碲化镉太阳能电池资料

合集下载

碲化镉光材料功能

碲化镉光材料功能

碲化镉光材料功效全解析
碲化镉(CdTe)是一种新型光电材料,在太阳能电池等领域有广
泛应用。

那么,它的具体功能是什么呢?本文将从以下几个方面进行
解析:
1. 高光电转换效率
碲化镉的光电转换效率高,是一种具有良好光导和导电性能的材料,吸收太阳光能在短时间内将光能转换成电能。

2. 稳定性好
碲化镉具有较高的化学稳定性和热稳定性,不易被化学物质侵蚀,能够在较高温度下保持良好的物理、电学性质。

3. 可调谐性强
碲化镉具有广泛的调谐范围,能够以不同波长吸收光线,具备较
强的光谱选择性能,可应用于不同领域。

4. 可生长性好
碲化镉单晶可以通过多种方法制备,且其表面质量好、抗辐照性强、生长速度快,适用于大面积制备。

综上所述,碲化镉光材料具有高效、稳定、可调谐和易生长等优点,对太阳能电池、激光器、光电开关、光电采集器等领域具有广泛
的应用前景。

碲化镉太阳能电池的工作原理

碲化镉太阳能电池的工作原理

碲化镉太阳能电池的工作原理
碲化镉太阳能电池是一种高效的光伏电池,它利用碲化镉半导
体材料将太阳能转化为电能。

其工作原理可以简单地概括为光生电
子-空穴对的产生和分离。

首先,当太阳光照射到碲化镉太阳能电池表面时,光子的能量
会激发半导体中的电子,使其跃迁到导带中,同时在价带中留下一
个空穴。

这样就形成了光生电子-空穴对。

碲化镉半导体具有较大的
吸收系数和较高的光电转换效率,能够有效地吸收太阳光中的能量。

接下来,这些光生电子和空穴会在半导体中自由运动,但由于
碲化镉太阳能电池的结构设计,电子和空穴会被引导到不同的区域。

在这些区域,电子和空穴会被分离,电子被引导到电子传输层,而
空穴则被引导到空穴传输层。

最后,分离的电子和空穴被引导到电极上,形成电流,从而产
生电能。

这种电流可以被外部电路所捕获和利用,用于驱动电子设
备或储存起来以备后用。

总的来说,碲化镉太阳能电池的工作原理是基于光生电子-空穴
对的产生和分离,利用半导体材料的光电转换特性将太阳能转化为电能。

这种高效的工作原理使得碲化镉太阳能电池成为一种重要的可再生能源技术,为可持续能源发展做出了重要贡献。

碲化镉薄膜太阳能电池相关材料的制备与表征

碲化镉薄膜太阳能电池相关材料的制备与表征

碲化镉薄膜太阳能电池相关材料的制备与表征一、本文概述随着全球对可再生能源需求的不断增长,太阳能作为清洁、可再生的能源形式,受到了广泛的关注和研究。

碲化镉(CdTe)薄膜太阳能电池作为一种高效、低成本的太阳能电池技术,在近年来得到了快速的发展。

本文旨在深入探讨碲化镉薄膜太阳能电池的相关材料制备与表征技术,以期为进一步提高其光电转换效率和稳定性提供理论支持和实践指导。

本文将首先概述碲化镉薄膜太阳能电池的基本原理、发展历程和应用前景,然后详细介绍碲化镉薄膜材料的制备方法,包括溶液法、气相法等多种方法,并分析各种方法的优缺点。

接着,本文将探讨碲化镉薄膜的表征技术,如射线衍射、扫描电子显微镜、能谱分析等,以揭示碲化镉薄膜的结构、形貌和性能特点。

本文还将讨论碲化镉薄膜太阳能电池的光电性能评估方法,包括光电转换效率、稳定性等关键指标。

通过本文的研究,我们期望能够为碲化镉薄膜太阳能电池的研发提供有益的参考和启示,推动太阳能电池技术的不断创新和发展,为实现全球能源转型和可持续发展做出积极的贡献。

二、碲化镉薄膜太阳能电池的基本原理与结构碲化镉(CdTe)薄膜太阳能电池是一种基于光电效应原理,将太阳能转化为电能的装置。

其基本结构包括碲化镉光吸收层、透明导电层、背接触层和基底等几部分。

光吸收层是碲化镉太阳能电池的核心部分,由碲化镉材料构成,具有较宽的光吸收范围和较高的光吸收系数。

当太阳光照射到碲化镉薄膜上时,光子被吸收并激发出电子-空穴对。

这些电子-空穴对在材料内部发生分离,并分别向透明导电层和背接触层移动,形成光生电流。

透明导电层通常由氟掺杂的氧化锡(FTO)或掺铝氧化锌(AZO)等材料构成,具有高透光性和良好导电性。

它的主要作用是收集光生电子,并将其传输到外电路。

背接触层位于碲化镉光吸收层的背面,通常由金属或金属氧化物构成。

它的作用是收集光生空穴,并将其传输到外电路。

同时,背接触层还起到与基底连接的作用。

基底是碲化镉太阳能电池的支撑结构,通常由玻璃或不锈钢等材料构成。

明阳碲化镉

明阳碲化镉

明阳碲化镉明阳碲化镉是一种重要的半导体材料,具有广泛的应用前景。

本文将从明阳碲化镉的结构、性质和应用等方面进行介绍。

一、明阳碲化镉的结构明阳碲化镉的化学式为CdTe,是由镉原子和碲原子构成的化合物。

它属于立方晶系,晶体结构为锌刚玉型,具有高度有序的排列。

在晶体结构中,镉原子和碲原子依次排列形成紧密堆积的晶格结构。

这种结构使得明阳碲化镉具有优异的电学和光学性质。

1. 光学性质:明阳碲化镉是一种直接带隙半导体材料,其带隙宽度约为1.5电子伏特。

这使得它在可见光和红外光区域具有较高的吸收系数和较高的光电转换效率。

因此,明阳碲化镉被广泛应用于光电子器件中,如太阳能电池、光电探测器等。

2. 电学性质:明阳碲化镉具有较高的载流子迁移率和较低的载流子浓度。

这使得它在光电器件中具有较高的响应速度和较低的噪声水平。

此外,明阳碲化镉还具有较高的电阻率和较低的漂移率,这使得它在高频电子器件中具有较好的性能。

3. 热学性质:明阳碲化镉具有较低的热膨胀系数和较高的热导率,这使得它在高温环境下具有较好的稳定性和导热性能。

因此,明阳碲化镉被广泛应用于高温电子器件和热电器件中。

三、明阳碲化镉的应用1. 太阳能电池:明阳碲化镉作为一种优异的光电转换材料,被广泛应用于太阳能电池中。

利用明阳碲化镉的光吸收特性和电学特性,可以将光能转化为电能,实现太阳能的高效利用。

2. 光电探测器:明阳碲化镉具有高响应速度和低噪声水平的特点,使其成为一种理想的光电探测材料。

在光电探测器中,明阳碲化镉可以将光信号转化为电信号,实现光信号的检测和传输。

3. 高温电子器件:由于明阳碲化镉具有较好的热稳定性和导热性能,因此被广泛应用于高温电子器件中。

例如,明阳碲化镉可用作高温传感器、高温功率器件等。

4. 热电器件:明阳碲化镉具有优异的热电性能,可将热能转化为电能。

因此,明阳碲化镉被广泛应用于热电发电设备中,如热电堆、热电模块等。

总结:明阳碲化镉作为一种重要的半导体材料,具有优异的结构、性质和应用前景。

CdTe太阳电池简介

CdTe太阳电池简介

2、CdTe太阳电池的材料特性
CdTe属于II-VI族化合物 半导体材料。
2、CdTe太阳电池的材料特性 CdTe材料的晶体结构属于闪锌矿型晶格结构,具有II-VI 族化合物中最高的平均原子数,最低的熔点,最大的晶格 常数和最大的离子性,熔点1365K。
小结
镉是银白色有光泽的金属,原子序数48。
2、CdTe太阳电池的材料特性
镉的毒性较大,被镉污染的空气和食物对人体危害严重,日本 因镉中毒曾出现“疼痛病”
镉会对呼吸道产生刺激,长期暴露会造成嗅觉丧失症、牙龈黄
斑或渐成黄圈,镉化合物不易被肠道吸收,但可经呼吸被体内 吸收,积存于肝或肾脏造成危害,尤以对肾脏损害最为明显。 还可导致骨质疏松和软化。
高光子吸收率转换效率高:CdTe薄膜太阳电池的理论光电转换
效率为( 28% )。 电池性能稳定: Cd与Te的结合能高达5.75eV,比太阳所有的 光谱都高,其键不会被破坏。 电池结构简单,制造成本低,工艺成熟,容易实现模组化。

1977年,p-CdTe/ITO电池效率10.5% 1987年, p-CdTe/ITO电池效率13.4%
1、CdTe太阳电池的发展历程
我国CdTe电池的研究工作开始于80年代初。
北太所(79年成立)——电沉积技术,1983年效率5.8%。 90年代后期四川大学——近空间升华,“ 十五 ”期间,列 入国家“ 863”重点项目,并要求建立0.5兆瓦/年的中试生产
1、CdTe太阳电池的发展历程


异质结CdTe发展:
1969年,开始研究 1970年,N型CdTe长上P型Cu2Te上薄膜电池(n-CdTe/p-Cu2Te)效率 >7%(稳定性不好) P型CdTe晶片上生长氧化物(In2O3:Sn(ITO), ZnO, SnO2)薄膜电池也受

bipv碲化镉组件 参数

bipv碲化镉组件 参数

bipv碲化镉组件参数BIPV碲化镉组件是一种能够将太阳能转化为电能的先进技术。

碲化镉是一种半导体材料,具有优异的光电转换性能。

该组件可以集成到建筑物的外墙、屋顶和窗户等部位,实现太阳能的高效利用,同时还起到了装饰的作用。

BIPV碲化镉组件具有多种优势。

首先,它可以充分利用建筑物的可用空间,将太阳能电池板融入到建筑结构中。

相比传统的太阳能电池板,BIPV组件更加美观,不会破坏建筑的整体外观。

其次,碲化镉材料具有高效的光电转换特性,可以将太阳能转化为电能的效率更高。

另外,BIPV组件还可以提供建筑物的遮阳、保温和隔音功能,增加了建筑的综合性能。

BIPV碲化镉组件在建筑领域有着广泛的应用前景。

首先,它可以广泛应用于商业建筑和住宅建筑中。

通过在建筑物的外墙和屋顶安装BIPV组件,可以为建筑物提供清洁的能源,减少对传统能源的依赖,降低能源消耗和碳排放。

其次,BIPV组件还可以应用于大型公共建筑和城市基础设施,如体育馆、火车站和停车场等。

通过利用这些大型建筑的外墙和屋顶空间,可以大规模地发挥太阳能的利用效益。

除了在建筑领域,BIPV碲化镉组件还可以应用于交通运输领域。

例如,可以将BIPV组件应用于汽车、火车和船只等交通工具的外壳上,通过吸收太阳能来为交通工具提供动力,实现绿色出行。

此外,BIPV组件还可以应用于道路和桥梁等交通设施的建设中,通过利用这些设施的空间来收集太阳能,为城市提供清洁能源。

尽管BIPV碲化镉组件具有巨大的应用潜力,但也面临一些挑战。

首先,碲化镉材料的生产成本相对较高,限制了该技术的推广应用。

其次,碲化镉材料在制造和处理过程中存在环境污染的问题,需要解决相关的环保难题。

此外,BIPV组件的性能稳定性和寿命还需要进一步提高,以满足长期使用的需求。

BIPV碲化镉组件作为一种高效利用太阳能的技术,具有广阔的应用前景。

它能够在建筑和交通领域中实现太阳能的高效利用,为建筑物和交通工具提供清洁能源。

碲化镉薄膜太阳能介绍

碲化镉薄膜太阳能介绍

碲化镉薄膜太阳能介绍引言随着能源紧缺和环境污染问题的日益严重,人们对可再生能源的需求越来越迫切。

太阳能作为最常见的一种可再生能源,具有广泛的应用前景。

在太阳能应用中,碲化镉薄膜太阳能因其高效率、低成本和便捷的制备工艺而备受关注。

本文将介绍碲化镉薄膜太阳能的原理、制备方法和其应用前景。

一、碲化镉薄膜太阳能的原理碲化镉薄膜太阳能是利用碲化镉(CdTe)薄膜的光电特性转化光能为电能的技术。

CdTe是一种半导体材料,具有较高的光电转换效率和较低的制备成本,因此在太阳能应用中得到了广泛研究和应用。

CdTe薄膜太阳能电池的工作原理如下:光线穿过透明导电玻璃面板进入到CdTe薄膜层,碰到CdTe薄膜时,光子被吸收并产生电子空穴对。

电子空穴对被电场分离,使电子向一侧流动,空穴向另一侧流动,形成电流。

此时,阳光中的光能就被转化为了电能。

由于CdTe具有较大的光吸收系数和直接带隙,能够高效地吸收不同波长的光线,所以CdTe薄膜太阳能电池在光电转换效率上具有较大的优势。

二、碲化镉薄膜太阳能的制备方法碲化镉薄膜太阳能的制备方法一般分为物理蒸发法和化学溶液法。

物理蒸发法是通过热蒸发技术将CdTe材料蒸发到基底上,形成薄膜。

该方法制备简单,但成本较高。

化学溶液法通过将CdTe溶液沉积到基底上,在经过热处理后生成薄膜。

这种方法具有成本低、工艺简单、易于批量生产等优点,因此在工业化生产中被广泛应用。

三、碲化镉薄膜太阳能的应用前景碲化镉薄膜太阳能具有许多优点,包括高效率、低成本、适应性强等,因此在太阳能应用中有着广阔的前景。

首先,碲化镉薄膜太阳能电池的光电转换效率高。

由于CdTe的直接带隙和高光吸收系数,使得其太阳能电池的光电转换效率可以达到较高水平。

其次,碲化镉薄膜太阳能的制备成本相对较低。

与其他太阳能电池相比,CdTe的制备工艺简单,成本相对较低,更适合大规模生产。

此外,碲化镉薄膜太阳能在柔性太阳能领域有着广泛的应用前景。

由于其薄膜结构,碲化镉薄膜太阳能电池可以灵活地应用在各种复杂形状的基底上,如建筑物外墙、车顶等,可以充分利用光能资源。

碲锌镉_碲化镉_概述及解释说明

碲锌镉_碲化镉_概述及解释说明

碲锌镉碲化镉概述及解释说明1. 引言1.1 概述本文旨在对碲锌镉(CdZnTe)和碲化镉(CdTe)这两种材料进行综述和解释说明。

碲锌镉是一种重要的半导体材料,具有广泛的应用领域,尤其在电子器件制造、医学影像和核辐射检测领域中具有重要作用。

同时,本文也将详细讨论了碲化镉的定义、结构以及其在电子器件中的应用。

1.2 文章结构本文将按照以下顺序来展开对碲锌镉和碲化镉的概述和解释说明:第一部分是引言,介绍文章的主题、目的以及整体结构安排;第二部分将对碲锌镉进行全面而深入地概述,包括其定义、性质以及应用领域;第三部分将集中讨论碲化镉的解释说明,包括其定义、结构、制备方法和工艺,以及在电子器件中的应用;最后一部分是结论,对碲锌镉和碲化镉进行总结,并展望未来发展趋势,并提出相关研究建议或改进措施等内容。

1.3 目的本文旨在提供关于碲锌镉和碲化镉的全面且深入的解释说明,从而帮助读者更好地理解这两种材料的定义、性质、应用以及制备方法。

同时,通过对未来发展趋势的展望和研究建议的提出,鼓励进一步探索和利用碲锌镉和碲化镉在各个领域中的潜力。

2. 碲锌镉的概述2.1 碲锌镉的定义碲锌镉(CZT)是一种重要的半导体材料,由碲、锌和镉元素组成。

它具有独特的晶体结构和物理化学性质,使得它在电子器件领域展现出极高的应用价值。

2.2 碲锌镉的性质碲锌镉具有多种优异性能。

首先,它是一种直接带隙半导体材料,其能隙约为1.44 eV至2.25 eV之间,可以通过控制配比实现不同带隙能量。

其次,碲锌镉具有较高的载流子迁移率和较低的雪崩倍增因子,这使得它在高速电子传输和辐射探测等方面表现出色。

此外,碲锌镉还具有较高的工作温度范围(室温至数百摄氏度),对辐射环境具有良好的适应性,并且对光谱响应范围广泛。

2.3 碲锌镉的应用领域由于碲锌镉独特的性质,它在众多领域具有广泛的应用。

首先,碲锌镉被广泛应用于高能物理实验和核医学领域中的辐射探测器件制造。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

砷化镓太阳能电池历史版本为了寻找单晶硅电池的替代品,人们除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。

其中主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。

上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。

砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。

GaAs 属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。

砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。

磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。

磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。

GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、III-V 比率、总流量等诸多参数的影响。

GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。

用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右),产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。

以硅片作衬底,用MOCVD技术异质外延方法制造GaAs电池是降低成本很有希望的方法。

已研究的砷化镓系列太阳电池有单晶砷化镓、多晶砷化镓、镓铝砷--砷化镓异质结、金属--半导体砷化镓、金属--绝缘体--半导体砷化镓太阳电池等。

砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法、直接拉制法、气相生长法、液相外延法等。

由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。

除GaAs外,其它III-V化合物如Gasb、GaInP等电池材料也得到了开发。

1998年德国费莱堡太阳能系统研究所制得的GaAs 太阳能电池转换效率为24.2%,为欧洲记录。

首次制备的GaInP电池转换效率为14.7%。

另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。

铜铟硒CuInSe2简称CIC。

CIS材料的能降为1.leV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。

因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。

CIS电池薄膜的制备主要有真空蒸镀法和硒化法。

真空蒸镀法是采用各自的蒸发源蒸镀铜、铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。

CIS 薄膜电池从80年代最初8%的转换效率发展到目前的15%左右。

日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积1cm2)。

1995年美国可再生能源研究室研制出转换效率为17.l%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。

预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。

CIS 作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。

唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。

多元化合物薄膜太阳能电池多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。

硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。

砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。

但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs电池的普及。

铜铟硒薄膜电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率和多晶硅一样。

具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。

唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。

一、概述CdTe是Ⅱ-Ⅵ族化合物半导体,带隙1.5eV,与太阳光谱非常匹配,最适合于光电能量转换,是一种良好的PV材料[1],具有很高的理论效率(28%)[2],性能很稳定,一直被光伏界看重,是技术上发展较快的一种薄膜电池。

碲化镉容易沉积成大面积的薄膜,沉积速率也高。

CdTe薄膜太阳电池通常以CdS /CdT e异质结为基础。

尽管CdS和CdTe和晶格常数相差10%,但它们组成的异质结电学性能优良,制成的太阳电池的填充因子高达 F F =0.75[3]。

制备CdTe多晶薄膜的多种工艺和技术已经开发出来,如近空间升华、电沉积、PVD、CVD、CBD、丝网印刷、溅射、真空蒸发等[4]。

丝网印刷烧结法:由含CdTe、CdS浆料进行丝网印刷CdTe、CdS 膜,然后在600~700℃可控气氛下进行热处理1h 得大晶粒薄膜. 近空间升华法:采用玻璃作衬底,衬底温度500~600℃,沉积速率10μm/min. 真空蒸发法:将CdTe 从约700℃加热钳埚中升华,冷凝在300~400℃衬底上,典型沉积速率1nm/s. 以CdTe 吸收层,CdS 作窗口层半导体异质结电池的典型结构:减反射膜/玻璃/(SnO2:F)/CdS/P-CdTe/背电极。

电池的实验室效率不断攀升,最近突16%。

20世纪90年代初,CdTe 电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在1%左右。

商业化电池效率平均为8%-10%[5]。

为了更好地、更系统地研究CdTe系太阳电池,本文简要介绍CdTe薄膜太阳能电池的国内外的研究进展与产业发展状况,以及存在的问题、制约因素等。

二、国外CdTe薄膜太阳能电池产业发展状况与趋势CdTe薄膜太阳电池是薄膜太阳电池中发展较快的一种光伏器件。

美国南佛罗里达大学于1993年用升华法在1cm2 面积上做出效率为15.8 %的太阳电池[6] , 随后,日本Matsushita Battery报道了CdTe基电池以CdTe 作吸收层,CdS 作窗口层的n-CdS/ P - CdTe 半导体异质结电池,其典型结构为MgF2/ 玻璃/ SnO2∶F/ n-CdS/ P- dTe/ 背电极,小面积电池最高转换效率16%[7],成为当时CdTe薄膜太阳能电池的最高纪录,近年来,太阳电池的研究方向是高转换效率、低成本和高稳定性. 因此,以CdTe为代表的薄膜太阳电池倍受关注,Siemens报道了面积为3600cm2电池转换效率达到11.1%的水平。

美国国家可再生能源实验室提供了Solar Cells lnc的面积为6879cm2CdTe薄膜太阳电池的测试结果,转换效率达到7.7%;Bp Solar的CdTe薄膜太阳电池,面积为4540cm2,效率为8.4%,面积为706cm2的太阳电池,转换效率达到10.1%;Goldan Photon的CdTe太阳电池,面积为3528cm2,转换效率为7.7%。

详细情况如表1[7-11]。

表1 CdTe 薄膜太阳电池参数表[7-11]小面积单体电池研究机构面积/cm2 开路电压/V 转换效率/%Matsushita 1.0 16USF 0.928 0.845 15.8SCI 0.27 0.839 13.3CSM 0.10 0.778 12.9NREL 0.69 0.823 12.8大面积单体电池研究机构面积/cm2 转换效率/% 功率/WBP Solar 4540 8.4 38.2SCI 6728 9.1 61GP 3528 7.7 27.2Matsushita 1200 8.7 10人们认为,CdTe 薄膜太阳电池是太阳能电池中最容易制造的,因而它向商品化进展最快. 提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层CdS 的厚度,可减少入射光的损失,从而增加电池短波响应以提高短路电流密度,较高转换效率的CdTe 电池就采用了较薄的CdS 窗口层而创了最高纪录.要降低成本,就必须将CdTe 的沉积温度降到550 ℃以下,以适于廉价的玻璃作衬底;实验室成果走向产业,必须经过组件以及生产模式的设计、研究和优化过程. 近年来,不仅有许多国家的研究小组已经能够在低衬底温度下制造出转换效率12%以上的CdTe 太阳电池,而且在大面积组件方面取得了可喜的进展,许多公司正在进行CdTe薄膜太阳电池的中试和生产厂的建设,有的已经投产.在广泛深入的应用研究基础上,国际上许多国家的CdTe薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产。

1998年美国的CdTe电池产量就为0.2MW,目前,美国高尔登光学公司(Golden Photo)在CdTe薄膜电池的生产能力为2MW[12],日本的CdTe电池产量为2.0MW。

德国ANTEC公司将在Rudisleben建成一家年产10MW的CdTe薄膜太阳电池组件生产厂,预计其生产成本将会低于$1.4/w。

该组件不但性能优良,而且生产工艺先进,使得该光伏组件具有完美的外型,能在建筑物上使用,既拓宽了应用面,又可取代某些建筑材料而使电池成本进一步降低。

BP Solar公司计划在Fairfield生产CdTe薄膜太阳电池。

而Solar Cells公司也将进一步扩大CdTe薄膜太阳电池生产。

三、国内CdTe薄膜太阳能电池产业发展状况与趋势碲化镉薄膜太阳电池的制造成本低,目前,已获得的最高效率为16%,是应用前景最好的新型太阳电池,它已经成为美、德、日、意等国研究开发的主要对象。

我国CdTe薄膜电池的研究工作开始于上世纪80年代初。

内蒙古大学采用蒸发技术、北京太阳能研究所采用电沉积技术(ED)研究和制备CdTe薄膜电池,后者研制的电池效率达到5.8%[13]。

80年代中期至90年代中期,研究工作处于停顿状态。

90年代后期,四川大学太阳能材料与器件研究所在冯良桓教授的带领下在我国开展了碲化镉薄膜太阳电池的研究,在“九五”期间,承担了科技部资助的科技攻关计划课题:“Ⅱ-Ⅵ族化合物半导体多晶薄膜太阳电池的研制”。

采用近空间升华技术研究CdTe薄膜电池,并取得很好的成绩。

相关文档
最新文档