电磁感应知识点
初中物理电磁感应知识点总结

初中物理电磁感应知识点总结一、电磁感应现象1、定义:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应,产生的电流叫做感应电流。
2、产生条件:(1)闭合电路;(2)一部分导体;(3)做切割磁感线运动。
需要注意的是,这三个条件缺一不可。
如果电路不闭合,只会产生感应电压,而不会有感应电流。
3、能的转化:在电磁感应现象中,机械能转化为电能。
例如,当我们手摇发电机时,通过转动把手,使导体在磁场中做切割磁感线运动,从而产生电能,此时就是将机械能转化为电能。
二、感应电流的方向1、影响因素:感应电流的方向与导体切割磁感线的运动方向和磁场方向有关。
2、右手定则:伸开右手,使大拇指与其余四指垂直,并且都跟手掌在同一个平面内,让磁感线垂直穿过手心,大拇指指向导体运动的方向,那么其余四指所指的方向就是感应电流的方向。
这个定则可以帮助我们快速判断感应电流的方向。
例如,当导体向右运动,磁场方向向上时,根据右手定则,我们可以判断出感应电流的方向是向前的。
三、发电机1、原理:发电机是根据电磁感应原理制成的。
2、构造:主要由定子(固定不动的部分)和转子(能够转动的部分)组成。
定子一般是磁极,转子一般是线圈。
当转子在磁场中转动时,就会产生感应电流。
3、能量转化:发电机工作时,将机械能转化为电能。
大型的发电机通常采用线圈不动、磁极旋转的方式来发电,这样可以产生更强、更稳定的电流。
四、电动机1、原理:电动机是利用通电导体在磁场中受到力的作用而运动的原理制成的。
2、构造:主要由定子、转子和换向器组成。
定子一般是磁极,转子一般是线圈。
换向器的作用是当线圈转过平衡位置时,自动改变线圈中的电流方向,使线圈能够持续转动。
3、能量转化:电动机工作时,将电能转化为机械能。
在日常生活中,我们使用的电风扇、洗衣机等电器,其内部都有电动机。
五、电磁感应的应用1、动圈式话筒:它是把声音的振动转化为电流的变化。
当声音使膜片振动时,与膜片相连的线圈在磁场中做切割磁感线运动,从而产生随声音变化的电流。
电磁感应知识点总结

电磁感应知识点总结电磁感应是指导体中的电流或电荷在外加磁场的作用下产生感应电动势的现象。
电磁感应是电磁学中的重要内容,也是电磁学与电动力学的基础知识之一。
下面我们将对电磁感应的相关知识点进行总结。
1. 法拉第电磁感应定律。
法拉第电磁感应定律是电磁感应的基本规律之一,它描述了磁场变化引起感应电动势的现象。
定律表述为,当导体回路中的磁通量发生变化时,回路中就会产生感应电动势。
这一定律为电磁感应现象提供了定量的描述,为电磁感应现象的应用提供了基础。
2. 感应电动势的方向。
根据法拉第电磁感应定律,我们可以得出感应电动势的方向规律。
当磁通量增加时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相同;当磁通量减小时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相反。
这一规律在电磁感应现象的分析和应用中具有重要的指导意义。
3. 感应电动势的大小。
感应电动势的大小与磁通量的变化率成正比,即。
ε = -dΦ/dt。
其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。
这一关系式说明了磁通量的变化越快,感应电动势的大小就越大。
这一规律在电磁感应现象的定量分析中起着重要的作用。
4. 涡旋电场。
当磁场发生变化时,会在空间中产生涡旋电场。
这一现象是电磁感应的重要特征之一,也是电磁学中的重要内容。
涡旋电场的产生使得电磁感应现象更加复杂和丰富,为电磁学的研究提供了新的视角。
5. 涡旋电流。
涡旋电场的存在导致了涡旋电流的产生。
涡旋电流是一种特殊的感应电流,它的存在对电磁场的分布和能量传递产生了重要影响。
涡旋电流的研究不仅有助于理解电磁感应现象的本质,也为电磁学的应用提供了新的思路。
通过以上对电磁感应知识点的总结,我们对电磁感应现象有了更深入的理解。
电磁感应作为电磁学的重要内容,不仅在理论研究中具有重要意义,也在实际应用中发挥着重要作用。
希望我们能够深入学习和理解电磁感应的知识,为电磁学的发展和应用做出贡献。
电磁感应高中物理知识点

电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。
电磁感应是电磁学的重要基础,具有广泛的应用。
2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。
它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。
3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。
磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。
4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。
根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。
楞次圈定律是描述电磁感应中感应电动势的方向的定律。
根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。
5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。
根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。
6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。
涡流会在导体内部产生能量损耗,称为涡流损耗。
涡流损耗的大小与导体特性、磁场强度、频率等因素有关。
7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。
互感的大小与线圈的匝数、磁场强度等因素有关。
自感是指线圈中自身磁场变化所产生的感应电动势。
自感的大小与线圈的匝数、磁场强度等因素有关。
8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。
它们的原理都是利用电磁感应现象。
以上是电磁感应的高中物理知识点的简要介绍。
电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。
希望这份文档能对你有所帮助!。
高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。
(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。
二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。
产生电动势的那部分导体相当于电源。
2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。
3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。
产生感应电动势的那部分导体相当于电源。
【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。
2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。
②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
电磁感应 知识点归纳

电磁感应 知识点归纳【知识网络】【要点梳理】要点一、关于磁通量ϕ,磁通量的变化ϕ∆、磁通量的变化率tϕ∆∆ 1、磁通量磁通量cos B S BS BS ϕθ⊥⊥===,是一个标量,但有正、负之分。
可以形象地理解为穿过某面积磁感线的净条数。
2、磁通量的变化磁通量的变化21ϕϕϕ∆=-.要点诠释: ϕ∆的值可能是2ϕ、1ϕ绝对值的差,也可能是绝对值的和。
例如当一个线圈从与磁感线垂直的位置转动180︒的过程中21ϕϕϕ∆=+.3、磁通量的变化率磁通量的变化率tϕ∆∆表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。
2121t t t ϕϕϕ-∆=∆-, 在回路面积和位置不变时B S t t ϕ∆∆=∆∆(B t∆∆叫磁感应强度的变化率); 在B 均匀不变时S B t t ϕ∆∆=∆∆,与线圈的匝数无关。
要点二、关于楞次定律(1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。
(2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。
(3)楞次定律适用范围:适用于所有电磁感应现象。
(4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。
(5)楞次定律是能的转化和守恒定律的必然结果。
要点三、法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即E t ϕ∆=∆. 要点诠释:对n 匝线圈有E nt ϕ∆=∆. (1)E nt ϕ∆=∆是t ∆时间内的平均感应电动势,当0t ∆→时,E n tϕ∆=∆转化为瞬时感应电动势。
(2)E ntϕ∆=∆适应于任何感应电动势的计算,导体切割磁感线时sin E BLv θ=., 自感电动势I E L t ∆=∆都是应用E n tϕ∆=∆而获得的结果。
(3)感应电动势的计算B E n nS t t ϕ∆∆==∆∆,其中B t ∆∆是磁感强度的变化率,是B t -图线的斜率。
高中物理-电磁感应-知识点归纳

电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。
(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。
(3)磁场强度B变化或有效面积S变化。
(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。
(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。
(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。
2.阻碍相对运动,即“来拒去留”。
3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。
高中物理重点——电磁感应知识点及练习

高中物理重点——电磁感应知识点及练习一、电磁感应基本概念1. 电磁感应的基本原理2. 法拉第电磁感应定律3. 洛伦兹力的概念练习题:1. 一根长度为20 cm 的导线以10 m/s 的速度进入一个磁感应强度为0.5 T 的匀强磁场中,导线的两端产生的感应电动势为多少?答案:1 V2. 一个载流导体绕着垂直于磁场方向的轴旋转,导体两端产生的感应电动势的大小为导体长度乘以什么?答案:磁感应强度3. 当磁通量密度变化率为200 T/s 时,一个线圈内部产生的感应电动势为20 V,此时线圈中的匝数为多少?答案:100二、法拉第电磁感应定律应用1. 电动势的方向和大小2. 电磁感应的应用:感应电流和感应电磁铁3. 磁场中的动生电现象:电磁感应现象和劳埃德力练习题:1. 一个长度为25 cm 的导体被放置在一个磁感应强度为0.2 T 的匀强磁场中,且在导体的两端施加一共 2 A 的电流,求该导体受到的安培力大小为多少?答案:0.25 N2. 在一个长度为10 cm 的导体内部施加一个0.5 T 的磁场,导体稳定地保持在匀强磁场中,当导体的长度与磁场的夹角为30 度时,导体内部的自感系数为多少?答案:0.00125 H3. 一个宽度为10 cm,长度为20 cm,大约0.5 毫米厚的铜片在磁感应强度为0.1 T 的恒定磁场中以 5 m/s 的速度向下运动,求铜片两端感应的电动势大小为多少?答案:1 V三、电磁感应现象与电磁波1. 电磁波的基本特征和传播方式2. 波长和频率的关系及其应用3. 电磁波的反射、折射和衍射现象练习题:1. 某广播电台的发射频率为100 MHz,求其波长的大小为多少?答案:3 m2. 一台微波炉的工作频率为2.45 GHz,求其波长的大小为多少?答案:0.12 m3. 一个频率为500 MHz 的电磁波垂直入射到一种材质中,该材质的折射率为 1.5,求折射后的电磁波的频率为多少?答案:333.3 MHz总结:电磁感应是高中物理中的重要知识点,包括电磁感应的基本概念、法拉第电磁感应定律应用以及电磁感应现象与电磁波等内容。
电磁感应知识点归纳

电磁感应知识点归纳1.电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。
这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。
2.电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。
电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。
3.电磁感应辨认出的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
②电磁感应的辨认出并使人们找出了磁生电的条件,开拓了人类的电器化时代。
③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。
4.对电磁感应的认知:电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。
引发电流的原因归纳为五类:① 变化的电流。
② 变化的磁场。
③ 运动的恒定电流。
④ 运动的磁场。
⑤ 在磁场中运动的导体。
5.磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即φ,θ为磁感线与线圈平面的夹角。
6.对磁通量φ的表明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。
7.产生感应电流的条件:一是电路闭合。
二就是磁通量变化。
8.楞次定律:感应电流具备这样的方向,即为感应电流的磁场总必须制约引发感应电流的磁通量的变化。
9.楞次定律的理解:① 感应电流的磁场不一定与原磁场方向恰好相反,只是在原磁场的磁通量减小时两者才恰好相反;在磁通量增大时,两者就是同样。
② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章电磁感应知识点(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章电磁感应第一模块:电磁感应、楞次定律(先介绍右手螺旋定则)『基础知识』一、划时代的发现1、奥斯特梦圆“电生磁”奥斯特实验:在1820年4月的一次讲演中,奥斯特碰巧在南北方向的导线下面放置了一枚小磁针、当电源接通时,小磁针居然转动了(如右图)。
随后的实验证明了电流的确能使磁针偏转,这种作用称为电流的磁效应。
突破:电与磁是联系的2、法拉第心系“磁生电”1831年8月29日,法拉第终于发现了电磁感应:把两个线圈绕在同一铁环上(如右图),一个线圈接入接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电瞬间,另一个线圈也出现了电流,这种磁生电的效应终于被发现了。
物理学中把这种现象叫做电磁感应.由电磁感应产生的电流叫做感应电流.二、感应电流的产生1、N极插入、停在线圈中和抽出(S极插入、停在线圈中和抽出)有无感应电流(如图)。
磁铁动作表针摆动方向磁铁动作表针摆动方向极插入线圈偏转S极插入线圈偏转N极停在线圈中不偏转S极停在线圈中不偏转N极从线圈中抽出偏转S极从线圈中抽出偏转实验表明产生感应电流的条件与磁场的变化有关。
2、闭合回路中的一部分导体在磁场中做切割磁感应线运动时,导体中就产生感应电流。
实验表明磁场的强弱没有变化,但是导体棒切割磁感的运动是闭合的回路EFAB包围的面积在发生变化。
这种情况下线圈中同样有感应电流。
3、磁通量定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)单位:韦伯(Wb)物理意义:表示穿过磁场中某个面的磁感线条数磁通量虽然是标量,但有正负之分。
三、楞次定律1、S极插入线圈和抽出线圈中会有感应电流,那么他的方向会如何呢。
条形磁铁运动的情况N 极向下插入线圈N 极向上拔出线圈S极向下拔出线圈S极向上插入线圈原磁场方向(向上或向下)?向下?向下?向上?向上穿过线圈的磁通量变化情况(增加或减少)?增加?减少?减少?增加感应电流的方向(流过灵敏电流计的方向)?向左?向右?向左?向右结论:楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化2、对楞次定律中阻碍二字的正确理解“阻碍”不是阻止,这里是阻而未止。
阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.3、理解楞次定律的四个层次谁阻碍谁是感应电流的磁通量阻碍原磁通量;阻碍什么阻碍的是磁通量的变化而不是磁通量本身;如何阻碍当磁通量增加时,感应电流的磁场方向与原磁场方向相反,当磁通量减小时,感应电流的磁场方向与原磁场方向相同,即”增反减同”;结果如何阻碍不是阻止,只是延缓了磁通量变化的快慢,结果是增加的还是增加,减少的还是减少。
4、楞次定律判断感应电流的基本步骤:第一步:判断穿过线圈的元磁通量的方向第二步:判断穿过线圈的元磁通量的变化(增加还是减小)第三步:判断感应电流的磁场的方向(依据楞次定律)第四步:判断感应电流的方向(依据右手螺旋定则)5、楞次定律的推广含义: 1)阻碍原磁通的变化2)阻碍(导体的)相对运动,简称“来拒去留”3) 就闭合电路的面积而言,致使电路的面积有收缩或扩张的趋势。
收缩或扩张是为了阻碍电路的面积磁通量的变化。
若穿过闭合回路的磁通量增大时,面积有收缩趋势;若穿过闭合电路的磁通量减少时,面积有增大的趋势,简称口诀:“增缩减扩”。
4)就电流而言,感应电流阻碍原电流的变化。
即原电流增大时,感应电流的方向与原电流的方向相反;原电流减少时,感应电流的方向与原电流的方向相同,简称:“增反减同”6、右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线垂直传入掌心,大拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向。
说明:右手定则是楞次定律的一种特殊情况,这种方法对于闭合回路的一部分导体切割磁感线时感应电流方向的判定非常方便。
四、法拉第电磁感应定律1、电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。
2、表达式:tnE ∆∆Φ= 3、法拉第电磁感应定律的理解(1)tn∆∆ϕ=E 的两种基本形式:①当线圈面积S 不变,垂直于线圈平面的磁场B 发生变化时,tB S n E ∆∆=;②当磁场B 不变,垂直于磁场的线圈面积S 发生变化时,tS B n E ∆∆=。
(2)感应电动势的大小取决于穿过电路的磁通量的变化率t∆∆ϕ,与φ的大小及△φ的大小没有必然联系。
(3)若t∆∆ϕ为恒定(如:面积S 不变,磁场B 均匀变化,k tB=∆∆,或磁场B不变,面积S 均匀变化,'=∆∆k tS),则感应电动势恒定。
若t ∆∆ϕ为变化量,则感应电动势E 也为变化量,tn E ∆∆ϕ=计算的是△t 时间内平均感应电动势,当△t→0时,tnE ∆∆ϕ=的极限值才等于瞬时感应电动势。
3.磁通量ϕ、磁通量的变化ϕ∆、磁通量的变化率t∆∆ϕ的区分 (1)磁通量ϕ是指穿过某面积的磁感线的条数,计算式为θϕsin BS =,其中θ为磁场B 与线圈平面S 的夹角。
(2)磁通量的变化ϕ∆指线圈中末状态的磁通量2ϕ与初状态的磁通量1ϕ之差,12ϕϕϕ-=∆,计算磁通量以及磁通量变化时,要注意磁通量的正负。
(3)磁通量的变化率。
磁通量的变化率t∆∆ϕ是描述磁通量变化快慢的物理量。
表示回路中平均感应电动势的大小,是t -ϕ图象上某点切线的斜率。
t∆∆ϕ与ϕ∆以及ϕ没有必然联系。
4.导体运动产生的感应电动势1)如图所示闭合线框一部分导体ab 长l,处于匀强磁场中,磁感应强度是B ,ab 以速度v 匀速切割磁感线,求产生的感应电动势回路在时间t 内增大的面积为:ΔS=LvΔt 穿过回路的磁通量的变化为:ΔΦ=BΔS=BLvΔt产生的感应电动势为:2)若导体运动方向跟磁感应强度方向有夹角(导体斜 切磁),如图1所示。
产生的感应电动势为:θ为v 与B 夹角说明:导线运动方向和磁感线平行时, E =0 导线的长度L 应为有效长度速度v 为平均值(瞬时值), E 就为平均值(瞬时值) (图1) 3)如右图所示,导体转动切割磁感线产生感应电动势,当导线在垂直磁场平面内,绕一端V 匀速转动,切割磁感线产生感应电动势。
产生的感应电动势为: V 平=(0+V )/2=V/2=ωL/2E=BLV 平=BL 2ω/2五、 电磁感应现象的两种分类1、 感生电动势产生:磁场变化时会在空间激发电场,闭合导体中的自由电荷在电场力的作用下定向运动,产生感应电流,即导体中产生了感应电动势定义:有感应电场产生的感应电动势称为感应电动势 大小:t nE ∆∆ϕ=感生电场方向判断:右手螺旋定则tΦE ∆∆=BLv =θsin 1BLv BLv E ==说明:英国的物理学家麦克斯韦认为,变化的磁场在空间激发的感应电场叫做涡流电场,当B 增大时电场线是闭合的,其感应电场的存在与是否存在闭合回路五官2、动生电动势产生:导线切割磁感应线时,若果磁场不变化,空间就不存在感生电场。
自由电荷不会受电场力的作用,但是自由电荷会随着导体切割磁感应线的运动而周到洛伦兹力,这种情况下产生的电动势称为动生电动势。
大小:E六、互感和自感1、互感现象定义:当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势----互感电动势.说明:1)互感现象不仅发生于绕在同一铁芯上的两个线圈之间,且可发生于任何两个相互靠近的电路之间.2)互感现象可以把能量由一个线圈传到另一个线圈,变压器就是利用互感现象制成的。
2、自感现象1)通电自感实验如图所示,两个灯泡A1、A2的规格完全相同,滑动变阻器R和线圈的L的电阻相同。
先闭合S,调节R1、R ,使两灯均RR1 SL A1A2BLv正常发光。
然后断开S 。
重新接通电路时可以看到,跟有铁芯的线圈L 串连的灯泡A 1却是逐渐亮起来的,最后两个灯泡都正常发光、亮度相同。
原因:当开关闭合的瞬间,流过线圈L 的电流急剧增大,穿过线圈的磁通量也急剧增加,这就会在线圈产生很大的感应电动势。
根据楞次定律,这个感应电动势阻碍线圈中电流的增大,即对灯泡A 1的正常发光起到了“延缓”的作用,因此灯泡A 1是逐渐变亮的。
当电路中的电流稳定后,线圈中的磁通量不会再发生变化,阻碍作用消失,流过;两灯泡的电流相同,亮度相同。
2)断电自感实验如右图所示,连接电路,线圈L 的电阻小于灯泡A 的电流。
连接电路,灯泡A 正常发光。
断开电路,可以看到灯泡A 没有立即熄灭,相反,它会很亮地闪一下 。
原因:开关未断开时,流过线圈L 的电流远远大于流过灯泡A 的电流。
在开关断开的瞬间,流过线圈的L 的电流急剧减少,穿过线圈的磁通量也急剧减少,因而在线圈中产生了感应电动势,在线圈L 的灯泡A 组成的回路中产生了感应电流,这个急剧减少的感应电动势的电流远大于原来流过灯泡A 中的电流,导致灯泡A不到没有熄消灭,反而更亮一下才熄灭。
3)自感电动势定义:在自感现象中产生的感应电动势叫自感电动势。
其效果表现为延缓导体中电流的变化。
大小:tI LE ∆∆=自方向:当流过导体的电流减弱时,E 自的方向与原电流的方向相同,当流过导体的电流增强时,E 自的方向与原电流的方向相反。
4)、自感系数不同的线圈在电流变化快慢相同的情况下,产生的自感电动势不同;在电学中,用自感系数来描述线圈的这种特性。
用符号“L ”表示。
决定因素:线圈的横截面积越大、线圈越长、单位长度上的线圈匝数越多,自感系数越大;有铁芯比无铁芯时自感系数要大得多。
单位:享利,简称“享”,符号“H”。
常用的有毫享(mH )和微享(μH)。
1H =103mH =106μH物理意义:表征线圈产生自感电动势本领的大小。
数值上等于通过线圈的电流在1s 内改变1A 时产生的自感电动势的大小。
5)启动器:基本结构如图所示,它是利用氖管内的氖气放电产生辉光的热效应和双金属片的热学特征,起着自动把电路接通或断开的作用,相当于一个自动开关。
镇流器:镇流器是一个带铁芯的线圈,自感系数很大。
在日光灯点燃时,利用自感现象,产生瞬时高压加在灯管两端,促使灯管里的低压汞蒸气放电,形成闭合电路;在日光灯正常工作时,利用自感现象,起着降压限流的作用。
日光灯的工作原理:电路结构如图所示,当开关接通时,由于灯管里气体受激发导电时需要比220V 高得多的电压,此时灯管并没有通电;电压加在启动器两端,当启动器两触片间的电压增加到某一数值时,启动器里的氖气放电灯管启动器镇流器~220V形而发出辉光,产生的热量使启动器里U形动触片膨胀张开,跟静触片接触而把电路导通,于是镇流器的线圈和日光灯的灯丝就有电流通过,电路导通后,启动器中两触片间的电压为零,启动器里的氖气停止放电,不产生辉光,U形动触片冷却缩回,电路自动断开。