实验2:函数的应用
实验2 多元函数积分学(基础实验)

项目三 多元函数微积分实验2 多元函数积分学(基础实验)实验目的掌握用Mathematica 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.基本命令1. 计算重积分的命令lntegrate 和NIntegrate 例如,计算dydx xy x ⎰⎰102, 输入Integrate[x*y^2,{x,0,1},{y,0,x}]则输出 151又如,计算dydx xy )sin(10102⎰⎰的近似值, 输入NIntegrate[Sin[x*y^2],{x,0,1},{y,0,1}] 则输出 0.160839注: Integrate 命令先对后边的变量积分.计算三重积分时,命令Integrate 的使用格式与计算二重积分时类似. 由此可见, 利用 Mathematica 计算重积分, 关键是确定各个积分变量的积分限. 2. 柱坐标系中作三维图形的命令CylindricalPlot3D使用命令Cylindricalplot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.使用命令Cylindricalplot3D 时,一定要把z 表示成r ,θ的函数. 例如,在直角坐标系中方 程22y x z +=是一旋转抛物面, 在柱坐标系中它的方程为2r z =. 因此,输入 CylindricalPlot3D[r^2,{r,0,2},{t,0,2Pi}] 则在柱坐标系中作出了该旋转抛物面的图形.3. 球面坐标系中作三维图形命令SphericalPlot3D使用命令SphericalPlot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.命令SphericalPlot3D 的基本格式为SphericalPlot3D[r[],θϕ, {}],,{},,,2121θθθϕϕϕ其中r[],θϕ是曲面的球面坐标方程, 使用时一定要把球面坐标中的r 表示成ϕ、θ的函数. 例如,在球面坐标系中作出球面,22222=++z y x 输入Sphericalplot3D[2,{u,0,pi},|v,0,2,pi|,plotpoints->40]则在球面坐标系中作出了该球面的图形. 4. 向量的内积用“.”表示两个向量的内积. 例如,输入 vecl={al,bl,cl} vec2={a2,b2,c2}则定义了两个三维向量, 再输入 vec1. vec2 则得到它们的内积a1a2+b1b2+c1c2实验举例计算重积分 例2.1 (教材 例2.1) 计算,2dxdy xy D⎰⎰其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.先作出区域D 的草图, 易直接确定积分限,且应先对x 积分, 因此, 输入 Integrate[x*y^2,{y,1,2},{x,2-y,Sqrt[y]}] 则输出所求二重积分的计算结果.120193例2.2 (教材 例2.2) 计算,)(22dxdy e Dy x⎰⎰+- 其中D 为.122≤+y x如果用直角坐标计算, 输入Clear[f,r];f[x,y]=Exp [-(x^2+y^2)];Integrate[f[x,y],{x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}]则输出为dx x 1Erf e 211x 2⎥⎦⎤⎢⎣⎡-π⎰--其中Erf 是误差函数. 显然积分遇到了困难.如果改用极坐标来计算, 也可用手工确定积分限. 输入Integrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出所求二重积分的计算结果eπ-π 如果输入NIntegrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出积分的近似值1.98587例2.3 (教材 例2.3) 计算dxdydz z y x)(22++⎰⎰⎰Ω, 其中Ω由曲面222y x z --=与22y=围成.xz+先作出区域Ω的图形. 输入g1=ParametricPlot3D[{Sqrt[2]*Sin[fi]*Cos[th],Sqrt[2]*Sin[fi]*Sin[th], Sqrt[2]*Cos[fi]},{fi,0,Pi/4},{th,0,2Pi}]g2=ParametricPlot3D[{z*Cos[t],z*Sin[t],z},{z,0,1},{t,0,2Pi}]Show[g1,g2,ViewPoint->{1.3,-2.4,1.0}]则分别输出三个图形(图2.1(a), (b), (c)).考察上述图形, 可用手工确定积分限. 如果用直角坐标计算, 输入 g[x_,y_,z_]=x^2+y^2+z;Integrate[g[x,y,z],{x,-1,1},{y,-Sqrt[1-x^2], Sqrt[1-x^2]},{z,Sqrt[x^2+y^2],Sqrt[2-x^2-y^2]}] 执行后计算时间很长, 且未得到明确结果.现在改用柱面坐标和球面坐标来计算. 如果用柱坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Cos[s],y->r*Sin[s]})*r,{r,0,1},{s,0,2Pi},{z,r,Sqrt[2-r^2]}]则输出π⎪⎪⎭⎫⎝⎛+-15281252 如果用球面坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Sin[fi]*Cos[t],y->r*Sin[fi]*Sin[t],z->r*Cos[fi]})*r^2*Sin[fi],{s,0,2Pi},{fi,0,Pi/4},{r,0,Sqrt[2]}]则输出π⎪⎪⎭⎫ ⎝⎛+-321662551这与柱面坐标的结果相同.重积分的应用例2.4 求由曲面()y x y x f --=1,与()222,y x y x g --=所围成的空间区域Ω的体积.输入Clear[f,g];f[x_,y_]=1-x -y;g[x_,y_]=2-x^2-y^2;Plot3D[f[x,y],{x,-1,2},{y,-1,2}] Plot3D[g[x,y],{x,-1,2},{y,-1,2}] Show[%,%%]一共输出三个图形, 最后一个图形是图2.1.首先观察到Ω的形状. 为了确定积分限, 要把两曲面的交线投影到Oxy 平面上输入 jx=Solve[f[x,y]==g[x,y],y] 得到输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-++→⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-+-→22445121,445121x x y x x y为了取出这两条曲线方程, 输入 y1=jx[[1,1,2]] y2=jx[[2,1,2]] 输出为⎪⎭⎫ ⎝⎛-+-2445121x x⎪⎭⎫ ⎝⎛-++2445121x x再输入tu1=Plot[y1,{x,-2,3},PlotStyle->{Dashing[{0.02}]},DisplayFunction->Identity];tu2=Plot[y2,{x,-2,3},DisplayFunction->Identity]; Show[tu1,tu2,AspectRatio->1, DisplayFunction-> $DisplayFunction]输出为图2.2, 由此可见,1y 是下半圆(虚线),2y 是上半圆,因此投影区域是一个圆.设21y y =的解为1x 与2x ,则21,x x 为x 的积分限. 输入 xvals=Solve[y1==y2,x]输出为 ()()⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→⎭⎬⎫⎩⎨⎧-→6121,6121x x 为了取出21,x x , 输入x1=xvals[[1,1,2]]x2=xvals[[2,1,2]]输出为()6121- ()6121+ 这时可以作最后的计算了. 输入V olume=Integrate[g[x,y]-f[x,y],{x,x1,x2},{y,y1,y2}]//Simplify 输出结果为 89π例2.5 (教材 例2.4) 求旋转抛物面224y x z --=在Oxy 平面上部的面积.S 先调用软件包, 输入<<Graphics`ParametricPlot3D` 再输入CylindricalPlot3D[4-r^2,{r,0,2},{t,0,2 Pi}] 则输出图2.3.利用计算曲面面积的公式⎰⎰++=xyD y z dxdy z z S 221, 输入Clear[z,z1];z=4-x^2-y^2;z=Sqrt[D[z,x]^2+D[z,y]^2+1]输出为22441y x ++, 因此,利用极坐标计算. 再输入z1=Simplify[z/.{x->r*Cos[t],y->r*Sin[t]}]; Integrate[z1*r,{t,0,2 Pi},{r,0,2}]//Simplify则输出所求曲面的面积()π1717161+-例2.6 在Oxz 平面内有一个半径为2的圆, 它与z 轴在原点O 相切, 求它绕z 轴旋转一周所得旋转体体积.先作出这个旋转体的图形. 因为圆的方程是,422x z x =+它绕z 轴旋转所得的圆环面的方程为)(16)(222222y x z y x +=++,所以圆环面的球坐标方程是.sin 4φ=r 输入SphericalPlot3D[4 Sin[t],{t,0,Pi},{s,0,2 Pi},PlotPoints->30,ViewPoint->{4.0,0.54,2.0}]输出为图2.4.图2.4这是一个环面, 它的体积可以用三重积分计算(用球坐标). 输入 Integrate[r^2*Sin[t],{s,0,2 Pi},{t,0,Pi},{r,0,4 Sin[t]}] 得到这个旋转体的体积为216π计算曲线积分例2.7 (教材 例2.5) 求⎰Lds z y x f ),,(, 其中(),10301,,2y x z y x f ++=积分路径为L :,3,,22t z t y t x ===.20≤≤y注意到,弧长微元dt z y x ds t t t 222++=, 将曲线积分化为定积分,输入 Clear[x,y,z];luj={t,t^2,3t^2}; D[luj,t]则输出z y x ,,对t 的导数 }6,2,1{t t再输入ds=Sqrt[D[luj,t].D[luj,t]];Integrate[(Sqrt[1+30 x^2+10y]/.{x->t, y->t^2,z->3t^2})*ds,{t,0,2}]则输出所求曲线积分的结果:326/3.例2.8 (教材 例2.6) 求dr F L.⎰, 其中.20,sin cos 2)(,)2(356π≤≤+=++=t tj ti t r j xy x i xy F输入vecf={x*y^6,3x*(x*y^5+2)};vecr={2*Cos[t],Sin[t]};Integrate[(vecf.D[vecr,t])/.{x->2Cos[t],y->Sin[t]}, {t,0,2 Pi}]则输出所求积分的结果12π例2.9 求锥面0,222≥=+z z y x 与柱面x y x =+22的交线的长度.先画出锥面和柱面的交线的图形. 输入g1=ParametricPlot3D[{Sin[u]*Cos[v], Sin[u]*Sin[v], Sin[u]}, {u,0,Pi},{v,0,2Pi},DisplayFunction->Identity]; g2=ParametricPlot3D[{Cos[t]^2,Cos[t]*Sin[t],z}, {t,0,2Pi},{z,0,1.2}, DisplayFunction->Identity]; Show[g1,g2,ViewPoint->{1,-1,2},DisplayFunction->$DisplayFunction]输出为图2.5.输入直接作曲线的命令ParametricPlot3D[{Cos[t]^2,Cos[t]*Sin[t],Cos[t]},{t,-Pi/2,Pi/2}, ViewPoint->{1,-1,2},Ticks->False]输出为图2.6.为了用线积分计算曲线的弧长, 必须把曲线用参数方程表示出来. 因为空间曲线的投影曲线的方程为x y x =+22, 它可以化成t x 2cos =,,sin cos t t y =再代入锥面方程222z y x =+, 得[]().2/,2/cos ππ=∈=t t z因为空间曲线的弧长的计算公式是()()()⎰'+'+'=21222t t dt t z t y t x s ,因此输入Clear[x,y,z]; x=Cos[t]^2; y=Cos[t]*Sin[t]; z=Cos[t]; qx={x,y,z};Integrate[Sqrt[D[qx,t]. D[qx,t]]//Simplify, {t,-Pi/2,Pi/2}]输出为 2Elliptice[-1]这是椭圆积分函数. 换算成近似值. 输入 %//N 输出为3.8202计算曲面积分例2.10 (教材 例2.7) 计算曲面积分⎰⎰∑++dS zx yz xy )(, 其中∑为锥面22y x z +=被柱面x y x 222=+所截得的有限部分.注意到,面积微元dxdy z z dS y x 221++=, 投影曲线x y x 222=+的极坐标方程为,22,cos 2ππ≤≤-=t t r将曲面积分化作二重积分,并采用极坐标计算重积分.输入Clear[f,g,r,t];f[x_,y_,z_]=x*y+y*z+z*x; g[x_,y_]=Sqrt[x^2+y^2];mj=Sqrt[1+D[g[x,y],x]^2+D[g[x,y],y]^2]//Simplify; Integrate[(f[x,y,g[x,y]]*mj/.{x->r*Cos[t],y->r* Sin[t]})*r,{t,-Pi/2,Pi/2},{r,0,2Cos[t]}]则输出所求曲面积分的计算结果15264例2.11 计算曲面积分,333dxdy z dzdx y dydz x ++⎰⎰∑其中∑为球面2222a x y x =++的外侧.可以利用两类曲面积分的关系, 化作对曲面面积的曲面积分⎰⎰∑nds A .. 这里{}{}a z y x n z y x A /,,,,,333==. 因为球坐标的体积元素,sin 2θϕϕd drd r dv =注意到在球面∑上a r =, 取1=dr 后得到面积元素的表示式:().20,0sin 2πθπϕθϕθ≤≤≤≤=d d a ds把对面积的曲面即直接化作对θϕ,的二重积分. 输入Clear[A,fa,ds]; A={x^3,y^3,z^3}; fa={x,y,z}/a; ds=a^2*Sin[u];Integrate[(A.fa/.{x->a*Sin[u]*Cos[v],y->a*Sin[u]*Sin[v], z->a*Cos[u]})*ds//Simplify,{u,0,Pi}, {v,0,2Pi}]输出为855122πa如果用高斯公式计算, 则化为三重积分()d v z y x ⎰⎰⎰Ω++2223, 其中Ω为2222a z y x ≤++.采用球坐标计算, 输入<<Calculus`VectorAnalysis` 执行后再输入SetCoordinates[Cartesian[x,y,z]]; (*设定坐标系*) diva=Div[A]; (*求向量场的散度*)Integrate[(diva/.{x->r*Sin[u]*Cos[v],y->r*Sin [u]*Sin[v],z->r*Cos[u]})*r^2Sin[u],{v,0,2Pi}, {u,0,Pi},{r,0,a}]输出结果相同.实验习题 1. 计算⎰⎰-6/02/0.sin sin ππydydx x x y2. 计算下列积分的近似值: (1)();cos 022dydx y x ⎰⎰-ππ(2)().sin 1010dydx e xy ⎰⎰3. 计算下列积分 (1)();23012dydzdx z y e x x z xz x -⎰⎰⎰+- (2)⎰⎰1010.)arctan(dydx xy4. 交换积分次序并计算下列积分 (1)()d ydx y x x⎰⎰30922cos . (2) .20422dxdy e yx ⎰⎰5. 用极坐标计算下列积分: (1) ;10122dydx y x yx ⎰⎰+ (2) .13/3/22dxdy yx y y y ⎰⎰-+6. 用适当方法计算下列积分:(1)(),2/3222dv zy x z⎰⎰⎰Ω++ 其中Ω是由22y x z +=与1=z 围成;(2),)(224dv z y x++⎰⎰⎰Ω其中Ω是.1222≤++z y x7. 求()ds z y x f L⎰,,的近似值. 其中(),51,,33y x z y x f ++=,路径L :3/,2t y t x ==,.20,≤≤=t t z8. 求⎰L dr F ., 其中().0,sin cos ,121322π≤≤+=+++=t tj ti t r j y i x F 9. 用柱面坐标作图命令作出xy z =被柱面122=+y x 所围部分的图形,并求出其面积.86 10. 求曲面积分,22zdxdy y x⎰⎰∑其中∑为球面2222a z y x =++的下半部分的下侧.11. 求曲面积分⎰⎰∑++zdS y x ,其中∑为球面2222a z y x=++上)0(a h z <<≥的部分.。
《4.5 函数的应用(二)》公开课优秀教案教学设计(高中必修第一册)

第五章函数的应用(二)4.5.3 函数模型的应用本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。
函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。
本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。
课程目标学科素养1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力.a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;d.直观想象:运用函数图像分析问题;e.数学建模:由实际问题建立函模型;f.数据分析:通过数据分析对应的函数模型;教学重点:利用给定的函数模型或建立确定性函数模型解决实际问题.教学难点:利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.多媒体教学过程设计意图核心教学素养目标(一)创设问题情境1.常见函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模拟y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1) (4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)2.建立函数模型解决问题的基本过程(二)问题探究我们知道,函数是描述客观世界变化规律的数学模型,不同的变化规律需要用不同的函数模型来刻画.面临一个实际问题,该如何选择恰当的函数模型来刻画它呢?通过对常见函数模型的回顾,提出新的问题,提出运用函数模型分析解决实际问题,培养和发展数据分析、数学建模和数学抽象、直观想象的核心素养。
Excel实验2 函数、公式及格式设置

=Excel实验2 函数、公式及格式设置操作要求:对文档“Exceltext2.xls”进行如下操作:1.设置B列列宽为“最适合的列宽”;设置C列列宽:8.2。
2.在C2单元格输入标题“ABC电气有限公司利润表”,将B2:H2设置为合并居中,字体为楷体,加粗,大小18磅,颜色为蓝色,加下划线。
3.将B3:H3设置为合并居中,日期格式设置为如图1所示的类型,字体为宋体,倾斜,大小12磅,颜色为蓝色,该行行高:20。
4.将B11和C11单元格合并,B12和C12单元格合并,B13和C13单元格合并。
5.设置G5:H10区域的数据为右对齐、垂直居中,其它单元格内容为水平居中、垂直居中。
6.将标题和日期用灰色-25%填充,B4:H4填充为浅青绿色,B11:H13填充为浅黄色。
7.按图1所示设置表格边框线,其中外边框为最粗实线,内部为最细实线及双线(如下面图所示),颜色为深绿。
8.取消网格线显示。
9.用公式计算一月份的总利润。
10.用函数计算二、三月份的总利润。
11.用公式计算一月份的平均利润。
12.用函数计算二、三月份的平均利润。
13.用函数计算各月的最大利润。
14.计算比例1,比例1的计算公式为:各分厂三月份利润占本分厂第一季度利润的比例。
15.计算比例2,比例2的计算公式为:各分厂三月份利润占所属分公司第一季度利润的比例。
16.各分厂的月利润使用千位分隔符,并且负数以红色显示。
17.所有比例采用百分比格式,保留两位小数。
18.给各最大利润、平均利润和总利润加上人民币符号“¥”并保留一位小数。
19.将表格中所有数字设置为“Arial”字体,大小:11磅。
20.除标题、日期和数字外的其它文字设置为宋体,13磅。
21.将Sheet1复制一份到工作簿的最后,并换名为“第一季度利润表”。
22.完成以上1~21题后,将Exceltext2.doc存盘关闭,并复制到自己的文件夹中,再将该文件夹提交到教师机。
其内容应如下所示:参考解答:1.选中B列(单击列号“B”),选择“格式”→“列”菜单中的“最适合的列宽”;选中B列(单击列号“B”),选择“格式”→“列”菜单中的“列宽”,输入8.2,单击“确定”按钮即可。
2021最新版二次函数的实际应用:建模问题

二次函数的实际应用:建模问题一、球类、跳水、喷泉问题这类问题对于解析式的确定通常采用顶点式:1. 球类问题分为篮球问题、足球问题及羽毛球问题。
篮球问题会考察“球是否入篮”,即看篮筐所在点是否在抛物线上;“足球是否进球门”即看球到达球门所在位置时纵坐标是比球门高还是低;羽毛球涉及过网越界问题,即计算在过网位置纵坐标比网高还是低,越界考察在界限位置纵坐标是正数还是负数。
2. 跳水问题考察的是动作是否在规定范围内规范,同样考察在指定位置的纵坐标与限定高度的大小比较。
3. 喷泉问题考察的比较多的是圆形水池的半径,需要计算抛物线与水池水平面的交点坐标。
1、如图,羽毛球运动员甲站在点 O 处练习发球,将球从 O 点正上方23m 的 P 处发出,把球勘察点,其运行路线是抛物线的一部分,当球运动到最高点时,其高度为617m ,离甲站立地点 O 的水平距离为 4m ,球网 BA 离 O 点的水平距离为 5m ,以 O 为坐标原点建立如图所示的坐标系,乙站立地点 C 的坐标为(m ,0)①求出抛物线的解析式;(不写自变量的取值范围)②求排球落地点N 离球网的水平距离; ③乙原地起跳可接球的最大高度为49米,若乙因为接球高度不够而失球,求 m 的取值范围.2、某跳水运动员进行 10 米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点 O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面 332米,入水处距池边的距离为 4 米,运动员在距水面高度为 5 米以前,必须完成规定的翻腾动作, 并调整好入水姿势,否则就会出现失误. ①求这条抛物线的解析式.②在某次试跳中,测得运动员在空中的运动路线是①中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为 3.6 米,问此次跳水会不会失误?并通过计算说明理由.3、如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子 OA ,O 恰在水面中心,OA=1.25m ,由柱子顶端 A 处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在 OA 距离为 1m 处达到距水面最大高度 2.25m . ①若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?②若水流喷出的抛物线形状与①相同,水池的半径为 3.5m ,要使水流不落到池外,此时水流最大高度应达多少米?4、一场篮球赛中,球员甲跳起投篮,已知球在 A 处出手时离地面920m ,与篮筐中心C 的水平距离为 7m ,当球运行的水平距离是 4m 时,达到最大高度 4m (B 处),篮筐距地面 3m ,篮球运行的路线为抛物线(如图所示).①建立适当的平面直角坐标系,并求出抛物线的解析式;②判断此球能否投中?5、如图,小区中央公园要修建一个圆形的喷水池,在水池中央垂直于地面安装一个柱子 OA ,O 恰好在水面的中心,OA=1.25 米.由柱子顶端 A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计水流在离OA 距离为 1 米处达到距水面的最大高度 2.25 米.①建立适当的平面直角坐标系,使A 点的坐标为(0,1.25),水流的最高点的坐标为(1,2.25),求水流的抛物线路线在第一象限内对应的函数关系式(不要求写取值范围);②若不计其他因素,则水池的半径至少要多少米,才能使喷出的水流不至于落到池外? ③若水流喷出的抛物线形状与①相同,水池半径为 3.5 米,要使水流不落到池外,此时水流距水面的最大高度就达到多少米?6、如图,足球上守门员在O 处开出一高球.球从离地面 1米的A 处飞出(A 在 y 轴上),把球看成点.其运行的高度y (单位:m )与运行的水平距离 x (单位:m )满足关系式h x a y +-=2)6((1)①当此球开出后.飞行的最高点距离地面 4 米时.求y 与 x 满足的关系式.②在①的情况下,足球落地点 C 距守门员多少米?(取734≈)③如图所示,若在①的情况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求:站在距离O 点 6 米的 B 处的球员甲要抢到第二个落点 D 处的球.他应再向前跑多少米?(取562≈)(2)球员乙升高为 1.75 米.在距 O 点 11 米的H 处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球下落至 H 正上方时低于球员乙的身高.同时落地点在距 O 点 15 米之内.求 h 的取值范围.7、如图,一位篮球运动员甲在距篮球筐下 4 米处跳起投篮,球的运行线路为抛物线, 当球运行到水平距离为 2.5 米时达到最高高度为 3.5 米,然后准确地落入篮筐,已知篮圈中心到地面的高度为 3.05 米,该运动员的身高为 1.8 米.在这次投篮中,球在该运动员的头顶上方 0.25 米处出手,则当球出手时,该运动员离地面的高度为________米.运动员乙跳离地面时,最高能摸到 3.3 米运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?二、隧道、过桥问题隧道、过桥问题通常采用的是y=ax2+c 的形式,通常考察的是车或者船是否能够通过,考察的是车或者船的高度比车或者船边缘对应纵坐标的数值大小比较。
初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案 2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c〔a0〕的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大〔小〕值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以〝启发探究式〞为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到〝不但使学生学会,而且使学生会学〞的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
二次函数的应用案例总结

二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。
在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。
本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。
案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。
设物体初始高度为H,加速度为g,时间为t。
根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。
这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。
案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。
二次函数可以用于建立销售收入与定价策略之间的模型。
设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。
我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。
案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。
二次函数可以用来描述桥梁的曲线形状。
设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。
通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。
案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。
设市场需求量为D,价格为p。
根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。
通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。
综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。
通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。
4.5 函数的应用(二) 教学设计-2020年秋高中数学人教版(2019)必修一

单元教学设计:4.5 函数的应用(二)一、内容和内容解析1.内容函数的零点与方程的解;用二分法求方程的近似解;函数模型在实际问题中的应用.2.内容解析“函数的应用(二)”是在第三章“函数的应用(一)”的基础上,从两个方面介绍函数的应用.一是数学学科内部的应用,利用所学过的函数研究一般方程的解;二是实际应用,建立实际问题的函数模型,并通过函数模型反映实际问题的变化规律,从而分析和解决实际问题.通过“函数的应用(二)”,使学生进一步理解指数函数和对数函数,学会选择合适的函数类型刻画现实问题的变化规律.基于以上分析,确定本单元教学的重点:函数零点与方程解的关系,函数零点存在定理的应用,用二分法求方程近似解的思路与步骤,用函数建立数学模型解决实际问题的基本过程.二、目标和目标解析1.目标(1)结合二次函数的图象,了解函数零点存在定理.(2)结合具体连续函数及其图象的特点,探索用二分法求方程近似解的思路与步骤.(3)进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.2.目标解析达成上述目标的标志是:(1)结合二次函数的图象,进一步了解函数的零点与方程解的关系,并能用函数取值规律来刻画图象穿过x轴的图象特点.(2)结合具体连续函数及其图象的特点,探索用二分法求方程近似解的思路,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性并了解二分法中的算法思想.(3)结合现实情境中的具体问题,能利用已知函数模型解决实际问题.通过比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”、“直线上升”、“指数爆炸”等术语的现实含义,会选择合适的函数模型解决实际问题.三、教学问题诊断分析在零点存在定理的教学中,学生从具体的函数图象概括出一般化的特征,并用取值规律这一代数形式来表达,这种从形到数的转化是学生思维的障碍.在二分法教学中,从具体的函数出发利用二分法求方程的近似解较为容易,但把二分法的步骤抽象成一般化的算法并用符号来表示是一个难点.在函数模型的应用教学中,利用已知函数模型解决实际问题容易操作,但选择合适的函数模型解决实际问题,需要对不同函数模型的增长规律有一定的了解,并且需要符合实际问题中的条件限制.结合以上分析确定本节课的教学难点:函数零点存在定理的导出,用二分法求方程近似解的算法,选择恰当的函数模型分析和解决实际问题.四、教学过程设计4.5.1 函数的零点与方程的解(一) 引言思考:我们已经学习了用二次函数的观点认识一元二次方程,知道一元二次方程的实数根就是相应二次函数的零点,像ln 260x x +-=这样不能用公式求解的方程,是否也能采用类似的方法,用相应的函数研究它的解的情况呢?(二) 函数的零点与方程的解的关系对于一般函数=y f x (),我们把使=0f x ()的实数x 叫做函数=y f x ()的零点. 这样,函数=y f x ()的零点就是方程=0f x ()的实数解,也就是函数=y f x ()的图象与x 轴的公共点的横坐标.所以方程=0f x ()有实数解 ⇔函数=y f x ()有零点⇔函数=y f x ()的图象与x 轴有公共点.由此可知,求方程=0f x ()的实数解,就是确定函数=y f x ()的零点.对于不能用公式求解的方程=0f x (),我们可以把它与相应的函数=y f x ()联系起来,利用函数的图象和性质找出零点,从而得到方程的解.(三) 零点存在定理的导出探究:对于二次函数2=23f x x x --(),观察它的-2 -1 O 1 2 3 4 xy 2 1 -1 -2-2 -1O 1 2 3 4 x y2 1-3 -4 -1 -2图象,发现它在区间24[,]上有零点.这时,函数图象与x 轴有什么关系?在区间20-[,]上是否也有这种关系?你认为应如何利用函数f x ()的取值规律来刻画这种关系?可以发现,在零点附近,函数图象是连续不断的,并且“穿过”x 轴.函数在端点=2x 和=4x 的取值异号,即240f f ()()<,函数2=23f x x x --()在区间24(,)内有零点=3x ,它是方程223=0x x --的一个根.同样地,200f f -()()<,函数2=23f x x x --()在20-(,)内有零点=1x -,它是方程223=0x x --的另一个根.一般地,我们有:函数零点存在定理:如果函数=y f x ()在区间a b [,]上的图象是一条连续不断的曲线,且有0f a f b ()()<,那么,函数=y f x ()在区间a b (,)内至少有一个零点,即存在c a b ∈(,),使得=0f c (),这个c 也就是方程=0f x ()的解.问题1:条件“连续不断”可以去掉吗?师生活动:学生画出反例,教师强调,图象间断了,虽然函数值异号,仍然没有零点.所以我们要求函数图象连续不断.追问:反之成立吗?即如果函数=y f x ()在区间a b (,)内存在零点,是否有0f a f b ()()<?师生活动:学生举例说明,教师强调,“连续不断”和“0f a f b ()()<”是“函数存在零点的”充分条件,而非必要条件. 设计意图:让学生理解零点存在定理的功能是给出一个判定零点存在的充分条件.(四) 零点存在定理的应用例1 求方程ln 260x x +-=的实数解的个数.分析:可以先列出函数=ln 26y x x +-的对应值表,为观察、判断零点所在区间提供帮助.解:设函数=ln 26f x x x +-(),列出函数=y f x ()的对应值表.根据已有对数知识容易发现2=ln 220f -()<,3=ln 30f ()>,则230f f ()()<. 由函数零点存在定理可知,函数=ln 26f x x x +-()在区间23(,)内至少有一个零点. 再利用画图软件画出函数=ln 26f x x x +-()的图象,我们看到f x ()是定义域上的单调递增函数,f x ()在区间23(,)内只有一个零点.问题2:为什么由230f f ()()<还不能说明函数f x ()? 师生活动:学生举例说明已知0f a fb ()()<,函数在区间a b (,)内可能存在多个零点.追问1:在原有条件的基础上添加什么条件能够保证f x ()只有一个零点?师生活动:如果函数具有单调性,就能保证只有一个零点. 由此我们得出函数零点存在定理的推论:若=y f x ()在区间a b [,]上是单调函数,其图象是一条连续不断的曲线,且有O 5 10 x y14 12 10 8 6 4 2-2 -4 -60f a f b ()()<,则函数=y f x ()在区间a b (,)内有且仅有一个零点,即存在唯一的c a b ∈(,),使得=0f c ().事实上,=ln y x 与=26y x -在0x ∈+∞(,)上都是增函数,所以=ln 26f x x x +-(),0x ∈+∞(,)是增函数.所以它只有一个零点,即相应方程ln 260x x +-=只有一个实数解.追问2:你能用定义法证明函数=y f x ()是增函数吗? 师生活动:120x x ∀∈+∞,(,),且12x x <,有121122=ln 26ln 26f x f x x x x x -+-+-()()()-()1122=ln2x x x x +-().因为120x x <<,所以1201x x <<,所以12ln0x x <,又因为120x x -<,于是1122ln20x x x x +-()<,即12f x f x ()<(). 所以,函数=ln 26f x x x +-()在区间0+∞(,)上单调递增.设计意图:让学生认识到零点存在定理可以证明函数有零点,但不能断定函数无零点或零点个数,如果要判断零点的个数,还要与结论“函数在单调区间上最多有一个零点”相结合.4.5.2 用二分法求方程的近似解(一) 二分法的引入我们已经知道,函数=ln 26f x x x +-()在区间23(,)内存在一个零点.进一步的问题是,如何在满足一定精确度的前提下求出这个零点呢?(二) 二分法的形成这个问题中设定的精确度为01.,可以理解为近似值与精确值之间的误差不超过01.. 一个直观的想法是:如果能将零点所在的区间尽量缩小,直到区间长度小于等于01.,那么区间内的任意一点都可以作为函数零点的近似值.为了方便,可以通过取区间中点的方法,逐步缩小零点所在的范围.取区间23(,)的中点25.,用计算工具算得250084f ≈-(.)..因为2530f f (.)()<,所以零点在区间253(.,)内,区间长度为0.5.再取区间253(.,)的中点275.,用计算工具算得2750512f ≈(.)..因为252750f f (.)(.)<,所以零点在区间25275(.,.)内,区间长度为0.25.由于23(,) 253(.,) 25275(.,.),所以零点所在的范围变小了. 如果重复上述步骤,那么零点所在的范围会越来越小.零点所在区间 区间长度 中点的值 中点的函数值23(,) 125. 0084-. 253(.,) 05. 275. 0512. 25275(.,.) 025. 2625. 0215. 252625(.,.) 0125.25625 .0066.2525625 (.,.)00625 .……这样,我们就可以通过有限次重复相同的步骤,将零点所在范围缩小到满足一定精确度的区间.因为区间2525625 (.,.)的长度为00625.,所以区间2525625 (.,.)内任意一点都可以作为零点的近似值,为了方便,我们把区间的一个端点=25x .作为函数=ln 26f x x x +-()零点的近似值,也即方程ln 260x x +-=的近似解.2.5 2.75 2.625 O 2 3 x y0.5 - 0.4 - 0.3 - 0.2 - 0.1 --0.1- -0.2- -0.3- -0.4- -0.5-这样求方程近似解的方法称为二分法,我们来看二分法的定义:对于在区间a b [,]上图象连续不断且0f a f b ()()<的函数=y f x (),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(三) 二分法的步骤我们依据解决上述问题的过程来概括一下:给定精确度ε,用二分法求函数=y f x ()零点0x 的近似值的一般步骤: 1.确定零点0x 的初始区间a b [,],验证0f a f b ()()<. 2.求区间a b (,)的中点c .3.计算f c (),并进一步确定零点所在的区间:(1)若=0f c ()(此时0=x c ),则c 就是函数的零点; (2)若0f a f c ()()<(此时0x a c ∈(,)),则令=b c ; (3)若0f c f b ()()<(此时0x c b ∈(,)),则令=a c . 4.判断是否达到精确度ε:若|a b ε-|<,则得到零点近似值a (或b );否则重复步骤2~4.(四) 二分法的应用例2 借助信息技术,用二分法求方程237xx +=的近似解(精确度为0.1)解:原方程即237=0xx -+,令=237xf x x -+(),用信息技术画出函数=y f x ()的图象,结合计算容易发现120f f ()()<,说明该函数在区间12(,)内存在零点0x .-5 O 5 10 xy16141210 8 64 2-2 -4 -6取区间12(,)的中点1=15x .,用信息技术算得15033f ≈(.)..因为1150f f ()(.)<,所以0115x ∈(,.).再取区间115(,.)的中点2=125x .,用信息技术算得125087f ≈-(.)..因为125150f f (.)(.)<,所以012515x ∈(.,.).同理可得,0137515x ∈(.,.),0137514375 x ∈(.,.). 由于137514375|=0062501 -|...<., 所以,原方程的近似解可取为1375..问题3:如果精确度改为0.01?0.001?0.000 1?怎样做才不会给我们带来过大的运算负担呢?师生活动:我们从二分法中提炼出了算法思想,借助于Excel 表格当中的函数功能呈现出来,具体来看:我们利用Excel 表格中的七列依次呈现区间端点a ,b ,区间中点c ,函数值f a (),f c (),f b ()和区间长度b a -,首先,我们输入初始区间12(,),然后,我们对单元格D3到H3依次应用公式完成输入,公式在编辑栏可见.对于单元格B4,我们利用Excel 的内置函数If 语句,它实现的功能是,如果0f a f c ()()<,则区间的左端点就是a ,否则是c ,同样,对于单元格C4,如果0f a f c ()()<,则区间的右端点就是c ,否则是b .接下来,我们选中单元格D3到H3,将鼠标移到单元格的右下角,鼠标指针变成十字形状,按住鼠标向下拖动一行,即可实现对单元格D4到H4的自动填充,更进一步的,我们选中单元格B4到H4,重复相同的操作,可以实现对以下若干行的自动填充.我们可以根据题目精确度的要求,选择拖动到哪一行结束.这个问题的解决让我们体会到,对于人工运算很耗时耗力的问题,如果借助于计算机,可以瞬间完成,既省时省力,又准确无误,可见,工具的选择和使用至关重要.设计意图:让学生体会信息技术在处理计算量较大而且有重复步骤的问题时的重要价值.4.5.3 函数模型的应用引言:以上,我们学习了函数在数学内部的应用,接下来我们学习函数模型的实际应用. (一) 已知函数模型例3 阅读下面资料并回答问题.良渚遗址位于浙江省杭州市余杭区良渚和瓶窑镇,1936年首次发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裹泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,于是推测古城存在时期为公元前3300年~前2500年.你知道考古学家在测定遗址年代时用了什么数学知识吗?在前面的学习中,我们得到了一个预备知识,注释:当生物死亡后,它机体内原有的碳14含量y 会随死亡年数x 在初始量k 的基础上按确定的比率p 衰减(p 称为衰减率),并满足函数关系=1xy k p k -∈R ()(,010 k p x ≠且0;<<;≥),大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.分析:首先,我们需要求出函数关系中的参数p ,明确函数解析式.然后,把0.552k 作为函数值代入解析式,求出死亡年数.解:根据已知条件,573011=2k p k -(),从而51=p -,所以生物体内碳14含量y 与死亡年数x 之间的函数解析式是5=xy k (.由样本中碳14的残留量约为初始量的55.2%可知,5=552xk (.%k ,即 5=0552x(..解得5=log552x ..由计算工具得 4 912x ≈.因为2010年之前的4 912年是公元前2903年,所以推断此水坝大概是公元前2903年建成的.设计意图:培养学生阅读理解的能力,培养学生从数学的角度分析和解决问题的能力. (二) 选择恰当的函数模型在实际问题中,有的能应用已知的函数模型解决,有的需要根据问题的条件建立函数模型加以解决.例4 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?问题1:你能根据对三种投资回报的描述,建立三种投资方案所对应的函数模型吗?师生活动: 设第x 天所得回报是y 元,则方案一可以用函数*=40y x ∈N ()进行描述;方案二可以用函数*=10y x x ∈N ()进行描述;方案三可以用函数1*=042x y x -⨯∈N .()进行描述.设计意图:培养学生把实际问题数学化的意识和能力.问题2:要对三个方案作出选择,就要对它们的增长情况进行分析.怎样借助已有函数模型,分析解决当前的问题?师生活动:首先我们可以画出三个函数的图象.通过图象我们直观地看到,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但是增长情况并不精确,不能体现投资收益与投资期限之间的关系.接下来,我们计算三种方案每天的回报数以及回报数的增长情况.x方案一方案二方案三y增加量/元y 增加量/元y增加量/元1 40 10 10 04.2 40 0 20 10 08. 04.3 40 0 30 10 16. 08.4 40 0 40 10 32. 16.5 40 0 50 10 64. 32.6 40 0 60 10 128.64.7 40 0 70 10 256. 128. 8 40 0 80 10 512. 256. 9 40 0 90 10 1024. 512. 10 40 0 100 10 2048.1024.… … … … … ……3040300102147483648 . 1073741824 .通过表格,我们可以发现,每天的回报数,在第1~3天,方案一最多;在第4天,方案一和方案二一样多;在第5~8天,方案二最多;第9天开始,方案三最多.但是,这似乎也不能体现投资收益与投资期限之间的关系.接下来,我们再看累计的回报数,=10y x =40y1=042x y -⨯.问题3:根据以上对函数模型增长情况的分析,我们该如何选择投资方案呢?师生活动:教师引导学生根据累计的回报数作为划分投资期限的标准.投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.设计意图:使学生认识到要作出正确选择,除了考虑每天的收益外,还要考虑一段时间内累计的回报.通过以上三种呈现方式可知,尽管方案一、方案二在第1天所得回报远大于方案三,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的.由此,我们更直观的理解了“直线上升”、“指数爆炸”的实际含义.接下来,我们一起来归纳一下用函数建立数学模型解决实际问题的基本过程:首先,我们要把实际问题化归为函数模型,经过运算和推理求出函数模型的解,然后,用数学问题的解来解释说明实际问题,使实际问题得以解决。
函数调用程序实验报告

一、实验目的1. 理解函数的定义和调用过程。
2. 掌握函数参数的传递方式。
3. 学习如何使用函数实现代码的模块化。
4. 提高编程能力和逻辑思维能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发工具:PyCharm三、实验内容本次实验主要围绕函数的定义、调用和参数传递展开,具体实验内容包括:1. 定义和调用函数2. 函数参数的传递3. 递归函数的应用四、实验步骤1. 定义和调用函数(1)编写一个简单的函数,用于计算两个数的和。
```pythondef sum_of_two_numbers(a, b):return a + b# 调用函数result = sum_of_two_numbers(3, 5)print("The sum of two numbers is:", result)```(2)编写一个函数,用于计算一个数的阶乘。
```pythondef factorial(n):if n == 0:return 1else:return n factorial(n - 1)# 调用函数result = factorial(5)print("The factorial of 5 is:", result)```2. 函数参数的传递(1)使用默认参数传递函数。
```pythondef print_message(message="Hello, world!"): print(message)# 调用函数print_message()print_message("This is a custom message.") ```(2)使用可变参数传递函数。
```pythondef print_numbers(args):for num in args:print(num)# 调用函数print_numbers(1, 2, 3, 4, 5)```3. 递归函数的应用编写一个递归函数,用于计算斐波那契数列的前n项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
usint n);
int main()
{
int n, answer;
cout << "Enter number: ";
cin >> n;
cout << "\n\n";
answer = fib(n);
cout << answer << " is the " << n << "th Fibonacci number\n";
实验项目:函数的应用
实验目的:
(1)掌握函数的定义和调用方法
(2)练习重载函数的使用
(3)练习使用系统函数
(4)使用debug调试功能,使用step into追踪到函数内部。
实验任务:
1.编写重载函数MAX1可分别求取两个整数,三个整数,两个双精度,三个双精度数的最大值。
2.用递归的方法编写函数求Fibonacci级数,观察递归调用的过程。
}
double max1(double x, double y)
{
return (x>y?x:y);
}
double max1(double x, double y, double z)
{
double temp1=max1(x,y);
return (y>z?y:z);
}
void main()
{
int x1, x2;
double d1, d2;
x1 = max1(5,6);
x2 = max1(2,3,4);
d1 = max1(2.1, 5.6);
d2 = max1(12.3, 3.4, 7.8);
cout << "x1=" <<x1 << endl;
cout << "x2=" <<x2 << endl;
cout << "d1=" <<d1 << endl;
return 0;
}
int fib (int n)
{
cout << "Processing fib(" << n << ")... ";
if (n < 3 )
{
cout << "Return 1!\n";
return (1);
}
else
{
cout << "Call fib(" << n-2 << ") and fib(" << n-1 << ").\n";
return( fib(n-2) + fib(n-1));
}
}
实验结果:
1.x1=6
x2=4
d1=5.6
d2=7.8
2.Enter number:4
Processing fib(3)...
Call fib(1) and fib(2).
2is the3th Fibonacci number
实验步骤:
1.分别编写四个同名的函数max1,实现函数重载,在main()中测试函数功能。
int max1(int x, int y)
{
return (x>y?x:y);
}
int max1(int x, int y, int z)
{
int temp1=max1(x,y);
return (y>z?y:z);
cout << "d2=" <<d2 << endl;
}
2.编写递归函数int fib(int n),在主程序中输入n的值,调用fib函数计算Fibonacci级数。公式为fib(n)=fib(n-1)+fib(n-2),n>2;fib(1)=fib(2)=1.使用if语句判断函数的出口,在程序中用cout语句输出提示信息。