步骤.
教学效果:
应让学生积极讨论,说出平行线的判定及性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质,能通过具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同,总结证明的一般步骤,养成严谨的推理习惯.
课后练习:课本习题7.5第1,2,3题
四、教学反思
语言是思维的工具,要学好证明,必须学会语言的表达和运用,初学几何证明题时,学生对于几何语言不甚清楚,几何语言分为文字语言、符号语言和图形语言,老师有必要强调:将图形语言和符号语言相结合是学好证明的基本功,画图时按要求将符合题意的图形画出来.但要注意以下几点:
(1)注意所画图形的多种情况;
(2)能根据题意画出简单的图形,掌握“题”与“图”的对应关系,一般图形不要画成特
殊图形,否则就意味着人为增加了已知条件,反之,特殊图形也不要画成一般图形,这两种做法都没有真实的表达题意;
(3)图形力求准确,便于观察,有利于解题.。

相关文档
最新文档