高三数学复习专题数形结合

合集下载

高三数学复习专题之一解析几何

高三数学复习专题之一解析几何

高三数学复习专题之一----解析几何高考题目的分析解析几何是历届高考的热点和重点,它的基本特点是数形结合,是代数、三角、几何知识的综合应用.一般以四个小题、一个大题的结构出现,且大题往往是压轴题.纵观近几年高考试题有如下特征:(1)考查直线的基本概念,求在不同条件下的直线方程,判定直线的位置关系等题目,多以选择题、填空题形式出现;(2)中心对称与轴对称、充要条件多为基本题目;(3)考查圆锥曲线的基本知识和基本方法也多以选择题、填空题形式出现;(4)有关直线与圆锥曲线等综合性试题,通常作为解答题形式出现,有一定难度.一般情况是:给出几何条件,求曲线(动点的轨迹)方程;或利用曲线方程来研究诸如几何量的计算、直线与曲线的位置关系、最近(或最远)问题.但近几年的高考解析几何试题类型比较分散,每年都有不同.解题过程中的运算量有逐年降低的趋势,而解题过程中的思维量在增加.但万变不离其宗,常用的解题规律与技巧不变. 例①求圆锥曲线的有关轨迹方程时,要注意运用平面几何的基本知识特别是圆的知识,便于简化运算和求解;②在直线与圆锥曲线的有关问题中,要注意韦达定理和判别式的运用;③要注意圆锥曲线定义的活用.另外,解析几何的解答题也常在知识网络的交汇处出题,它具有一定的综合性,重点考察数形结合、等价转换、分类讨论、逻辑推理等能力.解析几何常与函数、不等式等建立联系.., ),0,1()3 ,)2 )1 , ,)0,(1:.12222222中点的轨迹方程求、为轴的端点为左准线的椭圆,其短为左焦点,以经过点设双曲线的方程;求双曲线截得的弦长为被直线若双曲线的值;的离心率求双曲线为等边,且右焦点两点、与两条渐近线交于右准线的离心率为设双曲线例BF F B l F C C ae b b ax y C e C PQF F Q P l e b a by a x C +=∆∆>=-. ),3 , 2(21的轨迹方程顶点求:当椭圆移动时其下为离心率,且过点轴为准线,以练习:设椭圆恰以P A x .)2( )1( 41)0,4( 02010.2222的方程求双曲线的渐近线方程;求双曲线上,又满足在线段点,且点轴交于两点,和、交于和双曲线,使的直线做斜率为过点相切,近线与圆的中心在原点,它的渐双曲线例G G PCPB PA AB P C y B A G l l P x y x G =⋅-=+-+最大值为多少?,多少时矩形的面积最大,当矩形的长与宽各是若矩形内接于曲线的方程求抛物线顶点轨迹轴为准线且以已知抛物线经过例 )2( ;)1( ),4,3(.3l l y A .)2( )1( )0,6( 8)0(2.42面积的最大值求求抛物线方程的垂直平分线通过定点又线段为焦点,且,、上有两动点设抛物线例AQB Q AB BF AF F B A p px y ∆=+>=。

高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +−=与曲线x =有两个交点,则实数m 的取值范围是( )A .0m <<B .0m ≤<C .0m <≤D .0m ≤【答案】B【解析】x =()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +−=必过定点()0,4, 当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点, 所以要使直线和曲线有两个交点,则0m ≤故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +−+=,则21y x ++的最大值是( )A B .116C .336D 【答案】D【解析】方程可化为()223x y −+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2−−连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=k =,所以21y x ++故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =−.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是( )A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =−=−−,作出()f x 的图像如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图像与x 轴有两个交点,则函数有2个零点; 当04m <<时,()()g x f x m =+的图像与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图像可知,()()g x f x m =+不可能有1个零点, 故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨−<⎩, 若函数()()()g x f x f x =−−,则函数()g x 的零点个数为( ) A .1 B .3 C .4 D .5【答案】D【解析】当0x >时,0x −<,()3f x x −=当0x <时,0x −>,()e xf x −−=()()()3e ,00,0e 3,0x x x x g x f x f x x x x −⎧−>⎪∴=−−==⎨⎪+<⎩,()()()()g x f x f x g x −=−−=−,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =−>,()3e 0x g x '=−>,令()3e 0x g x '=−>,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln3)3ln330g =−>,而()226e 0g =−<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=−< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞−上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x −R 为偶函数,当1x ≥−时,()31xf x −=−,则函数()()12g x f x =−的零点个数为( )A .0B .1C .2D .4【答案】D【解析】令310x −−≥解得0x ≤,令310x −−<解得0x >, 所以当1x ≥−时,()11,1033111,03xxxx f x x −⎧⎛⎫−−≤≤⎪ ⎪⎪⎝⎭=−=⎨⎛⎫⎪−+> ⎪⎪⎝⎭⎩, ()1f x −为偶函数,所以()1f x −的图像关于y 轴对称,所以()f x 的图像关于直线=1x −轴对称, 故作出()f x 的图像如下,令()()102g x f x =−=,即()12f x =, 由图像可知,()f x 的图像与12y =的图像共有四个交点, 所以函数()()12g x f x =−的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x −是奇函数,当01x 剟时,有()f x =()(2021)y f x k x =−−的零点个数为5,则实数k 取值范围是( ) A .15<2<1kB .16<3<1kC k k =D .k <k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴−=,(1)f x −是奇函数,得(1)(1)f x f x −=−−−,即 ()(2)f x f x =−−−,(2)()f x f x −−−=−,得4T =,()(2021)0f x k x −−=,即()y f x =与(2021)y k x =−的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =−的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,213k k k ==k k =故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12xx f x x x ⎧<<⎪=⎨−+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca++的取值范围是( ) A .20,93⎛⎫⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭ D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤−+=−⎣⎦,∴ln 2y x =与()ln 2ln2y x =−+的图像关于直线1x =对称,作出()f x 的大致图像如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b −=,ln 40ab =,得14ab =, ∵112b <<,∴11124a<<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====−−. 设81t a =−, 则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭. 17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==, 故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭. 故选:A 二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x yE a b a b−=>>的左、右焦点,过1F 作倾斜角为30的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是( )A .2160PF F ∠=,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确; 由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠=,2c =)222c a ac −=220e −,解得:e =C 正确;所以==c e a 223c a =,所以22222b c a a =−=,所以ba= 所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F l 与抛物线交于,P Q 两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是( ) A .32||3PQ =B .AB =C .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF = 【答案】ABC【解析】设直线PQ 的方程为:y x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,;所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,,所以A (0,,B (0,,所以|AB =, 选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |, 所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时, |MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =, 所以072pMF x =+=,选项D 错误. 故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD −中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE与BF AF 的值可能为( ) A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD ⊥ 又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD = 所以AO ⊥平面BCD ,由BD CD ⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A −−,所以12E ⎛− ⎝⎭.设()F a ,则12DE ⎛= ⎝⎭,()BF a =−,则28=13a =−或23a =−, 故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅=,则||AG uuu r的可能取值为( )A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===, 则2211()()3323AG AD AB AC AB AC ==⨯+=+, 222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++,又1cos6022AB AC bc bc ⋅=︒==,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即233AG ≥CD 满足. 故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为( )A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==−,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333tAG AB AC AM AN λλ+=+=+, M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=−, 所以12AC AN λ⎛⎫=− ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯, 即112029λλλ+⎛⎫⎛⎫−=⎪⎪⎝⎭⎝⎭,化简得22990λλ−+=,解得32λ=或3. 故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯,()b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯的模sin ,a b a b a b ⨯=,(,a b 表示向量a ,b 的夹角). 在正方体1111ABCD A B C D −中,有以下四个结论,正确的有( )A .11AB AC AD DB ⨯=⨯ B .111AC A D ⨯与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒,则111sin ,2AB AC AB AC AB AC ⨯===, 因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒,所以111sin ,2AD DB AD DB AD DB ⨯=== 所以11AB AC AD DB ⨯=⨯,所以A 正确;对于B ,1111AC B D ⊥,111AC BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11AC ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD AC ⊥,同理可证11BD A D ⊥, 再由右手系知,111AC A D ⨯与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯构成右手系知,a b ⨯与b a ⨯方向相反, 又由a b ⨯模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯, 所以a b ba ⨯=−⨯,则AB AD AD AB ⨯=−⨯,所以C 错误; 对于D ,正方体棱长为a ,266sin 456BC AC BC AC a a ⨯=⋅︒=⨯, 正方体表面积为26a ,所以D 对. 故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +−−+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛− ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =−,()()min 21f x f =−=−,两零点为1,3x x =−=−;当0x >时,()411f x x =−+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >−; 由此作出()f x 的图像如图,.令()t f x =,则当13t −<<时,()t f x =有三个实数根,因为()()()2[]2110f x m f x m +−−+=有6个不同的实数根,所以()22110t m t m +−−+=必须有两个不等实根12,t t ,且()21,1,3t t ∈−,令()()2211g t t m t m =+−−+,则()()103021132Δ0g g m ⎧−>⎪>⎪⎪⎨−−<−<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧−−−+>⎪+−−+>⎪⎨−<−<⎪⎪−−−+>⎩,解得75m −<<7,5m ⎛∈− ⎝⎭.故答案为:7,5⎛− ⎝⎭. 15.(2023春·全国·高一期末)已知函数241,1()log 3,1xx f x x x ⎧−⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=−++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =−++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图像与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意; 当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=−−+<⎪⎩,解得12t >. 综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一) 【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()314f x x m π⎛⎫=++− ⎪⎝⎭在3,04π⎡⎤−⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______. 【答案】53π−【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫++− ⎪⎝⎭的零点为函数()314g x x π⎛⎫++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤−⎢⎥⎣⎦上的大致图像:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z , 令1k =−,得4x π=−,则由图知2322=4x x ππ⎛⎫+=⨯−− ⎪⎝⎭,令2k =−,得712x π=−,则由图知12772=126x x ππ⎛⎫+=⨯−− ⎪⎝⎭, 故123752263x x x πππ++=−−=−. 故答案为:53π−﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m −=与直线2y x =无交点,则m 的取值范围是_____. 【答案】(]0,16【解析】依题意,由22:14x y C m −=可得0m >,双曲线C 的渐近线方程为y =,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈. 故答案为:(]0,16..。

高三数学专题复习 函数(4)函数求参数范围问题解决方法及针对性练习 试题

高三数学专题复习 函数(4)函数求参数范围问题解决方法及针对性练习 试题

心尺引州丑巴孔市中潭学校芝罘区数学函数求参数范围问题解决方法及针对性练习2021年高三专题复习-函数专题〔4〕一、变换“主元〞思想,适用于一次函数型处理含参不等式恒成立的某些问题时,假设能适时的把主元变量和参数变量进行“换位〞思考,往往会使问题降次、简化。

例1.对于满足04≤≤p 的一切实数p ,不等式x 2+px>4x+p-3恒成立,求x 的取值范围.分析:习惯上把x 当作自变量,记函数y= x 2+(p-4)x+3-p,于是问题转化为当p []4,0∈时y>0恒成立,求x 的范围.假设把x 与p 两个量互换一下角色,即p 视为变量,x 为常量,那么上述问题可转化为在[0,4]内关于p 的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x 2-4x+3,当x=1显然不满足题意.由题设知当04≤≤p 时f(p)>0恒成立,∴f(0)>0,f(4)>0即x 2-4x+3>0且x 2-1>0,解得x>3或x<-1.∴x 的取值范围为x>3或x<-1. 例2.对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x恒成立,求x 的取值范围。

答案:),3()1,(+∞-∞ 。

例3.假设不等式)1x (m 1x 22->-,对满足2m 2≤≤-所有的x 都成立,求x 的取值范围。

答案:⎪⎪⎭⎫ ⎝⎛++-231271, 注:一般地,一次函数)0()(≠+=k b kx x f 在],[βα上恒有0)(>x f 的充要条件为⎩⎨⎧>>0)(0)(βαf f 。

二、别离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行别离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。

例1.假设对于任意角θ总有sincos 22410θθ++-<m m 成立,求m 的范围.〔注意分式求最值得方法〕分析与解:此式是可别离变量型,由原不等式得m (cos )cos 242θθ+<,又cos θ+>20,那么原不等式等价变形为222m <+cos cos θθ恒成立.即2m 必须小于cos cos 22θθ+的最小值,问题化归为求cos cos 22θθ+的最小值.因为cos cos 22θθ+2cos 4)2(cos 4)2(cos 2+++-+=θθθ4cos 24440cos 2θθ=++-≥-=+ 即cos θ=0时,有最小值为0,故m <0.例2.函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。

高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。

高三数学专题复习11:数形结合思想

高三数学专题复习11:数形结合思想

专题十一 数形结合思想一、考点回顾1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。

它可以使抽象的问题具体化,复杂的问题简单化。

“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。

2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。

3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。

4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。

5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。

用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。

二、经典例题剖析1.选择题(1)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞解析:因为()g x 是二次函数,值域不会是A 、B ,画出函数()y f x =的图像(图1)易知,当()g x 值域是[)0+,∞时,(())f g x 的仁政域是[)0+,∞,答案:C 。

数形结合思想在函数中的运用

数形结合思想在函数中的运用

题型四、与数形结合有关的综合问题
例 4:已知函数 f ( x) lg x ,若存在互不相等的实数 a , b ,使得
f (a) f (b) ,求 ab 的值.
lg x , 0 x 10 变式:已知函数 f ( x) 1 ,若实数 a, b, c 互 x 6, x 10 2
题型二、比较数的大小问题
例 2:若 a 30.6 , b log3 0.6 , c 0.6 3 ,则 a, b, c 的大小关系为 (用“ ”连接)
变式:已知函数 f ( x) 2x x , g ( x) x log2 x , h( x) x3 x 的 零点分别为 a, b, c ,则 a, b, c 的大小关系为 .
镇江市实验高级中学2014届高三数学二轮复习
数形结合思想在函数中的运用
数形结合是通过“以形助数” (将所研究的代数问题转化 为研究其对应的几何图形)或“以数解形” (借助数的精确性 来阐明形的某种属性) ,把抽象的数学语言与直观的图形结合 起来思考,也就是将抽象思维与形象思维有机地结合起来, 解决问题的一种数学思想方法.它能使抽象问题具体化,复杂 问题简单化,在数学解题中具有极为独特的策略指导和调节 作用.
.
题型三、求函数的最值与参变量的范围问题
1 例 3:记 min a, b 为 a , b 两数的最小值.若 t min x, ,则 2x
t 的最大值为
变式:已知函数 y
.
x 1
2
x 1
的图象与函数 y kx 2 的图象恰有两个 .
交点,则 k 的取值范围为
具体地说,数形结合的基本思路是:根据数的结构 特征,构造出与之相应的几何图形,并利用图形的特性 和规律,解决数的问题;或将图形信息全部转化为代数 信息,使解决形的问题转化为数量关系的讨论.

2-1-18直接对照型、概念辨析型、数形结合型

2-1-18直接对照型、概念辨析型、数形结合型

第十八讲 直接对照型、概念辨析型、数形结合型
数学(理) 第12页 新课标· 高考二轮总复习
好方法好成绩
1.直接对照法: 直接对照型选择题是直接从题设条件出发,利用已 知条件、相关概念、性质、公式、公理、定理、法则等 基础知识,通过严谨推理、准确运算、合理验证,从而 直接得出正确结论,然后对照题目所给出选项“对号入 座”,从而确定正确的选择支.这类选择题往往是由计 算题、应用题或证明题改编而来,其基本求解策略是由 因导果,直接求解.
数学(理) 第4页 新课标· 高考二轮总复习
考情分析
选择题的知识覆盖面广、概括性强、题型灵活多变, 每道选择题所考查的知识点的个数一般为2~5个,因此 选择题考查的知识点可达到40多个,这是其他题型难以 考查到的.
数学(理) 第5页 新课标· 高考二轮总复习
考情分析
2.选择题的解答原则和要求 选择题属于客观性试题,同填空题一样属于“小 题”.其解题的基本原则是:小题小做,不能小题大做, 力争小题巧做.
数学(理) 第21页 新课标· 高考二轮总复习
类型二 【例 2】
概念辨析法 已知非零向量 a=(x1,y1),b=(x2,y2),
给出下列条件:①a=kb(k∈R);②x1x2+y1y2=0;③(a +3b)∥ (2a-b);④a· b=|a||b|;⑤x2y2+x2y2≤2x1x2y1y2. 1 2 2 1 其中能够使得 a∥b 的个数是( A.1 C.3 B.2 D.4 )
x
1 x f(x)= , 在同一坐标系下分别 2
1 x y= 的图象,如图所示.可以发现其 2 1 x f(x)= 有两个实数根.故选 2
图象有两个交点,因此方程 C.
[答案]

《“数形结合”思想在高中数学中的应用》ppt课件

《“数形结合”思想在高中数学中的应用》ppt课件

B. 2个 D. 1个或2个或3个
6
一.与方程有关的问题
例1 已知0 a 1,则方程a|x| | log a x |的实根个数为B()
A. 1个
B. 2个
C. 3个
D. 1个或2个或3个
解析:判断方程的根的个数就是判断图象 y a|x|与y | loga x |
的交点个数,画出两个函数图象,易知两图象只有两个交 点.故方程有2个实根,选(B)。
高三数学第二轮专题复习
“数形结合”思想 在高中数学中的应用
1
x1 x
考题热身
r
已知向量a (cos 75o,sin 75o),
r
b (cos15o,sin15o),
x1 x
rr
求 a b 的值等于多少?
rr 答案:a b 1
2
数形结合思想
复习目标
数学:数量关系、空间形式 数形结合:以形助数、以数解形 复杂问题简单化、抽象问题具体化
值范围
答案
2. 已知复数z满足6|、z 2 2i | 2则,|z|的最大值为
答案
3.若关于x的方程x 2 – 4|x| + 5 = m有四个不相等的实根 则实数m的取值范围为____ 答案
4.若不等式 4x x2 (a 1)x 的解集为A,且A {x | 0x
2},求a的取值范围。 答案
22
1.若方程lg(kx)=2lg(x+1)只有一个实数解,求常数 k的取值范围 {k|k≥4或k<0}
解析:方程lg(kx)=2lg(x+1)的解 等价于两线交点
y=kx, (y>0)
如图:
y
y=(x+1)2 , (x>-1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题讲座: 数形结合一、填空题例1曲线241x y -+=(22≤≤-x )与直线()24-=-x k y 有两个交点时,实数k 的取值范围是 【答案】:53,124⎛⎤⎥⎝⎦ 【提示】曲线为圆的一部分,直线恒过定点M (2,4),由图可得有两个交点时k 的范围。

例2已知平面向量,(0,)αβααβ≠≠满足1,β=且αβα-与的夹角为120︒,则α的取值范围是 【答案】:2303α<≤【提示】作出草图,由1sin sin 60Bα︒=,故α=23sin 3B 又0120B ︒︒<<0sin 1B ∴<≤,2303α∴<≤例3已知向量(2, 0)OB =,(2, 2)OC =, (2cos , 2sin ),CA αα=则OA 与OB 夹角的范围为 【答案】:]125,12[ππ 【提示】因2(cos ,sin ),CA αα=说明点A 的轨迹是以(2, 2)C 为圆心,2为半径的圆,如图,则OA 与OB 夹角最大是5,4612πππ+=最小是4612πππ-=例4若对一切R θ∈,复数(cos )(2sin )z a a i θθ=++-的模不超过2,则实数a 的取值范围为【答案】:55,55⎡⎤-⎢⎥⎣⎦【提示】复数的模22(cos )(2sin )2z a a θθ=++-≤,可以借助单位圆上一点(cos ,sin )θθ-和直线2y x =的一点(,2)a a 的距离来理解。

x xyM例5若11||2x a x -+≥对一切0x >恒成立,则a 的取值范围是【答案】:(,2]-∞ 【提示】分别考虑函数1y x a =-和2112y x =-+的图像例6 已知抛物线()y g x =经过点(0,0)O 、(,0)A m 与点(1,1)P m m ++,其中0>>n m ,a b <,设函数)()()(x g n x x f -=在a x =和b x =处取到极值,则n m b a ,,,的大小关系为 【答案】b n a m <<<【提示】由题可设()(),(0)g x kx x m k =->,则()()()f x kx x m x n =--,作出三次函数图象即可。

例7若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 【答案】:0k <或4k =【提示】:研究函数1y kx =(10y >)和函数22(1),(1)y x x =+>-的图像例8已知函数2 1()(2) 1ax bx c x f x f x x ⎧++≥-=⎨--<-⎩,其图象在点(1,(1)f )处的切线方程为21y x =+,则它在点(3,(3))f --处的切线方程为 【答案】:230x y ++= 【提示】:由()(2)f x f x =--可得()f x 关于直线1x =-对称,画出示意图(略),(1,(1)f )和(3,(3))f --为关于直线1x =-的对称点,斜率互为相反数,可以快速求解。

例9直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是__________【答案】:514a <<【提示】研究22,0,0x x a x y x x a x ⎧-+≥⎪=⎨++<⎪⎩,作出图象,如图所示.此曲线与y 轴交于(0,)a 点,最小值为14a -,要使1y =与其有四个交点,只需114a a -<<,∴514a <<例10已知:函数()f x 满足下面关系:①(1)(1)f x f x +=-; ②当[]1,1x ∈-时,2()f x x =.则方程()lg f x x =解的个数是【答案】:9【提示】:由题意可知,()f x 是以2为周期,值域为[0,1]的函数. 画出两函数图象,则交点个数即为解的个数.又∵lg101=, ∴由图象可知共9个交点.例11设定义域为R 函数⎩⎨⎧=≠-=1011lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是 【答案】:0,0c b =< 【提示】:由)(x f 的图象可知要使方程有7个解,应有0)(=x f 有3个解,0)(≠x f 有4个解。

0,0<=∴b c例12已知a 是实数,函数()22f x a x x a =+-,若函数()y f x =有且仅有两个零点,则实数a 的取值范围是_____________【答案】:(-∞,-1)∪(1,+∞)【提示】易知0,()0a f x ≠=由,即220a x x a +-=,变形得112x x a-=-,分别画出函数112y x =-,21y x a=-的图象(如图所示),由图易知: 当101a <-<或110a-<-<时,1y 和2y 的图象有两个不同的交点,∴当1a <-或1a >时,函数()y f x =有且仅有两个零点。

例13已知1,1,m n ≥≥且2222loglog log ()log ()2aa a a m n am an +=+-,(1)a >,则log ()a mn 的最大值为【答案】:222+【提示】令log ,log a a x m y n ==,这时问题转化为:22(1)(1)4,(0,0)x y x y -+-=≥≥,求x y +的最值.例14函数246u t t =++-的值域是 【答案】:22,26⎡⎤⎣⎦【提示】可令24,6x t y t =+=-消去t得:22216(04,022),x y x y +=≤≤≤≤所给函数化为含参数u 的直线系y =-x +u ,如图知min 22u =,当直线与椭圆相切于第一象限时u 取最大值,此时由方程组22216y x u x y =-+⎧⎨+=,则22342160x ux u -+-=,由026,u ∆=⇔=±因直线过第一象限,max 26u ∴=,故所求函数的值域为22,26⎡⎤⎣⎦y224x例15已知定义在R 上的函数()y f x =满足下列三个条件:①对任意的x R ∈都有(4)()f x f x +=;②对任意的1202x x ≤<≤,都有12()()f x f x <;③(2)y f x =+的图象关于y 轴对称.则(4.5),(6.5),(7)f f f 的大小关系是 【答案】:(4.5)(7)(6.5)f f f <<.【提示】由①:4T =;由②:()f x 在[]0,2上是增函数;由③:(2)(2)f x f x -+=+,所以()f x 的图象关于直线2x =对称.由此,画出示意图便可比较大小.例16关于曲线C :221x y --+=的下列说法:①关于原点对称;②关于直线0x y +=对称;③是封闭图形,面积大于π2;④不是封闭图形,与圆222x y +=无公共点;⑤与曲线D :22x y +=的四个交点恰为正方形的四个顶点,其中正确的序号是 【答案】:①②④⑤【提示】研究曲线C :221x y --+=的图像,与坐标轴没有交点,不是封闭图形,且2x →+∞ 时,21y →;2y →+∞时21x →,作出草图即可二、解答题例17设a a >≠01且,试求方程)(log )(log 222a x ak x a a -=-有解时k 的取值范围:【提示】将原方程化为log ()log a a x ak x a -=-22∴-=-x ak x a 22,且x ak x a ->->0022, 令y x ak 1=-,它表示倾角为45︒的直线系,y 10>令y x a 222=-,它表示焦点在x 轴上,顶点为()()-a a ,,,00的等轴双曲线在x 轴上方的部分,y 20> 原方程有解 ∴两个函数的图象有交点,由图像知->ak a 或-<-<a ak 0 ∴<-<<k k 101或k ∴的取值范围为()()-∞-,,101例18已知函数),2,(12131)(23-≥∈+++=b R b a bx ax x x f 且、当]2,2[-∈x 时,总有0)(≤'x f .(Ⅰ)求函数f (x )的解析式;(Ⅱ)设函数)(6)(3)(2R m x mx x f x g ∈-+-=,求证:当]1,0[∈x 时,1|)(|≤'x g 的充要条件是31≤≤m .【提示】(Ⅰ)由条件,得b ax x b x a x x f ++=+⋅+⋅='22221331)(, 当]2,2[-∈x 时,总有0)(≤'x f ,结合2()f x x ax b '=++的图像,所以有⎪⎩⎪⎨⎧≤++≤+-⇔⎪⎩⎪⎨⎧≤'≤-'.022,022.0)2(,0)2(b a b a f f 由①+②得,2024-≤⇒≤+b b ,又2b ≥-,∴2b =-,把2b =-代入①和②得 .0.0,0.0222,0222=⇒⎩⎨⎧≤≥⇒⎪⎩⎪⎨⎧≤-+≤--a a a a a 因此1231)(3+-=x x x f(Ⅱ)36)1231(3)(2323-+-=-++--=mx x x mx x x x g ,mx x x g 23)(2+-='是关于x 的二次函数,借助()y g x '=的图像(略)当]1,0[∈x 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧≤='≤≤≤+-='⇔≤';13|)3(|,130,1|23||)1(|1|)(|2m m g m m g x g 或⎪⎪⎩⎪⎪⎨⎧≤='>≤+-=';10|)0(|,13,1|23||)1(|g mm g 或⎪⎪⎩⎪⎪⎨⎧≤='<≤+-='.10|)0(|,03,1|23||)1(|g m m g 解得,31≤≤m 因此,当]1,0[∈x 时,1|)(|≤'x g 的充要条件是31≤≤m例19已知函数2()3f x x x =-,[]0,x m ∈,其中m R ∈,且0m >. (1) 如果函数()f x 的值域是[]0,2,试求m 的取值范围;(2) 如果函数()f x 的值域是20,m λ⎡⎤⎣⎦,试求实数λ的最小值.【提示】先考虑2()3f x x x =-,0x ≥的情形则333,(03)()3,(3)x x x f x x x x ⎧-≤≤⎪=⎨->⎪⎩当03x ≤≤时,由2()330f x x '=-=得1x =,所以()f x 在[]0,1上是增函数,在1,3⎡⎤⎣⎦上是减函数.当3x >时,由2()330f x x '=->,所以()f x 在)3,⎡+∞⎣上是增函数.所以当0,3x ⎡⎤∈⎣⎦时,函数()f x 的最大值是(1)2f =,最小值是(0)(3)0f f ==① ②从而01m <<均不符合题意,且13m ≤≤均符合题意.当3m >时,在0,3x ⎡⎤∈⎣⎦时,[]()0,2f x ∈;在(3,x m ⎤∈⎦时,[]()0,()f x f m ∈.这时()f x 的值域是[]0,2的充要条件是()2f m ≤,即332m m -≤,,解得32m <≤.综上所述,m 的取值范围是[]1,2(2)由(1)知,①当01m <<时,函数()f x 的最大值是3()3f m m m =-,由题意知323m m m λ-=,即3m mλ=-,容易得()m λ是减函数,故λ的取值范围是()2,+∞;②当12m ≤≤时,函数()f x 的最大值是(1)2f =,由题意知,22m λ=,即22m λ=且是减函数,故λ的取值范围是1,22⎡⎤⎢⎥⎣⎦;③当2m >时,函数()f x 的最大值是3()3f m m m =-,由题意知,323m m m λ-=,即3m m λ=-且是增函数,故λ的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.综上所述,λ的最小值是12,且此时2m =.例20已知函数1)(2-=x x f ,|1|)(-=x a x g .⑴若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; ⑵若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围;⑶求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果......,不需给出演算......步骤..). 【提示】(1)方程|()|()f x g x =,即2|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的解或无解 ,结合图形得0a <.(2)(2)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立, ①当1x =时,(*)显然成立,此时a ∈R ;②当1x ≠时,(*)可变形为21|1|x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ϕ+>⎧-==⎨-+<-⎩ 因为当1x >时,()2x ϕ>,当1x <时,()2x ϕ>-,故此时2a -≤. 综合①②,得所求实数a 的取值范围是2a -≤.(3)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2221,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ⎧+--⎪--++-<⎨⎪-+-<-⎩≤≥① 当1,22aa >>即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增, 且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +.② 当01,22a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a-上递减,在[1,]2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++,经比较,知此时()h x 在[2,2]-上的最大值为33a +.③ 当10,02a a -<<即-2≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a-上递减,在[1,]2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++,经比较,知此时()h x 在[2,2]-上的最大值为3a +.④ 当31,222a a -<-<-即-3≤≤时,结合图形可知()h x 在[2,]2a -,[1,]2a-上递减,在[,1]2a ,[,2]2a-上递增,且(2)330h a -=+<, (2)30h a =+≥,经比较,知此时()h x 在[2,2]-上的最大值为3a +. 当3,322a a <-<-即时,结合图形可知()h x 在[2,1]-上递增,在[1,2]上递减, 故此时()h x 在[2,2]-上的最大值为(1)0h =.综上,当0a ≥时,()h x 在[2,2]-上的最大值为33a +;当30a -<≤时,()h x 在[2,2]-上的最大值为3a +; 当3a <-时,()h x 在[2,2]-上的最大值为0.。

相关文档
最新文档