电磁感应-知识点总结
高考物理电磁感应知识点归纳

高考物理电磁感应知识点归纳高考物理电磁感应知识点归纳1.电磁感应现象电磁现象:利用磁场产生电流的现象称为电磁感应,产生的电流称为感应电流。
(1)产生感应电流的条件:通过闭合电路的磁通量发生变化,即0。
(2)产生感应电动势的条件:无论回路是否闭合,只要通过线圈平面的磁通量发生变化,线路中就会产生感应电动势。
导体中产生感应电动势的部分相当于电源。
(3)电磁感应的本质是产生感应电动势。
如果回路闭合,会有感应电流;如果回路不闭合,只会有感应电动势而没有感应电流。
2.磁通量(1)定义:磁感应强度b与垂直于磁场方向的面积s的乘积称为通过这个表面的磁通量,定义公式为=BS。
如果面积S不垂直于B,则B应乘以垂直于磁场方向的投影面积S,即=BS,SI单位:Wb。
在计算磁通量时,应该是通过某一区域的磁感应线的净数量。
每张脸都有正面和背面;当磁感应线从表面的正方向穿透时,通过表面的磁通量为正。
相反,磁通量是负的。
磁通量是穿过正面和背面的磁感应线的代数和。
3.楞次定律(1)楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于感应电流方向的一般判断,而右手定则只适用于剪线时磁感应线的运动,用右手定则比楞次定律更容易判断。
(2)理解楞次定律(1)谁阻碍谁——感应电流的磁通量阻碍了感应电流的磁通量。
阻碍——阻碍的是通过回路的磁通量的变化,而不是磁通量本身。
如何阻碍——当一次磁通增加时,感应电流的磁场方向与一次磁场方向相反;当一次磁通量减少时,感应电流的磁场方向与一次磁场的方向相同,即,一次磁通量增加,一次磁通量减少。
阻塞-阻塞的结果不是停止,而是增加和减少。
(3)楞次定律的另一种表述:感应电流总是阻碍其产生的原因,表现形式有三种:(1)阻碍原始磁通量的变化;阻碍物体之间的相对运动;阻止一次电流(自感)的变化。
4.法拉第电磁感应定律电路中感应电动势的大小与通过电路的磁通量的变化率成正比。
表达式E=n/t当导体切割磁感应线时,感应电动势公式为E=BLvsin。
高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。
2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。
3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。
此外,磁场还可以产生电能,为机器提供动力。
二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。
2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。
3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。
初中物理电磁感应知识点总结

初中物理电磁感应知识点总结一、电磁感应现象1、定义:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应,产生的电流叫做感应电流。
2、产生条件:(1)闭合电路;(2)一部分导体;(3)做切割磁感线运动。
需要注意的是,这三个条件缺一不可。
如果电路不闭合,只会产生感应电压,而不会有感应电流。
3、能的转化:在电磁感应现象中,机械能转化为电能。
例如,当我们手摇发电机时,通过转动把手,使导体在磁场中做切割磁感线运动,从而产生电能,此时就是将机械能转化为电能。
二、感应电流的方向1、影响因素:感应电流的方向与导体切割磁感线的运动方向和磁场方向有关。
2、右手定则:伸开右手,使大拇指与其余四指垂直,并且都跟手掌在同一个平面内,让磁感线垂直穿过手心,大拇指指向导体运动的方向,那么其余四指所指的方向就是感应电流的方向。
这个定则可以帮助我们快速判断感应电流的方向。
例如,当导体向右运动,磁场方向向上时,根据右手定则,我们可以判断出感应电流的方向是向前的。
三、发电机1、原理:发电机是根据电磁感应原理制成的。
2、构造:主要由定子(固定不动的部分)和转子(能够转动的部分)组成。
定子一般是磁极,转子一般是线圈。
当转子在磁场中转动时,就会产生感应电流。
3、能量转化:发电机工作时,将机械能转化为电能。
大型的发电机通常采用线圈不动、磁极旋转的方式来发电,这样可以产生更强、更稳定的电流。
四、电动机1、原理:电动机是利用通电导体在磁场中受到力的作用而运动的原理制成的。
2、构造:主要由定子、转子和换向器组成。
定子一般是磁极,转子一般是线圈。
换向器的作用是当线圈转过平衡位置时,自动改变线圈中的电流方向,使线圈能够持续转动。
3、能量转化:电动机工作时,将电能转化为机械能。
在日常生活中,我们使用的电风扇、洗衣机等电器,其内部都有电动机。
五、电磁感应的应用1、动圈式话筒:它是把声音的振动转化为电流的变化。
当声音使膜片振动时,与膜片相连的线圈在磁场中做切割磁感线运动,从而产生随声音变化的电流。
高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。
2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。
1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。
电磁感应知识点总结

电磁感应知识点总结电磁感应是指导体中的电流或电荷在外加磁场的作用下产生感应电动势的现象。
电磁感应是电磁学中的重要内容,也是电磁学与电动力学的基础知识之一。
下面我们将对电磁感应的相关知识点进行总结。
1. 法拉第电磁感应定律。
法拉第电磁感应定律是电磁感应的基本规律之一,它描述了磁场变化引起感应电动势的现象。
定律表述为,当导体回路中的磁通量发生变化时,回路中就会产生感应电动势。
这一定律为电磁感应现象提供了定量的描述,为电磁感应现象的应用提供了基础。
2. 感应电动势的方向。
根据法拉第电磁感应定律,我们可以得出感应电动势的方向规律。
当磁通量增加时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相同;当磁通量减小时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相反。
这一规律在电磁感应现象的分析和应用中具有重要的指导意义。
3. 感应电动势的大小。
感应电动势的大小与磁通量的变化率成正比,即。
ε = -dΦ/dt。
其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。
这一关系式说明了磁通量的变化越快,感应电动势的大小就越大。
这一规律在电磁感应现象的定量分析中起着重要的作用。
4. 涡旋电场。
当磁场发生变化时,会在空间中产生涡旋电场。
这一现象是电磁感应的重要特征之一,也是电磁学中的重要内容。
涡旋电场的产生使得电磁感应现象更加复杂和丰富,为电磁学的研究提供了新的视角。
5. 涡旋电流。
涡旋电场的存在导致了涡旋电流的产生。
涡旋电流是一种特殊的感应电流,它的存在对电磁场的分布和能量传递产生了重要影响。
涡旋电流的研究不仅有助于理解电磁感应现象的本质,也为电磁学的应用提供了新的思路。
通过以上对电磁感应知识点的总结,我们对电磁感应现象有了更深入的理解。
电磁感应作为电磁学的重要内容,不仅在理论研究中具有重要意义,也在实际应用中发挥着重要作用。
希望我们能够深入学习和理解电磁感应的知识,为电磁学的发展和应用做出贡献。
电磁感应知识点总结

电磁感应的知识点梳理一、磁通量Φ、磁通量变化∆Φ、磁通量变化率t∆∆Φ对比表二、电磁感应现象与电流磁效应的比较 三、产生感应电动势和感应电流的条件比较四、感应电动势1、在电磁感应现象中产生的电动势叫 ,产生感应电流必存在 ,产生感应电动势的那部分导体相当于 ,如果电路断开时没有电流,但 仍然存在。
2、电路不论闭合与否,只要 切割磁感线,则这部分导体就会产生 ,它相当于一个 。
3、不论电路闭合与否,只要电路中的 发生变化,电路中就产生感应电动势,磁通量发生变化的那部分相当于 。
五、公式n E ∆Φ=与E=BLvsin θ 的区别与联系 六、楞次定律1、电流方向的判定方法23、对楞次定律中“阻碍”的含义还可以推广为:①阻碍原磁通量的变化或原磁场的变化;可理解为。
②阻碍相对运动,可理解为。
③使线圈面积有扩大或缩小趋势;可理解为。
④阻碍原电流的变化。
七、电磁感应中的图像问题1、图像问题2、解决这类问题的基本方法⑴明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像⑵分析电磁感应的具体过程⑶结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。
⑷根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。
⑸画图像或判断图像。
八、自感现象:1、自感现象:当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也使_____________激发出感应电动势,这种现象称为_____________.由于自感而产生的感应电动势叫_____________.2、产生原因:3、自感电动势的方向:4、自感电动势的作用:5、自感电动势和自感系数:自感电动势:,式中为电流的变化率,L为自感系数。
自感系数L:自感系数的大小由决定,线圈越长,单位长度的匝数越多,横截面积越大,自感系数,若线圈中加有铁芯,自感系数。
5、通电自感和断电自感比较九、自感涡流例1、如图16-1,平面M 的面积为S ,垂直于匀强磁场B ,求平面M 由此位置出发绕与B 垂直的轴转过600和转过1800时磁通量的变化量。
高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。
(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。
二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。
产生电动势的那部分导体相当于电源。
2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。
3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。
产生感应电动势的那部分导体相当于电源。
【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。
2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。
②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
电磁感应基础知识

电磁感应基础知识总结【基础知识梳理】一、电磁感应现象1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积。
(2)公式:①二坠。
(3)单位:1Wb=1T・m2。
(4)物理意义:相当于穿过某一面积的磁感线的条数。
2.电磁感应现象(1)电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
(2)产生感应电流的条件①条件:穿过闭合电路的磁通量发生变化。
②特【典例】闭合电路的一部分导体在磁场内做切割磁感线的运动。
(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
(4)能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
二、楞次定律1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切回路磁通量变化的情况。
(3)楞次定律中“阻碍”的含义£SAAt2.右手定则(1) 内容① 磁感线穿入右手手心。
② 大拇指指向导体运动的方向。
③ 其余四指指向感应电流的方向。
(2) 适用范围:适用于部分导体切割磁感线。
三、法拉第电磁感应定律的理解和应用1.感应电动势(1) 概念:在电磁感应现象中产生的电动势。
(2) 产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
⑶方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律⑴内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
A ①(2) 公式:E=njt ,其中n 为线圈匝数。
E(3) 感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即1=越。
3.磁通量变化通常有三种方式 (1) 磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E=nB-(2) 垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=nA^S ,其中普是B —t图象的斜率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章:电磁感应一、知识网络二、重、难点知识归纳1. 法拉第电磁感应定律(1).产生感应电流的条件:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
(2).感应电动势产生的条件:穿过电路的磁通量发生变化。
闭合电路中磁通量发生变化时产生感应电流当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ=BS sin α。
磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法自感电磁感应自感电动势灯管 镇流器 启动器闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小E=BL νsin θtnE ∆∆=φ 实验:通电、断电自感实验大小:tI LE ∆∆= 方向:总是阻碍原电流的变化方向应用日光灯构造日光灯工作原理:自感现象感应现象:这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
(3). 引起某一回路磁通量变化的原因a磁感强度的变化b线圈面积的变化c线圈平面的法线方向与磁场方向夹角的变化(4). 电磁感应现象中能的转化感应电流做功,消耗了电能。
消耗的电能是从其它形式的能转化而来的。
在转化和转移中能的总量是保持不变的。
(5). 法拉第电磁感应定律:a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同—磁通量,—磁通量的变化量,c定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。
(6)在匀强磁场中,磁通量的变化ΔΦ=Φt-Φo有多种形式,主要有:①S、α不变,B改变,这时ΔΦ=ΔB∙S sinα②B、α不变,S改变,这时ΔΦ=ΔS∙B sinα③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1)在非匀强磁场中,磁通量变化比较复杂。
有几种情况需要特别注意:①如图16-1所示,矩形线圈沿a→b→c在条形磁铁附近移动,穿过上边线圈的磁通量由方向向上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到零,再变为方向向上增大。
②如图16-2所示,环形导线a中有顺时针方向的电流,a环外有两个同心导线圈b、c,与环形导线a在同一平面内。
当a中的电流增a bc图16-1 图16-2大时,b 、c 线圈所围面积内的磁通量有向里的也有向外的,但向里的更多,所以总磁通量向里,a 中的电流增大时,总磁通量也向里增大。
由于穿过b 线圈向外的磁通量比穿过c 线圈的少,所以穿过b 线圈的磁通量更大,变化也更大。
③如图16-3所示,虚线圆a 内有垂直于纸面向里的匀强磁场,虚线圆a 外是无磁场空间。
环外有两个同心导线圈b 、c ,与虚线圆a 在同一平面内。
当虚线圆a 中的磁通量增大时,与②的情况不同,b 、c线圈所围面积内都只有向里的磁通量,且大小相同。
因此穿过它们的磁通量和磁通量变化都始终是相同的。
(7)感应电动势大小的计算式:⎪⎪⎩⎪⎪⎨⎧∆∆∆∆=线圈匝数————n v E st Wbt n E φφ 注:a 、若闭合电路是一个匝的线圈,线圈中的总电动势可看作是一个线圈感应电动势的n 倍。
E 是时间内的平均感应电动势(6)几种题型①线圈面积S 不变,磁感应强度均匀变化:②磁感强度不变,线圈面积均匀变化:③B 、S 均不变,线圈绕过线圈平面内的某一轴转动时,计算式为:2. 导体切割磁感线时产生感应电动势大小的计算式(1). 公式:(2). 题型:a 若导体变速切割磁感线,公式中的电动势是该时刻的瞬时感应电动势。
b 若导体不是垂直切割磁感线运动,v 与B 有一夹角,如右图16-4:c 若导体在磁场中绕着导体上的某一点转动时,导体上各点的线速bc图16-3度不同,不能用计算,而应根据法拉第电磁感应定律变成“感应电动势大小等于直线导体在单位时间内切割磁感线的条数”来计算,如下图16-5: 从图示位置开始计时,经过时间,导体位置由oa 转到oa 1,转过的角度,则导体扫过的面积切割的磁感线条数(即磁通量的变化量)单位时间内切割的磁感线条数为:,单位时间内切割的磁感线条数(即为磁通量的变化率)等于感应电动势的大小: 即:计算时各量单位:d.转动产生的感应电动势①转动轴与磁感线平行。
如图16-6,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。
求金属棒中的感应电动势。
在应用感应电动势的公式时,必须注意其中的速度v 应该指导线上各点的平均速度,在本题中应该是金属棒中点的速度,因此有2212L B L BL E ωω=⋅=。
②线圈的转动轴与磁感线垂直。
如图,矩形线圈的长、宽分别为L 1、L 2,所围面积为S ,向右的匀强磁场的磁感应强度为B ,线圈绕图16-7示的轴以角速度ω匀速转动。
线圈的ab 、cd 两边切割磁感线,产生的感应电动势相加可得E=BS ω。
如果线圈由n 匝导线绕制而成,则E=nBS ω。
从图16-8示位置开始计时,则感应电动势的瞬时值为e=nBS ωcos ωt 。
该结论与线圈的形状和转动轴的具体位置无关(但是轴必须与B 垂直)。
实际上,这就是交流发电机发出的交流电的瞬时电动势公式。
v图16-5 图16-63. 楞次定律(1)、楞次定律: 感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)、楞次定律的应用对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。
楞次定律解决的是感应电流的方向问题。
它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。
“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。
“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。
在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。
a 从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。
b 从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。
磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。
c 从“阻碍自身电流变化”的角度来看,就是自感现象。
自感现象中产生的自感电动势总是阻碍自身电流的变化。
(3)、应用楞次定律判定感应电流的方向的步骤: a 、判定穿过闭合电路的原磁场的方向. b 、判定穿过闭合电路的磁通量的变化. c 、根据楞次定律判定感应电流的磁场方向. d 、利用右手螺旋定则判定感应电流的方向. 4、自感现象(1)自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。
由于线圈(导体)本身电流的变化而产生的电磁感应现象叫自感现象。
在自感现象中产生感应电动势叫自感电动势。
自感电动势总量阻碍线圈(导体)中原电流的变化。
图16-7图16-8(2)自感系数简称自感或电感, 它是反映线圈特性的物理量。
线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。
另外, 有铁心的线圈的自感系数比没有铁心时要大得多。
自感现象分通电自感和断电自感两种。
(3)、自感电动势的大小跟电流变化率成正比tIL∆∆=自ε。
L 是线圈的自感系数,是线圈自身性质,线圈越长,单位长度上的匝数越多,截面积越大,有铁芯则线圈的自感系数L 越大。
单位是亨利(H )。
如是线圈的电流每秒钟变化1A ,在线圈可以产生1V 的自感电动势,则线圈的自感系数为1H 。
还有毫亨(mH ),微亨(μH )。
5、日光灯日光灯由灯管、启动器和镇流器组成;启动器起了把电路自动接通或断开的作用;镇流器利用自感现象起了限流降压的作用。
三、典型例题例1、下列说法正确的是()A、只要导体相对磁场运动,导体中就一定会有感应电流产生B、只要闭合电路在磁场中做切割磁感线运动以,就一定会产生感应电流C、只要穿过闭合回路的磁通量不为零就一定会产生感应电流D、只要穿过闭合回路的磁通量发生变化,就一定会产生感应电流解析:产生感应电流有两个条件:一是电路要闭合,二是闭合电路的磁通量要发生变化。
对于A,如果导体没有构成回路,就不会产生电流。
对于B如果闭合电路在匀强磁场中,磁通量没有发生改变,也不会有电流产生。
对于C,如果磁通量没有发生变化,回路中就没有电流。
答案:D点拨:此题是一个基础记忆题。
考查的是对于产生感应电流的条件的记忆。
小试身手1.1、下述用电器中,利用了电磁感应现象的是()A、直流电动机B、变压器C、日光灯镇流器D、磁电式电流表1.2、如图16-9所示,a、b是平行金属导轨,匀强磁场垂直导轨平面,c、d是分别串有电压表和电流表金属棒,它们与导轨接触良好,当c、d以相同速度向右运动时,下列正确的是()A.两表均有读数B.两表均无读数C.电流表有读数,电压表无读数D.电流表无读数,电压表有读数图16-91.3、1、下列关于磁通量的说法中正确的有:()A、磁通量不仅有大小还有方向,所以磁通量是矢量;B、在匀强磁场中,a线圈的面积比线圈b的面积大,则穿过a线圈的磁通量一定比穿过b 线圈的大;C、磁通量大磁感应强度不一定大;D、把某线圈放在磁场中的M、N两点,若放在M处的磁通量较在N处的大,则M处的磁感强度一定比N大。
例2、如图16-10所示,有两个同心导体圆环。
内环中通有顺时针方向的电流,外环中原来无电流。
当内环中电流逐渐增大时,外环中有无感应电流?方向如何?解析,由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外部向外的所有磁感线条数相等,所以外环所围面积内(这里指包括内环圆面积在内的总面积,而不只是环形区域的面积)的总磁通向里、增大,所以外环中感应电流磁场的方向为向外,由安培定则,外环中感应电流方向为逆时针。
点拨:此题是一个理解题。
考查的是电磁感应现象中磁通量变化的理解。
小试身手2.1、.如图16-11所示,有一闭合线圈放在匀强磁场中,线圈轴线和磁场方向成300角,磁场磁感应强度随时间均匀变化.若所用导线规格不变,用下述方法中哪一种可使线圈中感应电流增加一倍?( )A .线圈匝数增加一倍B .线圈面积增加一倍C .线圈半径增加一倍D .改变线圈的轴线方向2.2、一矩形线圈在匀强磁场中向右作加速运动,如图16-12所示,下列说法正确的是( )A .线圈中无感应电流,有感应电动势B .线圈中有感应电流,也有感应电动势C .线圈中无感应电流,无感应电动势D .a 、b 、c 、d 各点电势的关系是:U a =U b ,U c =U d ,U a >U d例3、甲、乙两个完全相同的带电粒子,以相同的动能在匀强磁场中运动.甲从B 1区域运动到B 2区域,且B 2>B 1;乙在匀强磁场中做匀速圆周运动,且在Δt 时间内,该磁场的磁感应强度从B 1增大为B 2,如图16-13所示.则当磁场为B 2时,甲、乙二粒子动能的变化情况为 ( ). A .都保持不变300 ╮ Bva b dc 图16-10图16-11图16-12B .甲不变,乙增大C .甲不变,乙减小D .甲增大,乙不变E .甲减小,乙不变解析:由于本题所提供的两种情境,都是B 2>B 1,研究的也是同一种粒子的运动.对此,可能有人根据“洛仑兹力”不做功,而断定答案“A ”正确.其实,正确答案应该是“B ”.这是因为:甲粒子从B 1区域进入B 2区域,唯一变化的是,根据f=qvB ,粒子受到的洛仑兹力发生了变化.由于洛仑兹力不做功,故v 大小不变,因而由R=mv/Bq ,知其回转半径发生了变化,其动能不会发生变化.乙粒子则不然,由于磁场从B 1变化到B 2,根据麦克斯韦电磁场理论,变化的磁场将产生电场,结合楞次定律可知,电场力方向与粒子运动方向一致,电场力对运动电荷做正功,因而乙粒子的动能将增大. 点拨:此题是一个理解题,考查对电磁感应现象中能量转化的一个理解。