第十一讲 二元选择模型(高级计量经济学课件-对外经济贸易大学 潘红宇)
合集下载
二计量经济学模型共34页35页PPT

• 作为“原因”的变量,例如生产函数中的资本、劳动、技 术,是模型中的解释变量,在单一方程模型中,处于右端
解释变量与被解释变量
lY n A a lK n b lL n
被解释变量
解释变量
如何正确地选择解释变量?
(1) 需 要 正 确 理 解 和 把 握 所 研 究的经济现象中暗含的经济学 理论和经济行为规律。 (2) 选 择 变 量 要 考 虑 数 据 的 可 得性。 (3) 选 择 变 量 时 要 考 虑 所 有 入 选变量之间的关系,使得每一 个解释变量都是独立的。
前定变量
• 滞后内生变量的数值是前期所决定的, • 因此,它和外生变量都是在求解本期内生
变量之前已经确定了的变量 • 滞后变量与外生变量合称为前定变量 • 用作解释变量
前定变量用法
1. 滞后内生变量的作用视着外生变量。 2. 在单一模型中,前定变量多作为自变量,
内生变量一般作为应变量;在联立方程模 型中内生变量既可以作为应变量也可以作 为自变量。
如何解决
图1-2
一、理论模型的设计 1.确定模型所包含的变量 2.确定模型的数学形式 3.拟定理论模型中待估参数的理论 期望值 二、样本数据的收集 三、模型参数的估计 四、模型的检验 五、模型的应用
一、理论模型的设计
1.确定模型所包含的变量
在单方程模型中,变量分为两类。作 为研究对象的变量,也就是因果关系中 的“果”,是模型中的被解释变量;而 作为“原因”的变量,是模型中的解释 变量。确定模型所包含的变量,主要是 指确定解释变量。可以作为解释变量的 有下列几类变量:外生经济变量、外生 条件变量、外生政策变量和滞后被解释 变量。
初级水平。
3.理论计量经济学与应用计量经济学
解释变量与被解释变量
lY n A a lK n b lL n
被解释变量
解释变量
如何正确地选择解释变量?
(1) 需 要 正 确 理 解 和 把 握 所 研 究的经济现象中暗含的经济学 理论和经济行为规律。 (2) 选 择 变 量 要 考 虑 数 据 的 可 得性。 (3) 选 择 变 量 时 要 考 虑 所 有 入 选变量之间的关系,使得每一 个解释变量都是独立的。
前定变量
• 滞后内生变量的数值是前期所决定的, • 因此,它和外生变量都是在求解本期内生
变量之前已经确定了的变量 • 滞后变量与外生变量合称为前定变量 • 用作解释变量
前定变量用法
1. 滞后内生变量的作用视着外生变量。 2. 在单一模型中,前定变量多作为自变量,
内生变量一般作为应变量;在联立方程模 型中内生变量既可以作为应变量也可以作 为自变量。
如何解决
图1-2
一、理论模型的设计 1.确定模型所包含的变量 2.确定模型的数学形式 3.拟定理论模型中待估参数的理论 期望值 二、样本数据的收集 三、模型参数的估计 四、模型的检验 五、模型的应用
一、理论模型的设计
1.确定模型所包含的变量
在单方程模型中,变量分为两类。作 为研究对象的变量,也就是因果关系中 的“果”,是模型中的被解释变量;而 作为“原因”的变量,是模型中的解释 变量。确定模型所包含的变量,主要是 指确定解释变量。可以作为解释变量的 有下列几类变量:外生经济变量、外生 条件变量、外生政策变量和滞后被解释 变量。
初级水平。
3.理论计量经济学与应用计量经济学
二元选择模型

Λ ( β1 + β 2 ( q + 10) + β3v )
Λ ( β1 + β 2 q + β3v )
结论:数量分析成绩相对平均成绩增加 分可提高 分可提高20%被录取的可能性 结论:数量分析成绩相对平均成绩增加10分可提高 被录取的可能性
计算词汇能力成绩相对平均分增加10分时被录取概率增加值 计算词汇能力成绩相对平均分增加 分时被录取概率增加值
线性概率模型
修正
转换函数 Probit模型 模型
yt = F ( xt β ) + ut
Logit模型 模型
例题
讨论GRE考试成绩与研究生入学情况的关系 考试成绩与研究生入学情况的关系 讨论 成绩( 将GRE成绩(数量分析成绩和词汇能力成绩)与取得研究生入学资格的概率作为 成绩 数量分析成绩和词汇能力成绩) 二元选择模型的研究对象
β1 + β 2 q + β3v
'数量分析成绩相对平均分高出 分时被录取的概率 数量分析成绩相对平均分高出10分时被录取的概率 数量分析成绩相对平均分高出 分时被录取的概率' series xqplus2=@cnorm(common2+eq2.@coefs(2)*(@mean(q)+10-@mean(q))) '数量分析成绩达到平均分时被录取的概率 数量分析成绩达到平均分时被录取的概率' 数量分析成绩达到平均分时被录取的概率 series xq2=@cnorm(common2) '计算数量分析成绩相对平均分增加 分时被录取概率增加值 计算数量分析成绩相对平均分增加10分时被录取概率增加值 计算数量分析成绩相对平均分增加 分时被录取概率增加值' series var12=xqplus2-xq2
《高级计量经济学》幻灯片

京:中国统计出版社
• 高雪梅主编(2005).?计量经济分析方法与建模:
EVIEWS应用及实例?.北京:清华大学出版社.
4
△ 初、中、高级计量经济学
• 初级以计量经济学的数理统计学根底知识和经
典的线性单方程模型理论与方法为主要内容;
• 中级以用矩阵描述的经典的线性单方程模型理
论与方法、经典的线性联立方程模型理论与方 法,以及传统的应用模型为主要内容;
概率论根底
• 克莱因成为其理论与应用的集大成者
6
• 经典计量经济学在理论方法方面特征是: • ⑴ 模型类型—随机模型; • ⑵ 模型导向—理论导向; • ⑶ 模型构造—线性或者可以化为线性,因
果分析,解释变量具有同等地位,模型具有明 确的形式和参数;
• ⑷ 数据类型—以时间序列数据或者截面数
据为样本,被解释变量为服从正态分布的连续 随机变量;
2
参考书目 7.William H. Greene?计量经济学分析?,中国社会 科学出版社。 清华大学出版社出了该书的英文影印本 8. Michael Intriligator, Ronald Bodkin and Cheng Hsiao.?Econometric models, techniques, and applications?, Prentice Hall Inc. 9.Robert S. Pindyck and Daniel L. Rubinfeld?计 量经济学模型与经济预测?,机械工业出版社。 10.Ramu Ramanathan.?应用经济计量学?,机械 工业出版社。
11
• 宏观计量经济学名称由来已久,但是它的主要
内容和研究方向发生了变化。
• 经典宏观计量经济学:利用计量经济学理论方
• 高雪梅主编(2005).?计量经济分析方法与建模:
EVIEWS应用及实例?.北京:清华大学出版社.
4
△ 初、中、高级计量经济学
• 初级以计量经济学的数理统计学根底知识和经
典的线性单方程模型理论与方法为主要内容;
• 中级以用矩阵描述的经典的线性单方程模型理
论与方法、经典的线性联立方程模型理论与方 法,以及传统的应用模型为主要内容;
概率论根底
• 克莱因成为其理论与应用的集大成者
6
• 经典计量经济学在理论方法方面特征是: • ⑴ 模型类型—随机模型; • ⑵ 模型导向—理论导向; • ⑶ 模型构造—线性或者可以化为线性,因
果分析,解释变量具有同等地位,模型具有明 确的形式和参数;
• ⑷ 数据类型—以时间序列数据或者截面数
据为样本,被解释变量为服从正态分布的连续 随机变量;
2
参考书目 7.William H. Greene?计量经济学分析?,中国社会 科学出版社。 清华大学出版社出了该书的英文影印本 8. Michael Intriligator, Ronald Bodkin and Cheng Hsiao.?Econometric models, techniques, and applications?, Prentice Hall Inc. 9.Robert S. Pindyck and Daniel L. Rubinfeld?计 量经济学模型与经济预测?,机械工业出版社。 10.Ramu Ramanathan.?应用经济计量学?,机械 工业出版社。
11
• 宏观计量经济学名称由来已久,但是它的主要
内容和研究方向发生了变化。
• 经典宏观计量经济学:利用计量经济学理论方
高级计量经济学消费行为模型(共48张PPT)

消费和收入均由持久性部分和偶然性部分所组成
Ct≡CPt+CTt,Yt≡YPt+YTt 假定现期的偶然性消费独立于过去的偶然性收入,并独立于持久性收入,其期望
值等于零。
持久性消费仅取决于持久性收入 CPt=YPt+ut
YP可以用现期和过去收入的加权平均值来表示,过去收入的效应随时间 推移而逐步减小到零。 Ct=+tYt+ut
也可以用微观个体调查的截面数据估计模型。
案例分析:商品组模型
(我国城镇居民这肉类N消个费) 方程反映了商品需求的决定因素;
同X 时i 也可D 以i 解P 1 出, P ,2 , 该值, 为P 收n , 入I 的 边际效i 用 。1 , 2 ,, n
10 第10页,共48页。
微观消费模型:理论基础
被看作是质量价格。
消除质量因素的价格可以按下式计算:
pi*h pih ˆjzijh
思考:这种处理方式j 可能引起什么问题?
14
第14页,共48页。
单一商品需求模型:理论基础
标准模型
微观消费行为理论(收入、商品的自身价格和替代商品的价 格)
局部均衡分析框架(假定该商品市场上发生的变化不会影响到 其他市场)
需要将未来的效用折现
模型选择主要受到研究目的和数据的限制
8
第8页,共48页。
微观消费模型:理论基础
基本模型形式:
Ma U X x1 ,X 2, ,X n
s.t. P 1 X 1 P 2X 2 P nX nI
写成拉格朗日方程形式
L= U(X1,X2,Xn)+ ( I-P1X1-P2X2--PnXn) 一阶条件:
n
viP i iiV P j ju i, i 1 ,2 , ,n j 1
Ct≡CPt+CTt,Yt≡YPt+YTt 假定现期的偶然性消费独立于过去的偶然性收入,并独立于持久性收入,其期望
值等于零。
持久性消费仅取决于持久性收入 CPt=YPt+ut
YP可以用现期和过去收入的加权平均值来表示,过去收入的效应随时间 推移而逐步减小到零。 Ct=+tYt+ut
也可以用微观个体调查的截面数据估计模型。
案例分析:商品组模型
(我国城镇居民这肉类N消个费) 方程反映了商品需求的决定因素;
同X 时i 也可D 以i 解P 1 出, P ,2 , 该值, 为P 收n , 入I 的 边际效i 用 。1 , 2 ,, n
10 第10页,共48页。
微观消费模型:理论基础
被看作是质量价格。
消除质量因素的价格可以按下式计算:
pi*h pih ˆjzijh
思考:这种处理方式j 可能引起什么问题?
14
第14页,共48页。
单一商品需求模型:理论基础
标准模型
微观消费行为理论(收入、商品的自身价格和替代商品的价 格)
局部均衡分析框架(假定该商品市场上发生的变化不会影响到 其他市场)
需要将未来的效用折现
模型选择主要受到研究目的和数据的限制
8
第8页,共48页。
微观消费模型:理论基础
基本模型形式:
Ma U X x1 ,X 2, ,X n
s.t. P 1 X 1 P 2X 2 P nX nI
写成拉格朗日方程形式
L= U(X1,X2,Xn)+ ( I-P1X1-P2X2--PnXn) 一阶条件:
n
viP i iiV P j ju i, i 1 ,2 , ,n j 1
经济计量模型分析及预测ppt

yt et 1et1 2et2 qetq
则称该时间 yt为 序移 列动平均序列 这。 种具 形有 式的模型
称为 q阶移动平均模型 M, A(q)。 记其 为中 1、2、 、q
为移动平均系数 型, 的是 待模 估计参数。
二、ARMA模型(5): ARMA模型
如果时间序列yt是它的当期和前期的随机误差项以及其前期值 的线性函数,即
一、数据整理和分析(2)
季节性判断
季节调整前
季节调整后
二、ARMA模型(1)
ARMA模型是一类常用的随机时序模型,由博克斯(Box)、詹 金斯(Jenkins)创立,亦称B-J方法。它是一种精度较高的时序短期 预测方法。其基本思想是:某些时间序列是依赖于时间t的一族随机变 量,构成该时序的单个序列值虽然具有不确定性,但整个序列的变化 却有一定的规律性,可以用相应的数学模型近似描述。通过对该数学 模型的分析研究,能够更本质地认识时间序列的结构与特征,达到最 小方差意义下的最优预测。
偏自相关:指对于时间序列yt ,在给定yt-1,yt-2,…, yt-k的条件 下, yt与yt-k之间的条件相关关系。滞后k阶的偏自相关系数是当yt 对yt-1,yt-2,…, yt-k作回归时的系数。称之为偏相关是因为它度 量了k期间距的相关而不考虑k-1期的相关。
二、ARMA模型(8): 相关性分析的Eviews实际操作
yt 1 yt1 2 yt 2 p yt p et 则称该时间序列为自回 归序列。
上式表示的模型为
p阶自回归模型,缩写为
AR
(
p
)。
、
1
、
2
、 p为自回归参数,是模型
的待估计参数。
et
~
N
则称该时间 yt为 序移 列动平均序列 这。 种具 形有 式的模型
称为 q阶移动平均模型 M, A(q)。 记其 为中 1、2、 、q
为移动平均系数 型, 的是 待模 估计参数。
二、ARMA模型(5): ARMA模型
如果时间序列yt是它的当期和前期的随机误差项以及其前期值 的线性函数,即
一、数据整理和分析(2)
季节性判断
季节调整前
季节调整后
二、ARMA模型(1)
ARMA模型是一类常用的随机时序模型,由博克斯(Box)、詹 金斯(Jenkins)创立,亦称B-J方法。它是一种精度较高的时序短期 预测方法。其基本思想是:某些时间序列是依赖于时间t的一族随机变 量,构成该时序的单个序列值虽然具有不确定性,但整个序列的变化 却有一定的规律性,可以用相应的数学模型近似描述。通过对该数学 模型的分析研究,能够更本质地认识时间序列的结构与特征,达到最 小方差意义下的最优预测。
偏自相关:指对于时间序列yt ,在给定yt-1,yt-2,…, yt-k的条件 下, yt与yt-k之间的条件相关关系。滞后k阶的偏自相关系数是当yt 对yt-1,yt-2,…, yt-k作回归时的系数。称之为偏相关是因为它度 量了k期间距的相关而不考虑k-1期的相关。
二、ARMA模型(8): 相关性分析的Eviews实际操作
yt 1 yt1 2 yt 2 p yt p et 则称该时间序列为自回 归序列。
上式表示的模型为
p阶自回归模型,缩写为
AR
(
p
)。
、
1
、
2
、 p为自回归参数,是模型
的待估计参数。
et
~
N
第十章定性选择模型计量经济学潘省初

log F (zi ) 1 F (zi )
exp(zi )
exp(zi )
log 1 exp(zi ) log
1 exp(zi )
1 exp(zi )
1 exp(zi ) exp(zi )
1 exp(zi )
1 exp(zi )
exp(zi )
log 1 exp(zi ) 1
log exp(zi )
INCOME的系数估计值0.002表明,一个学生的成 绩不变,而家庭收入增加1000美元,该生决定去读研 的概率的估计值增加0.002。
LPM模型中,解释变量的变动与虚拟因变量值为1 的概率线性相关,因而称为线性概率模型。
线性概率模型存在的问题
(1)线性概率模型假定自变量与Y=1的概率之间存 在线性关系,而此关系往往不是线性的。 (2)拟合值可能小于0或大于1,而概率值必须位于 0和1的闭区间内。
由于累积正态分布和累积logistic分布很接近,
只是尾部有点区别,因此,我们无论用(10.11)还
பைடு நூலகம்
是(10.12),也就是无论用logit法还是probit法,
得到的结果都不会有很大不同。可是,两种方法得
到的参数估计值不是直接可比的。由于logistic分布
的方差为
2
3
,因此,logit模型得到的的估计值必
Variable Coefficient Standard error t-Statistic
Constant
-0.51
0.19
-2.65
INCOME
0.0098
0.003
3.25
AGE
0.016
0.0053
3.08
高级计量经济学 第五章 二元选择模型

一个问题是,由线性概率方程推断得出的概率值可能落在
区间[0,1]之外,因而只有在均值附近才较为可靠。
由于线性概率函数的取值仅为0或1,因而误差项与模型参
数β出现相关,即e或是等于-β΄X,或是等于1-β΄X,因而存
,现在已经很少使用线性 概率模型。
不同统计分布的特征
Probit 模型
G(z)的一种可选形式是标准正态累积分布函数, 此即Probit模型。
Pi GZi
1 2
e Zi u22du
式中u是误差项,假定服从标准正态分布;
P代表事件发生的概率。
估计指标Z,需要应用累计正态分布函数的逆函数
Z iG 1P iX i
由于Probit模型是参数非线性函数,因而需要用最 大似然法来估计。
不同的选择)或连续值(反映选择强度)。
二元选择模型是因变量取值仅为0或1的特殊情况。
二元行为选择
可以简化表述为涉及“是”或“否”的决策
例如是否攻读研究生
净效用函数:U读研 = +1 X1 + 2 X2 + 1 Z1 + 2 Z2+ e
当U读研>0,那么选择读研究生。
使用的数据
因变量基于显示出的偏好
高级计量经济学 第五章 二元选择模型
本章内容
反映选择行为的模型 线性概率模型 经典二元选择模型
PROBIT模型 LOGIT模型 极端值模型
拟合优度测定 案例分析
用计量经济模型反映选择行为
行为主体从事的每项活动都可以看作是一种选择; 每个行为主体都有其偏好; 人们的行为有其规则; 在经济分析中,通常认为选择基于效用最大化标准。 研究中需要考虑:
行为主体选择第一项活动意味着Ui1t > Ui2t
高级经济计量学课件(绪论——第三章)

参数“线性”,变量”非线
变量“线性”,参数”非线
24
随机扰动项ui
◆概念 各个 Yi 值与条件均值 E(Yi X i ) 的偏差 u i 代表排除在模型以外的 所有因素对Y的影响。
Y
u
Xi
X
◆性质: u i 是期望为0有一定分布的随机变量 重要性:随机扰动项的性质决定着计量经济方法的选择
25
◆引入随机扰动项的原因
13
高级计量经济学——本课程核心 第4部分 时间序列计量模型
第10章 第11章 第12章 第13章
时间序列模型 协整与误差修正模型 向量自回归模型 时间序列条件异方差模型
14
高级计量经济学——本课程核心 第5部分 回归分析的深入议题
第14章 面板数据计量模型 ——固定效应与随机效应模型 第15章 二元因变量模型 ——probit与logit回归模型 第16章 计量经济模型的建立 ——传统与现代计量经济学方法论
i
31
第二节 一元线性回归模型的参数估计
1、普通最小二乘法OLS
◆OLS的基本思想: ●不同的估计方法可得到不同的样本回归参 ˆ ˆ ˆ 数 1和 2 ,所估计的 Yi 也不同。 ˆ ●理想的估计方法应使 Yi 与 Yi 的差即剩余 ei 越小越好 ●因 ei 可正可负,所以可以取 ei 2 最小 即 ^ ^ 2 2 min ei min (Yi 1 2 X i )
三、一元线性回归模型
一元线性回归模型形式如下
Yi 0 1 X i ui
上式表示变量Yi和Xi之间的真实关系。其中Yi 称被解释变量(因变量),Xi称解释变量(自变 量),ui称随机误差项,0称常数项,1称回归系 数(通常未知)。 上述模型可以分为两部分。 (1)回归函数部分,E(Yi) = 0 + 1 Xi, (2)随机部分, ui 。
变量“线性”,参数”非线
24
随机扰动项ui
◆概念 各个 Yi 值与条件均值 E(Yi X i ) 的偏差 u i 代表排除在模型以外的 所有因素对Y的影响。
Y
u
Xi
X
◆性质: u i 是期望为0有一定分布的随机变量 重要性:随机扰动项的性质决定着计量经济方法的选择
25
◆引入随机扰动项的原因
13
高级计量经济学——本课程核心 第4部分 时间序列计量模型
第10章 第11章 第12章 第13章
时间序列模型 协整与误差修正模型 向量自回归模型 时间序列条件异方差模型
14
高级计量经济学——本课程核心 第5部分 回归分析的深入议题
第14章 面板数据计量模型 ——固定效应与随机效应模型 第15章 二元因变量模型 ——probit与logit回归模型 第16章 计量经济模型的建立 ——传统与现代计量经济学方法论
i
31
第二节 一元线性回归模型的参数估计
1、普通最小二乘法OLS
◆OLS的基本思想: ●不同的估计方法可得到不同的样本回归参 ˆ ˆ ˆ 数 1和 2 ,所估计的 Yi 也不同。 ˆ ●理想的估计方法应使 Yi 与 Yi 的差即剩余 ei 越小越好 ●因 ei 可正可负,所以可以取 ei 2 最小 即 ^ ^ 2 2 min ei min (Yi 1 2 X i )
三、一元线性回归模型
一元线性回归模型形式如下
Yi 0 1 X i ui
上式表示变量Yi和Xi之间的真实关系。其中Yi 称被解释变量(因变量),Xi称解释变量(自变 量),ui称随机误差项,0称常数项,1称回归系 数(通常未知)。 上述模型可以分为两部分。 (1)回归函数部分,E(Yi) = 0 + 1 Xi, (2)随机部分, ui 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拟和优度- (2)pseudo R-squared
Amemiya (1981)
1 pseudoR 1 1 2(log L1 log L0 ) / N
2
McFadden(1974) L1无约束模型,设计的模型;L0有约束模型,模型 中只包括常数项;N样本数,N1样本中被解释变 量观测值取1的个数。
例3
1)三种方法系数符号相同。 2)系数大小比较,逻辑模型乘0.25,probit模型乘 0.4。 3)重要的区别是线性概率模型假设边际效应相同, 而逻辑模型和概率单位模型假设边际效应递减。
例3
根据线性概率模型,如果增加一个小孩,不管已经有了几 个小孩,也不管其他解释变量的取值,参加工作的概率 减少26.2%。 根据PROBIT模型,假设取其他解释变量为样本均值,当没 有孩子,增加1个时,参加工作概率减少33.4%,如果已 经有1个,又增加一个,参加工作概率减少22.5%。 使用PROBIT模型:其他因素不变时,年龄对参加工作概 率的边际影响 P(y=1|X)=g(0.27-0.012收入的均值+0.131教育程度均值 +0.123工作时间均值-0.0019工作时间均值2-0.53年龄 -0.868小孩个数均值)(-0.53)
选择模型的解释
在大部分应用中关心的是xj 的变化对P(y=1|x)的影 响,边际影响(margin effect) 如果解释变量连续 p / x j g ( z ) j 如果解释变量离散,假设x1取值0或1 概率变化很简单,其他量保持不变 G(0+1+2 x2…+xk)-G(0+2 x2+…+xk)
潜在(latent)模型
假设有一个无法观测到的变量满足传统的线性模 型,例如y*表示已婚妇女的参加工作的效用。 y*=0+1x1+…+xk+u 如果y*>0,则y=1,否则等于0 假设u满足标准正态分布或标准逻辑分布并且与x 独立 p(y=1|x)=p(y*>0|x)=p(u>-(0+1x1+…+xk)|x)=1G(-(0+1x1+…+xk))= G(0+1x1+…+xk)
检验-异方差
假设异方差
V ( i ) kh( z i' )
h(0)=1, 对于probit模型,k=1 对于logit模型k=2/3 常用的假设是指数形式
h [exp(1 z1i ... J z Ji )]
2
检验-异方差
似然函数
log L( ) yi log G (
ˆ ˆ wr0 1 p p 0.5 ˆ ˆ p p 0.5 ˆ p N1 / N
R 1 wr1 / wr0
2 p
推断和识别检验
检验模型中某个系数是否等于0,使用t检验。 检验某几个系数是否等于0 使用WALD检验,LM检验或LR检验
ˆ ˆ ˆ ( R q)' ( RVar( ) R' ) 1 ( R q) ˆ ˆ LR 2(ln L ln L )
预测y=1的概率
P^(y=1|x)=G(b0+b1x1+…+bxk) Y^=1如果P^>0.5 Y^=0如果P^<=0.5
例2
选择公共交通还是开车上班 y=1选择开车 解释变量x是(乘公共交通需要的时间-开车需要的时间) -0.0644+0.0299Xi X=20时
ˆ dP / dx f (b1 b2 x)b2 f (0.0644 0.0299 * 20)(0.0299 ) 0.0104
' i
yi F ( x ) L ' ~ [ f ( xi ' ) exp( z i' ) z i ( xi' ) ' ~ ' ~ i 1 F ( xi )(1 F ( xi ))
N ' i
~
检验-异方差
异方差的LM检验 H0:=0 检验相当于做如下辅助回归
二元选择模型的解释
三个二元选择模型的边际影响
( xi' ) ( xi' ) k xik L( x ) e k ( xi' )(1 ( xi' ) k xi' 2 xik (1 e )
' i xi'
xi' k (or 0) xik
R U
LM=g’Vg g是无约束模型的一阶条件,在满足约束情况下的取值,V 是无约束模型的参数的协方差阵在约束满足情况下的取 值
检验
检验是否有忽略掉的解释变量 H0: y*=x’+ H1: y*=x’+ z’ + 检验=0 使用LM检验 1)估计零假设成立时的模型 ˆ ˆ 1 G xi' G z i' u i 2)估计辅助回归模型 3)计算NR2=拟和值的平方和=N-RSS,(RSS是残差平方和)
估计方法
广义残差
y i F ( xi' ) f ( xi' ) F ( xi' )(1 F ( xi' ))
LOGIT模型的一阶和二阶条件
因为 一阶
f ( x ) ( x )(1 ( x )
' i ' i ' i
log L( ) N [ yi ( xi' )]xi i 1
家庭其他收入 教育程度 工作时间 工作时间2 年龄 小于6岁孩子 个数 常数项
-0.0034 0.038 0.039 -0.0006 -0.016 -0.262 0.586
-0.021 0.221 0.206 -0.0032 -0.088 -1.443 0.425
-0.012 0.131 0.123 -0.0019 -0.53 -0.868 0.27
ˆ x=30时, P F (0.0644 0.0299 * 30) 0.798 预测结果y=1
例3
已婚女性是否参加工作的影响因素 抽样调查753个妇女,如果工作work=1 影响因素包括其他的收入;教育程度;结婚前的 工作时间;年龄;小于6岁的孩子的个数。
例3
是否工作 变量 线性概率模型 逻辑模型 PROBIT模型
潜在模型
如果有明确效用的化,整个PROBIT模型可以写成 y*=0+1x1+…+xk+u,u~N(0,1) y=1,如果y*>0 y=0,如果y*0
估计方法
似然函数
L( ) P( y i 1 | xi ; ) yi P( y i 0 | xi ; )1 yi
i 1 N
log L( ) y i log G ( x ) (1 y i ) log(1 G ( xi' ))
N
N
一阶条件
i 1
' i
i 1
y i F ( xi' ) log L( ) N [ f ( xi' )] xi ' ' i 1 F ( xi )(1 F ( xi ))
i 1 N
xi' h( z i ' )
) (1 yi ) log(1 G (
i 1
N
xi' h( z i ' )
))
假设 V ( i ) k[exp( z i ' )] 2 ~ 一阶条件 L N [ yi F ( xi' )
i 1
~ f ( x ' ) exp( z i' ) xi ~ ~ F ( xi' )(1 F ( xi' ))
例题
假设异方差 V ( i ) [exp(1kids 2 familyinco )] 2 me 存在异方差时的似然值=-487.6356 LR=2(-487.6356-(-490.8478))=6.424 LM=2.236(使用BHHH) W=6.533 2(2)临界值5.99(1%)
log L0 N1 log(N1 / N ) ( N N1 ) log(1 N1 / N )
2 McFaddenR 1 log L1 / log L0
拟和优度-(3)错判率
模型的错判率
1 N ˆ wr1 ( y i y i ) 2 N i 1 对照模型(只包括常数项)的错判率
二元选择模型的解释
( 1 ) g(z)是密度函数,总是大于0,所以参数的符号为正
说明增加发生的概率,为负说明减少发生的概率,但是 程度的大小还需要计算。 (2)随着解释变量的变化,密度函数的取值发生变化。对 probit模型来说,当z=0时,密度值最大大约是0.4,这 时选择y=1概率50%,这时x改变的边际效果最大 (3)另一方面如果z取值非常大(小),这时y=1的概率 几乎等于1,x的改变的边际效果很小,因为f(z)近似 等于0
二元选择模型的解释
例1 p(y=1|x)=G(0+1Z1+2Z21+3LOG(Z2)+ 4Z3) 变 量 Z1 改 变 一 个 单 位 , y=1 变 化 的 概 率 为 g(0+1Z1+2Z21+3LOG(Z3)+ 4Z3) ( 1 + 22 Z1) 变量Z2改变一个单位,y=1变化的概率为 g(0+1Z1+2Z21+3LOG(Z3)+ 4Z3)(3 /Z2)
N 2L H i (1 i ) xi xi ' ' i 1