斯托克计量经济学第十章第十一章实证练习stata

合集下载

计量经济学斯托克第四版实证答案十一章

计量经济学斯托克第四版实证答案十一章

计量经济学斯托克第四版实证答案十一章1、企业开出的商业汇票为银行承兑汇票,其无力支付票款时,应将应付票据的票面金额转作()。

[单选题] *A.应付账款B.其他应付款C.预付账款D.短期借款(正确答案)2、某公司为一般纳税人,2019年6月购入商品并取得增值税专用发票,价款100万元,增值税率13%;支付运费取得增值税专用发票,运费不含税价款为30万元,增值税率9%,则该批商品的入账成本为()。

[单选题] *A.130万元(正确答案)B.7万元C.3万元D.113万元3、企业生产车间发生的固定资产的修理费应计入()科目。

[单选题] *A.制造费用B.生产成本C.长期待摊费用D.管理费用(正确答案)4、企业因解除与职工的劳动关系给予职工补偿而发生的职工薪酬,应借记的会计科目是()。

[单选题] *A.管理费用(正确答案)B.计入存货成本或劳务成本C.营业外支出D.计入销售费用5、长期借款利息及外币折算差额,均应记入()科目。

[单选题] *A.其他业务支出B.长期借款(正确答案)C.投资收益D.其他应付款6、固定资产报废清理后发生的净损失,应计入()。

[单选题] *A.投资收益B.管理费用C.营业外支出(正确答案)D.其他业务成本7、下列各项税金中不影响企业损益的是()。

[单选题] *A.消费税B.资源税C.增值税(正确答案)D.企业所得税8、股份有限公司为核算投资者投入的资本应当设置()科目。

[单选题] *A.“实收资本”B.“股东权益”C.“股本”(正确答案)D.“所有者权益”9、.(年预测)下列属于货币资金转换为生产资金的经济活动的是()[单选题] * A购买原材料B生产领用原材料C支付工资费用(正确答案)D销售产品10、企业生产经营期间发生的长期借款利息应计入()科目。

[单选题] *A.在建工程B.财务费用(正确答案)C.开办费D.长期待摊费用11、某企业上年末“利润分配——未分配利润”科目贷方余额为50 000元,本年度实现利润总额为1 000 000元,所得税税率为25%,无纳税调整项目,本年按照10%提取法定盈余公积,应为()元。

计量经济学(数字教材版)课后习题参考答案

计量经济学(数字教材版)课后习题参考答案

课后习题参考答案第二章教材习题与解析1、 判断下列表达式是否正确:y i =β0+β1x i ,i =1,2,⋯ny ̂i =β̂0+β̂1x i ,i =1,2,⋯nE(y i |x i )=β0+β1x i +u i ,i =1,2,⋯n E(y i |x i )=β0+β1x i ,i =1,2,⋯nE(y i |x i )=β̂0+β̂1x i ,i =1,2,⋯ny i =β0+β1x i +u i ,i =1,2,⋯ny ̂i =β̂0+β̂1x i +u i ,i =1,2,⋯n y i =β̂0+β̂1x i +u i ,i =1,2,⋯n y i =β̂0+β̂1x i +u ̂i ,i =1,2,⋯n y ̂i =β̂0+β̂1x i +u ̂i ,i =1,2,⋯n答案:对于计量经济学模型有两种类型,一是总体回归模型,另一是样本回归模型。

两类回归模型都具有确定形式与随机形式两种表达方式:总体回归模型的确定形式:X X Y E 10)|(ββ+= 总体回归模型的随机形式:μββ++=X Y 10样本回归模型的确定形式:X Y 10ˆˆˆββ+= 样本回归模型的随机形式:e X Y ++=10ˆˆββ 除此之外,其他的表达形式均是错误的2、给定一元线性回归模型:y =β0+β1x +u (1)叙述模型的基本假定;(2)写出参数β0和β1的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。

答案:(1)线性回归模型的基本假设有两大类,一类是关于随机误差项的,包括零均值、同方差、不序列相关、满足正态分布等假设;另一类是关于解释变量的,主要是解释变量是非随机的,如果是随机变量,则与随机误差项不相关。

(2)12ˆi iix yxβ=∑∑,01ˆˆY X ββ=- (3)考察总体的估计量,可从如下几个方面考察其优劣性:1)线性性,即它是否是另一个随机变量的线性函数; 2)无偏性,即它的均值或期望是否等于总体的真实值;3)有效值,即它是否在所有线性无偏估计量中具有最小方差;4)渐进无偏性,即样本容量趋于无穷大时,它的均值序列是否趋于总体真值; 5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;6)渐进有效性,即样本容量趋于无穷大时,它在所有的一致估计量中是否具有最小的渐进方差。

第十章习题答案计量经济学-推荐下载

第十章习题答案计量经济学-推荐下载

Augmented Dickey-Fuller test statistic
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

计量经济学 实证练习作业

计量经济学 实证练习作业

计量经济学实证练习作业P106 第四章实证练习1⑴利用Eviews软件得到:Dependent Variable: AHEMethod: Least SquaresDate: 09/21/11 Time: 08:44Sample: 1 7986Included observations: 7986Variable Coefficient Std. Error t-Statistic Prob.AGE 0.451931 0.033526 13.48022 0.0000C 3.324184 1.002230 3.316787 0.0009R-squared 0.022254 Mean dependent var 16.77115Adjusted R-squared 0.022131 S.D. dependent var 8.758696S.E. of regression 8.661234 Akaike info criterion 7.155842Sum squared resid 598935.5 Schwarz criterion 7.157591Log likelihood -28571.28 F-statistic 181.7164Durbin-Watson stat 1.857141 Prob(F-statistic) 0.000000由此得出,平均每小时收入(AHE)对年龄(Age)的回归方程为:= 3.324184 + 0.451931×Age截距的估计值是3.324184,斜率的估计值是0.451931。

当工人年长一岁时,收入增加0.451931美元/小时。

⑵Bob:当Age=26时,AHE = 3.324184 + 0.451931×26 = 15.07439所以利用回归估计预测Bob的收入为15.07439美元/小时。

Alexis:当Age=30时,AHE = 3.324184 + 0.451931×30 = 16.88211所以利用回归估计预测Alexis的收入为16.88211美元/小时。

斯托克,沃森计量经济学实证练习stata操作及答案

斯托克,沃森计量经济学实证练习stata操作及答案

E4.1E4.21 jse 17 C : \ UsEiaVa sus\Deakt.op\T each! "gRat i"ca.dta172twoway scatter course_eval beauty.「,第一,可画课程评t★和萝三容能的段点匡3reg course_eval beauty, robust 匚1口5七日工山日3口七y)//第二月建立国.三.方程replace .- / -r- [H]4outreg2 asing 2 . docf5mean tiEaut”/算t:—nty的样本均值6logout, save (docJ) word replace : ir.ean beauty ;-zibeautit7sum EEautv“想计算"日口七产的标,佳差「logout, save (doc2) word replace: sum Iieauty9 sum cour s e_eva 1Z / 埴计算corn s e一sal的标准差,结合t―uty的标准差评价效应估计10 logout, save (doc3} word replace : snim. course evalE4.31 'jse :\UBErs\aEij.B\.Des]ctop\CoLLegeE'iBtanceweBt.dta"2leg ed. dist, rotoust. cluster [tlist}3 outreg'2 jsing 3 .doc, replaceE4.41 use n C:\U5er3\a3u3XDe3ktop\GEDwCh.dtfi w2twcway scatter growth tzadeshar一同绘制平启年亳长率对平均贸易额的敖卓民3leg growth cradeshare, robust 匚Luwter 111第三同建立口rmrth对七r^d巳写ti日工己的回!闩d outrea2;asina i. aoc工曰口工30■己,,.出回!3结果r5口工口口IX sun"y_n面ne=n MaJxaT"第四i司剔除马其他的数招6zegress growth tradeahare, robust cluater (trad^shmre) 」/身!除冬至.、二数书.~n^2. gi cwth^j-tr a de aha z e 的回!月~ outregS asxng 5 . doc t上三口J_me;三//导出回结果VARIABLES aheage 0.605(0.0245)Constant 1.082(0.688)Observations 7,711R-squared 0.029Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.11.① 截距估计值estimated intercept: 1,082② 斜率估计值estimated slope: 0,605回归方程:ahe= 1.082+0,605*age③当工人年长1岁,平均每小时工资增加0.605美元。

詹姆斯·斯托克,马克·沃森计量经济学第三章实证练习stata答案

詹姆斯·斯托克,马克·沃森计量经济学第三章实证练习stata答案

詹姆斯·斯托克,马克·沃森计量经济学第三章实证练习stata答案⼀、Two-sample t test with equal variancesGroup Obs Mean Std.Err. Std.Dev. 95% Conf. Interval1992 7,612 11.62 0.0644 5.619 11.49 11.742012 7,440 19.80 0.124 10.69 19.56 20.04combined 15,052 15.66 0.0770 9.442 15.51 15.81diff -8,183 0.139 -8.455 -7.911 diff = mean(1992) - mean(2012) t = -58.9871Ho: diff = 0 degrees of freedom = 15050Ha: diff < 0 Ha: diff != 0 Ha: diff > 0Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000⼆、Two-sample t test with equal variancesGroup Obs Mean Std.Err. Std.Dev. 95% Conf. Interval 1992 7,612 15.64 0.0867 7.564 15.47 15.81 2012 7,440 19.80 0.124 10.69 19.56 20.04 combined 15,052 17.69 0.0772 9.471 17.54 17.85 diff -4.164 0.151 -4.459 -3.869diff = mean(1992) - mean(2012) t = -27.6423Ho: diff = 0 degrees of freedom = 15050Ha: diff < 0 Ha: diff != 0 Ha: diff > 0Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000三、第⼆题根据通货膨胀率进⾏了调整,反映了购买⼒的变化,所以可⽤利⽤第⼆题的结果进⾏分析。

斯托克,沃森计量经济学第七章实证练习stata

斯托克,沃森计量经济学第七章实证练习stata

斯托克,沃森计量经济学第七章实证练习stataE7.2E7.3E7.4-------------------------------------------- (1) (2) ahe ahe -------------------------------------------- age 0.605*** 0.585*** (15.02) (16.02) female -3.664*** (-17.65)bachelor 8.083*** (38.00)_cons 1.082 -0.636 (0.93) (-0.59)(表2)Robust ci in parentheses*** p<0.01, ** p<0.05, * p<0.1-------------------------------------------- N 7711 7711 -------------------------------------------- t statistics in parentheses* p<0.10, ** p<0.05, *** p<0.01 (表1)(1)建⽴ahe 对age 的回归。

截距估计值是1.082,斜率估计值是0.605。

(2)①建⽴ahe 对age ,female 和bachelor 的回归。

Age 对收⼊的效应的估计值是0.585。

② age 回归系数的95%置信区间: (0.514,0.657)(3)设H 0:βa,(2)-βa,(1)=0 H1:βa,(2)-βa (1)≠0由表3,得SE ,SE(βa,(2)-βa,(1))=√(0.0403)2+(0.0365)2=0.054t=(0.605-0.585)/0.054=0.37<1.96所以不拒绝原假设,即在5%显著⽔平下age 对ahe 的效应估计没有显著差异,所以(1)中的回归没有遭遇遗漏变量偏差。

计量经济学stata操作指南

计量经济学stata操作指南

计量经济学stata操作指南计量经济学stata操作(实验课)第一章stata基本知识1、stata窗口介绍2、基本操作(1)窗口锁定:Edit-preferences-general preferences-windowing-lock splitter (2)数据导入(3)打开文件:use E:\example.dta,clear(4)日期数据导入:gen newvar=date(varname, “ymd”)format newvar %td 年度数据gen newvar=monthly(varname, “ym”)format newvar %tm 月度数据gen newvar=quarterly(varname, “yq”)format newvar %tq 季度数据(5)变量标签Label variable tc ` “total output” ’(6)审视数据describelist x1 x2list x1 x2 in 1/5list x1 x2 if q>=1000drop if q>=1000keep if q>=1000(6)考察变量的统计特征summarize x1su x1 if q>=10000su q,detailsutabulate x1correlate x1 x2 x3 x4 x5 x6(7)画图histogram x1, width(1000) frequency kdensity x1scatter x1 x2twoway (scatter x1 x2) (lfit x1 x2) twoway (scatter x1 x2) (qfit x1 x2) (8)生成新变量gen lnx1=log(x1)gen q2=q^2gen lnx1lnx2=lnx1*lnx2gen larg=(x1>=10000)rename larg largeg large=(q>=6000)replace large=(q>=6000)drop ln*(8)计算功能display log(2)(9)线性回归分析regress y1 x1 x2 x3 x4vce #显示估计系数的协方差矩阵reg y1 x1 x2 x3 x4,noc #不要常数项reg y1 x1 x2 x3 x4 if q>=6000reg y1 x1 x2 x3 x4 if largereg y1 x1 x2 x3 x4 if large==0reg y1 x1 x2 x3 x4 if ~large predict yhatpredict e1,residualdisplay 1/_b[x1]test x1=1 # F检验,变量x1的系数等于1test (x1=1) (x2+x3+x4=1) # F联合假设检验test x1 x2 #系数显著性的联合检验testnl _b[x1]= _b[x2]^2(10)约束回归constraint def 1 x1+x2+x3=1cnsreg y1 x1 x2 x3 x4,c(1)cons def 2 x4=1cnsreg y1 x1 x2 x3 x4,c(1-2)(11)stata的日志File-log-begin-输入文件名log off 暂时关闭log on 恢复使用log close 彻底退出(12)stata命令库更新Update allhelp command第二章有关大样本ols的stata命令及实例(1)ols估计的稳健标准差reg y x1 x2 x3,robust(2)实例use example.dta,clearreg y1 x1 x2 x3 x4test x1=1reg y1 x1 x2 x3 x4,rtestnl _b[x1]=_b[x2]^2第三章最大似然估计法的stata命令及实例(1)最大似然估计help ml(2)LR检验lrtest #对面板数据中的异方差进行检验(3)正态分布检验sysuse auto #调用系统数据集auto.dtahist mpg,normalkdensity mpg,normalqnorm mpg*手工计算JB统计量sum mpg,detaildi (r(N)/6)*((r(skewness)^2)+[(1/4)*(r(kurtosis)-3)^2]) di chi2tail(自由度,上一步计算值)*下载非官方程序ssc install jb6jb6 mpg*正态分布的三个检验sktest mpgswilk mpgsfrancia mpg*取对数后再检验gen lnmpg=log(mpg)kdensity lnmpg, normaljb6 lnmpgsktest lnmpg第四章处理异方差的stata命令及实例(1)画残差图rvfplotrvfplot varname*例题use example.dta,clearreg y x1 x2 x3 x4rvfplot # 与拟合值的散点图rvfplot x1 # 画残差与解释变量的散点图(2)怀特检验estat imtest,white*下载非官方软件ssc install whitetst(3)BP检验estat hettest #默认设置为使用拟合值estat hettest,rhs #使用方程右边的解释变量estat hettest [varlist] #指定使用某些解释变量estat hettest,iidestat hettest,rhs iidestat hettest [varlist],iid(4)WLSreg y x1 x2 x3 x4 [aw=1/var]*例题quietly reg y x1 x2 x3 x4predict e1,resgen e2=e1^2gen lne2=log(e2)reg lne2 x2,nocpredict lne2fgen e2f=exp(lne2f)reg y x1 x2 x3 x4 [aw=1/e2f](5)stata命令的批处理(写程序)Window-do-file editor-new do-file#WLS for examplelog using E:\wls_example.smcl,replaceset more offuse E:\example.dta,clearreg y x1 x2 x3 x4predict e1,resgen e2=e1^2g lne2=log(e2)reg lne2 x2,nocpredict lne2fg e2f=exp(lne2f)*wls regressionreg y x1 x2 x3 x4 [aw=1/e2f]log closeexit第五章处理自相关的stata命令及实例(1)滞后算子/差分算子tsset yearl.l2.D.D2.LD.(2)画残差图scatter e1 l.e1ac e1pac e1(3)BG检验estat bgodfrey(默认p=1)estat bgodfrey,lags(p)estat bgodfrey,nomiss0(使用不添加0的BG检验)(4)Ljung-Box Q检验reg y x1 x2 x3 x4predict e1,residwntestq e1wntestq e1,lags(p)* wntestq指的是“white noise test Q”,因为白噪声没有自相关(5)DW检验做完OLS回归后,使用estat dwatson(6)HAC稳健标准差newey y x1 x2 x3 x4,lag(p)reg y x1 x2 x3 x4,cluster(varname)(7)处理一阶自相关的FGLSprais y x1 x2 x3 x4 (使用默认的PW估计方法)prais y x1 x2 x3 x4,corc (使用CO估计法)(8)实例use icecream.dta, cleartsset timegraph twoway connect consumption temp100 time, msymbol(circle) msymbol(triangle) reg consumption temp price incomepredict e1, resg e2=l.e1twoway (scatter e1 e2) (lfit e1 e2)ac e1pac e1estat bgodfreywntestq e1estat dwatsonnewey consumption temp price income, lag (3)prais consumption temp price income, corcprais consumption temp price income, nologreg consumption temp l.temp price incomeestat bgodfreyestat dwatson第六章模型设定与数据问题(1)解释变量的选择reg y x1 x2 x3estat ic*例题use icecream.dta, clearreg consumption temp price incomeestat icreg consumption temp l.temp price incomeestat ic(2)对函数形式的检验(reset检验)reg y x1 x2 x3estat ovtest (使用被解释变量的2、3、4次方作为非线性项)estat ovtest, rhs (使用解释变量的幂作为非线性项,ovtest-omitted variable test)*例题use nerlove.dta, clearreg lntc lnq lnpl lnpk lnpfestat ovtestg lnq2=lnq^2reg lntc lnq lnq2 lnpl lnpk lnpfestat ovtest(3)多重共线性estat vif*例题use nerlove.dta, clearreg lntc lnq lnpl lnpk lnpfestat vif(4)极端数据reg y x1 x2 x3predict lev, leverage (列出所有解释变量的lev值)gsort –levsum levlist lev in 1/3*例题use nerlove.dta, clearquietly reg lntc lnq lnpl lnpk lnpfpredict lev, leveragesum levgsort –levlist lev in 1/3(5)虚拟变量gen d=(year>=1978)tabulate province, generate (pr)reg y x1 x2 x3 pr2-pr30(6)经济结构变动的检验方法1:use consumption_china.dta, cleargraph twoway connect c y year, msymbol(circle) msymbol(triangle)reg c yreg c y if year<1992reg c y if year>=1992计算F统计量方法2:gen d=(year>1991)gen yd=y*dreg c y d ydtest d yd第七章工具变量法的stata命令及实例(1)2SLS的stata命令ivregress 2sls depvar [varlist1] (varlist2=instlist)如:ivregress 2sls y x1 (x2=z1 z2)ivregress 2sls y x1 (x2 x3=z1 z2 z3 z4) ,r firstestat firststage,all forcenonrobust (检验弱工具变量的命令)ivregress liml depvar [varlist 1] (varlist2=instlist)estat overid (过度识别检验的命令)*对解释变量内生性的检验(hausman test),缺点:不适合于异方差的情形reg y x1 x2estimates store olsivregress 2sls y x1 (x2=z1 z2)estimates store ivhausman iv ols, constant sigmamore*DWH检验estat endogenous*GMM的过度识别检验ivregress gmm y x1 (x2=z1 z2) (两步GMM)ivregress gmm y x1 (x2=z1 z2),igmm (迭代GMM)estat overid*使用异方差自相关稳健的标准差GMM命令ivregress gmm y x1 (x2=z1 z2), vce (hac nwest[#])(2)实例use grilic.dta,clearsumcorr iq sreg lw s expr tenure rns smsa,rreg lw s iq expr tenure rns smsa,rivregress 2sls lw s expr tenure rns smsa (iq=med kww mrt age),restat overidivregress 2sls lw s expr tenure rns smsa (iq=med kww),r first estat overidestat firststage, all forcenonrobust (检验工具变量与内生变量的相关性)ivregress liml lw s expr tenure rns smsa (iq=med kww),r *内生解释变量检验quietly reg lw s iq expr tenure rns smsaestimates store olsquietly ivregress 2sls lw s expr tenure rns smsa (iq=med kww) estimates store ivhausman iv ols, constant sigmamoreestat endogenous (存在异方差的情形)*存在异方差情形下,GMM比2sls更有效率ivregress gmm lw s expr tenure rns smsa (iq=med kww)estat overidivregress gmm lw s expr tenure rns smsa (iq=med kww),igmm*将各种估计方法的结果存储在一张表中quietly ivregress gmm lw s expr tenure rns smsa (iq=med kww)estimates store gmmquietly ivregress gmm lw s expr tenure rns smsa (iq=med kww),igmmestimates store igmmestimates table gmm igmm第八章短面板的stata命令及实例(1)面板数据的设定xtset panelvar timevarencode country,gen(cntry) (将字符型变量转化为数字型变量)xtdesxtsumxttab varnamextline varname,overlay*实例use traffic.dta,clearxtset state yearxtdesxtsum fatal beertax unrate state yearxtline fatal(2)混合回归reg y x1 x2 x3,vce(cluster id)如:reg fatal beertax unrate perinck,vce(cluster state)estimates store ols对比:reg fatal beertax unrate perinck(3)固定效应xtreg y x1 x2 x3,fe vce(cluster id)xi:reg y x1 x2 x3 i.id,vce(cluster id) (LSDV法)xtserial y x1 x2 x3,output (一阶差分法,同时报告面板一阶自相关)estimates store FD*双向固定效应模型tab year, gen (year)xtreg fatal beertax unrate perinck year2-year7, fe vce (cluster state)estimates store FE_TWtest year2 year3 year4 year5 year6 year7(4)随机效应xtreg y x1 x2 x3,re vce(cluster id) (随机效应FGLS)xtreg y x1 x2 x3,mle (随机效应MLE)xttest0 (在执行命令xtreg, re 后执行,进行LM检验)(5)组间估计量xtreg y x1 x2 x3,be(6)固定效应还是随机效应:hausman testxtreg y x1 x2 x3,feestimates store fextreg y x1 x2 x3,reestimates store rehausman fe re,constant sigmamore (若使用了vce(cluster id),则无法直接使用该命令,解决办法详见P163)estimates table ols fe_robust fe_tw re be, b se (将主要回归结果列表比较)第九章长面板与动态面板(1)仅解决组内自相关的FGLSxtpcse y x1 x2 x3 ,corr(ar1) (具有共同的自相关系数)xtpcse y x1 x2 x3 ,corr(psar1) (允许每个面板个体有自身的相关系数)例题:use mus08cigar.dta,cleartab state,gen(state)gen t=year-62reg lnc lnp lnpmin lny state2-state10 t,vce(cluster state)estimates store OLSxtpcse lnc lnp lnpmin lny state2-state10 t,corr(ar1) (考虑存在组内自相关,且各组回归系数相同)estimates store AR1xtpcse lnc lnp lnpmin lny state2-state10 t,corr(psar1) (考虑存在组内自相关,且各组回归系数不相同)estimates store PSAR1xtpcse lnc lnp lnpmin lny state2-state10 t, hetonly (仅考虑不同个体扰动性存在异方差,忽略自相关)estimates store HETONL Yestimates table OLS AR1 PSAR1 HETONL Y, b se(2)同时处理组内自相关与组间同期相关的FGLSxtgls y x1 x2 x3,panels (option/iid/het/cor) corr(option/ar1/psar1) igls注:执行上述xtpcse、xtgls命令时,如果没有个体虚拟变量,则为随机效应模型;如果加上个体虚拟变量,则为固定效应模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E10.1(1) (2) (3) (4) (5)lnvio lnvio lnvio lnvio lnvio shall -0.443***-0.368***-0.0461*-0.288***-0.0280(0.0475) (0.0348) (0.0189) (0.0337) (0.0278)incarc_rate 0.00161***-0.0000710 0.00193***0.0000760(0.000181) (0.0000936) (0.000114) (0.0000720)density 0.0267 -0.172*-0.00887 -0.0916(0.0143) (0.0850) (0.0139) (0.0485)avginc 0.00121 -0.00920 0.0129 0.000959(0.00728) (0.00591) (0.00796) (0.00729)pop 0.0427***0.0115 0.0408***-0.00475(0.00315) (0.00872) (0.00252) (0.00781)pb1064 0.0809***0.104***0.1000***0.0292(0.0200) (0.0178) (0.0182) (0.0183)pw1064 0.0312**0.0409***0.0401***0.00925(0.00973) (0.00507) (0.00912) (0.00538)pm1029 0.00887 -0.0503***-0.0444*0.0733***(0.0121) (0.00640) (0.0175) (0.0129)_cons 6.135*** 2.982*** 3.866*** 2.948*** 4.348***(0.0193) (0.609) (0.385) (0.569) (0.435) N 1173 1173 1173 1173 1173R20.087 0.564 0.218 0.580 0.955adj. R2 State Effects Time Effects 0.0859NoNo0.5613NoNo0.1771YesNo0.5690NoYes0.9525YesYesStandard errors in parentheses*p < 0.10, **p < 0.05, ***p < 0.01(1)①回归(2)中shall的系数是-0.368,这意味着隐蔽武器法律,也即“准予”携带法律,约使暴力犯罪减少36.8%。

从“现实意义”上讲,这个估计值很大。

②回归(1)中shall的系数是-0.443,回归(2)中shall的系数是-0.368,加入(2)中的控制变量后“准予”携带法律的效应略微减小。

系数估计显著性都很高,两者均在1%水平下显著。

③不同州的人们对待枪支和暴力犯罪的态度。

(2)加入州固定效应的回归结果如上表第(3)列所示。

回归(3)中shall的系数是-0.0461,和回归(2)相比,“准予”携带法律的效应减小许多,显然说明回归(2)中存在遗漏变量偏差。

个体固定效应的差异来源于随个体变化但随时间不变的遗漏变量,回归(3)中,变量shall, density, pb1064, pw1064, pm1029至少在5%水平下显著,可信度较高,加入州固定效应得到的回归结果总体上较回归(2)可信。

(3)加入时间固定效应的回归结果如上表第(5)列所示。

回归(5)中shall的系数是-0.028,和回归(2)(3)相比,“准予”携带法律的效应减小许多。

回归(5)同时包含个体和时间固定效应以控制州间不同但时间上相同的变量和随时间变化但州间相同的变量,adjusted R2的值为0.9525,比前面的回归更接近1,因此回归(5)的结果更加可靠。

(4)(1) (2) (3) (4) (5)lnrob lnrob lnrob lnrob lnrob shall -0.773***-0.529***-0.00782 -0.341***0.0268(0.0693) (0.0510) (0.0253) (0.0457) (0.0243)incarc_rate 0.00101***-0.0000763 0.00177***0.0000314(0.000187) (0.000125) (0.000155) (0.000112)density 0.0905***-0.186 -0.00918 -0.0447(0.0154) (0.114) (0.0189) (0.0737)avginc 0.0407***-0.0175*0.0643***0.0144(0.00927) (0.00791) (0.0108) (0.0101)pop 0.0778***0.0163 0.0720***0.0000164(0.00549) (0.0117) (0.00343) (0.0118)pb1064 0.102***0.112***0.167***0.0141(0.0266) (0.0238) (0.0248) (0.0270)pw1064 0.0275*0.0272***0.0557***-0.0128(0.0135) (0.00679) (0.0124) (0.00720)pm1029 0.0273 0.0112 -0.189***0.105***(0.0150) (0.00857) (0.0238) (0.0222)_cons 4.873***0.904 2.446*** 1.792* 3.587***(0.0279) (0.889) (0.515) (0.772) (0.645)N1173 1173 1173 1173 1173R20.121 0.596 0.037 0.653 0.961 adj. R20.1201 0.5934 -0.0135 0.6434 0.9593 Standard errors in parentheses*p < 0.05, **p < 0.01, ***p < 0.001用lnrob代替lnvio后所得回归如上表所示,分析如下:①回归(1)中shall的系数是-0.773,回归(2)中shall的系数是-0.529,这意味着隐蔽武器法律,也即“准予”携带法律,约使暴力犯罪分别减少77.3%和52.9%。

从“现实意义”上讲,这个估计值很大。

系数估计显著性都很高,两者均在1%水平下显著。

②加入州固定效应的回归结果如上表第(3)列所示。

回归(3)中shall的系数是-0.00782,和回归(1)(2)相比,“准予”携带法律的效应减小许多,显然说明回归(1)(2)中存在遗漏变量偏差。

加入时间固定效应的回归结果如上表第(5)列所示。

③回归(5)中shall的系数是0.0268。

和回归(1)(2)相比,明显回归(3)(5)“准予”携带法律的效应减小许多。

回归(5)adjusted R2的值为0.9593,比前面的回归更接近1,因此回归(5)的结果更加可靠。

(1) (2) (3) (4) (5)lnmur lnmur lnmur lnmur lnmur shall -0.473***-0.313***-0.0608*-0.198***-0.0150(0.0485) (0.0357) (0.0258) (0.0340) (0.0297)incarc_rate 0.00210***-0.000360**0.00260***-0.000116(0.000154) (0.000128) (0.000115) (0.000148)density 0.0397***-0.671***-0.0134 -0.544***(0.0118) (0.116) (0.0141) (0.117)avginc -0.0773***0.0243**-0.0698***0.0566***(0.00875) (0.00807) (0.00803) (0.0136)pop 0.0416***-0.0257*0.0393***-0.0321**(0.00351) (0.0119) (0.00255) (0.00902)pb1064 0.131***0.0307 0.188***0.0220(0.0188) (0.0242) (0.0184) (0.0434)pw1064 0.0471***0.0103 0.0739***-0.000489(0.00909) (0.00693) (0.00921) (0.0119)pm1029 0.0655***0.0392***-0.0502**0.0692*(0.0137) (0.00874) (0.0177) (0.0289)_cons 1.898***-2.486***0.460 -2.831***0.657(0.0220) (0.615) (0.525) (0.574) (0.726)N1173 1173 1173 1173 1173R20.083 0.606 0.153 0.642 0.921 adj. R20.0826 0.6032 0.1087 0.6328 0.9167 Standard errors in parentheses*p < 0.05, **p < 0.01, ***p < 0.001用lnmur代替lnvio后所得回归如上表所示,分析如下:①回归(1)中shall的系数是-0.473,回归(2)中shall的系数是-0.313,这意味着隐蔽武器法律,也即“准予”携带法律,约使暴力犯罪分别减少47.3%和31.3%。

从“现实意义”上讲,这个估计值很大。

系数估计显著性都很高,两者均在1%水平下显著。

②加入州固定效应的回归结果如上表第(3)列所示。

回归(3)中shall的系数是-0.0608,和回归(1)(2)相比,“准予”携带法律的效应减小许多,显然说明回归(1)(2)中存在遗漏变量偏差。

加入时间固定效应的回归结果如上表第(5)列所示。

③回归(5)中shall的系数是-0.015。

和回归(1)(2)相比,明显回归(3)(5)“准予”携带法律的效应减小许多。

回归(5)adjusted R2的值为0.9167,比前面的回归更接近1,因此回归(5)的结果更加可靠。

(5)“准予”携带法律会对犯罪率产生影响,同时,一个州可能因为犯罪情况而决定是否颁布“准予”携带法律,这就产生双向因果关系偏差,威胁内部有效性。

(6)综上可知,上述三个表格的回归(5)结果最为可信。

用lnrob, lnmur代替lnvio所得回归与lnvio所得的回归结果相类似,以lnvio为例进行分析。

相关文档
最新文档