五年级奥数知识讲解列方程解应用题一

合集下载

五年级奥数列方程解应用题学生版

五年级奥数列方程解应用题学生版

列方程解应用题教学目标五年级奥数列方程解应用题学生版2、根据题意寻找等量关系的方法来构建方程3、合理规划等量关系,设未知数、列方程知识精讲知识点说明:一、等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。

三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、设这个量为x,用含x的代数式来表示题目中的其他量;3、找到题目中的等量关系,建立方程;4、运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.例题精讲板块一、直接设未知数【例 1】长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【巩固】一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?【巩固】(全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到0.01,π 3.14)【例 2】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【例 3】(全国小学数学奥林匹克)abcdefg,则七位数abcdefg应是.某八位数形如2abcdefg,它与3的乘积形如4【巩固】有一个六位数1abcde乘以3后变成1abcde,求这个六位数.【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【例 4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【巩固】已知三个连续奇数之和为75,求这三个数。

五年级奥数知识讲解 列方程解应用题(一)

五年级奥数知识讲解 列方程解应用题(一)

五年级奥数知识讲解列方程解应用题(一)千克,根据题意,第二袋剩下的是(x-25)千克,而且第一袋剩下的是第二袋剩下的2倍,因此可以列出等量关系式:2(x-25) = x-18解:根据等量关系式,解方XXX:2x - 50 = x - 18x = 32因此,两袋大米原来各有32千克。

验算:把x=32代入原方程2(x-25) = x-182(32-25) = 32-1814 = 14左边等于右边,因此x=32是原方程的解。

答:两袋大米原来各有32千克。

1.甲乙两个粮仓共有粮食55万千克,甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等。

求甲、乙两仓原来各存粮多少万千克?思路分析:根据题意,甲、乙两仓原来各存粮设为x和55-x万千克。

由于甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等,因此可以列出方程:x-5=55-x-6.解得x=28,因此甲仓原来存粮28万千克,XXX原来存粮27万千克。

2.用5千克含盐20%的盐水,如果要稀释成含盐15%的盐水,需要加多少千克水?思路分析:设需要加的水量为x千克,则原来盐水中盐的重量为5×0.2=1千克,稀释后盐水中盐的重量为5×0.15=0.75千克。

因此,可以列出方程1/(x+5)=0.75/5,解得x=1.67,因此需要加入1.67千克水。

3.有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐比乙筐少了原来总重量的1/5.求甲、乙两筐原来各有多少千克苹果?思路分析:设甲、乙两筐原来各有x和y千克苹果。

根据题意,可以列出方程y+10=x-10和4/5(x+y)=x+y-20.解得x=100,y=80,因此甲筐原来有100千克苹果,乙筐原来有80千克苹果。

1.假设乙筐中苹果重x千克,那么时甲筐中苹果重(x+5)千克。

由于时甲筐比乙筐多余下10-3=7千克,因此有(x+5)-(x)=(7),解得x=2,时甲筐中苹果重7千克,乙筐中苹果重2千克。

五年级上册数学培优奥数讲义-第10讲列方程解决问题1

五年级上册数学培优奥数讲义-第10讲列方程解决问题1

第10讲列方程解决问题1知识与方法列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值。

列方程解应用题的一般步骤如下:1、弄清题意,找出已知条件和所求问题;2、根据题意确定等量关系,设未知数x;3、根据等量关系列出方程;4、解方程;5、检验,作答。

初级挑战1甲乙两站之间铁路长460公里,一列客车从甲站开往乙站,同时一列货车从乙站开往甲站,经过4小时两列火车相遇。

已知客车每小时行60公里,货车每小时行多少公里?思路引领:根据题意,可设货车每小时行x公里,然后找出等量关系式为:再列方程解答。

答案:解:设货车每小时行x公里。

(60+x)×4=460240+4x=460240+4x-240=460-2404x=220x=55答:货车每小时行55公里。

能力探索1两地相距330公里,甲车每小时行32公里,乙车每小时行34公里,两车同时从两地出发相向开出,几小时后两车相距66公里?答案:解:设x小时后两车相距66公里。

(32+34)×x=330-6666x=264x=4答:4小时后两车相距66公里。

初级挑战2一个长方形的周长是240米,长是宽的1.4倍,求长方形的面积。

思路点拨:设宽为x米,那么长为( )米。

再根据“周长是240米”找出等量关系列方程求解。

答案:解:设宽为x米,那么长为( )米。

(1.4x+x)×2=2402.4x×2=2404.8x=240x=50长方形的面积:(50×1.4)×50=3500(平方米)答:长方形的面积是3500平方米。

能力探索21、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?答案:解:设小强的年龄是x岁,那么妈妈的年龄是4x岁。

4x-x=273x=27x=9妈妈:9×4=36(岁)答:设小强的年龄是9岁,那么妈妈的年龄是36岁。

完整版)五年级奥数:列方程解应用题

完整版)五年级奥数:列方程解应用题

完整版)五年级奥数:列方程解应用题XXX教育:列方程解应用题(一)列方程解应用题是小学数学的一项重要内容,它是一种新的解题方法,不同于传统的算术方法。

算术方法要求通过四则运算,逐步求出未知量,而列方程解应用题则是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。

这样做的优点是可以使未知数直接参加运算。

列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程。

而找出等量关系,又在于熟练运用数量之间的各种已知条件。

掌握了这两点,就能正确地列出方程。

列方程解应用题的一般步骤如下:1.确定未知数及其表示方法;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案。

下面是几个例题及其解法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数。

解:设这个数为x,则方程为5x+10=7x-6,解得x=8.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷。

这两块地各有多少公顷?解:设第一块地为x公顷,则第二块地为(100-x)公顷。

由已知条件可得:4x=3(100-x)+120,解得x=60,第一块地为60公顷,第二块地为40公顷。

例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人。

三个班各有多少人?解:设三个班的人数分别为x、y、z,则由已知条件可得:x=1.12zy=z-3x+y+z=153代入第三个式子得:1.12z+z-3+1.12z+z-3=153,解得z=50,y=47,x=56.例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍。

求原来的被除数和除数。

解:设除数为x,则被除数为98-x。

由已知条件可得:98-x-9=x-9,解得x=29,被除数为69,除数为29.练与思考:1.列方程解应用题,有时需要求的未知数有两个或两个以上,此时应视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数。

五年级解方程和应用题知识点和例题(1)

五年级解方程和应用题知识点和例题(1)

五年级方程和应用题知识点和例题知识点:1、方程的意义含有未知数的等式,叫做方程。

2、方程和等式的关系3、方程的解和解方程的区别使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、等式的性质(一):方程两边同时减去相同的数,左右两边仍然相等(二):方程两边同时除以同一个不等于0的数,左右两边仍然相等5、列方程解应用题的一般步骤(1)弄清题意,找出未知数,并用x表示。

(2)找出应用题中数量之间的相等关系,列方程.(3)解方程。

(4)检验,写出答案。

6、数量关系式加数=和—另一个加数减数=被减数–差被减数= 差 + 减数因数=积÷另一个因数除数=被除数÷商被除数=商⨯除数一、解方程:例1、X+8.3=10.7解:X+8。

3-8。

3=10。

7-8。

3 (方程两边同时减去8。

3)X=2。

4检验:方程左边=X+8。

3=2.4+8.3=10.7=方程右边所以,X=2。

4是方程的解例2、X-5.6=9.4解:x—5。

6+5.6=9。

4+5.6(方程两边同时加上5。

6)X=15检验:方程左边=X-5。

6=15—5.6=9。

4=方程右边所以,X=15是方程的解例3、3X=9解:3X÷3=9 ÷3(方程两边同时除以3)X=3检验:方程左边=3X=3·3=9=方程右边所以,X=3是方程的解例4、χ÷5=30解:χ÷5×5=30×5(方程两边同时乘以5)χ=150例5、(Y+4)×2=18解:(Y+4)×2÷2=18÷2 (方程两边同时除以2)Y+4=9Y+4—4=9-4 (方程两边同时减去4)Y=5例6、2x-20=4解:2x-20+20=4+20 (方程两边同时加上20)2x=242 x÷2=24÷2 (方程两边同时除以2)x=12检验:把x=12代入原方程,左边=2·12-20=4,右边=4左边=右边,所以X=12是原方程的解例7、4X-1。

小学五年级奥数题 列方程解应用题

小学五年级奥数题 列方程解应用题

小学五年级奥数题列方程解应用题1.解方程求未知数已知一个数加上它的1.8倍等于0.56,求这个数。

设这个数为x,根据题意得到方程x+1.8x=0.56,化简得到2.8x=0.56,解得x=0.2.2.解方程求未知数已知2.9与0.5的积比一个数的5倍少1.65,求这个数。

设这个数为x,根据题意得到方程2.9×0.5=5x-1.65,化简得到x=0.83.3.解方程求未知数已知某数的8倍加上10等于它的10倍减去8,求这个数。

设这个数为x,根据题意得到方程8x+10=10x-8,化简得到2x=-18,解得x=-9.4.解方程求未知数已知XXX有64张画片,XXX送给她12张,这时XXX和XXX的画片数相等。

XXX有画片多少张?设XXX有画片为x,根据题意得到方程x+12=64-x,化简得到x=26.5.解方程求未知数已知甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?设从甲桶里倒x千克的油到乙桶里,根据题意得到方程(45-x)/(24+x)=1.5,化简得到x=9.6.解方程求未知数已知一个三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?设原数为abc,根据题意得到方程100a+10b+c-100b-10c-a=108,化简得到99a-89b=108,由于a和b都是整数,可以得到a=2,b=1,c=5,原数为215.7.解方程求未知数已知某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?设第一次及格人数为x,不及格人数为y,则根据题意得到方程x=3y+4和x+5=6(y+5),化简得到y=11,x=37,参加竞赛的人数为48.8.解方程求未知数已知10年前XXX的妈妈的年龄是她的7倍,15年后XXX的年龄正好是妈妈年龄的一半,问XXX现在多少岁?设XXX现在的年龄为x,妈妈现在的年龄为y,则根据题意得到方程y-10=7(x-10)和2(y+15)=x+15,化简得到y=55,x=25,XXX现在25岁。

五年级列方程解应用题奥数知识列方程解应用题

五年级列方程解应用题奥数知识列方程解应用题

五年级列方程解应用题奥数知识列方程解应用题同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题.用算术方法解答比较困难,如果用方程解就简便得多.它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“x”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题.例1. 金台小学学生参加申奥植树活动,六年级共植树252棵,比五年级植树总数的114倍少8棵,五年级植树多少棵?思路分析:六年级比五年级植树总数的114倍少8棵,就是六年级的114倍的数少8,等于六年级植树的总数.等量关系是:五年级的114倍-8=六年级的植树总数.解:设五年级植树x棵,根据题意列方程,得1148252x-=1142528x=+114260x=xx=÷=260114208验算:把x=208代入原方程左边=⨯-=1142088252右边=252左边=右边x=208是原方程的解.答:五年级植树208棵.例2. 一瓶农药700克,其中水比硫磺粉的6倍还多25克,含硫磺粉的重量是石灰的2倍,这瓶农药里,水、硫磺粉和石灰粉各多少克?思路分析:这是道比较复杂的“和倍应用题”,硫磺粉和水有直接关系,硫磺粉和石灰也有直接关系,因此应设未知数硫磺粉为x克.水的重量是硫磺的6倍还多25克,也就是(6x+25)克,石灰的重量就是硫磺粉的重量除以2,也就是12x 克.等量关系式表示为:水+硫磺粉+石灰=农药重量解:设硫磺粉的重量是x 克,那么,水的重量是(625x +)克,石灰重量是12x克.根据题意列方程,解.62512700x x x +++= 71270025x =-75675.x = x =90 验算:把x =90代入原方程左边=⨯+++⨯=69025901290700右边=700左边=右边x =90是原方程的解.例3. 两袋米同样重,第一袋吃去18千克,第二袋吃去25千克,余下的第一袋刚好是第二袋的2倍,两袋原来各有多少千克?思路分析:题中告诉我们原来两袋大米同样重,解答时可以设两袋大米原来各重x 千克,第一袋剩下的则是()x -18千克,第二袋剩下的则是()x -25千克.根据题意,第一袋剩下的大米是第二袋剩下的2倍,也就是说,如果把第二袋剩下的扩大2倍就和第一袋剩下的相等. 解:设两袋大米原来的重量各为x 千克,根据题意,列方程得 ()x x -⨯=-25218 25018x x -=- 25018x x -=- x =32验算:左边=-⨯=()3225214右边=32-18=14 左边=右边x =32是原方程的解答:两袋大米原来各重32千克.二. 尝试体验,合作交流.阅读下面各题,根据题中的分析,找出题中的等量关系,并解答出来.1. 李红看一本小说,上午看了60页,相当于下午看的页数的78又4页,李红这天共看了多少页小说?思路分析:这道题和求的问题是这一天共看了多少页小说.题目中已知上午看了60页,所以,只要求出下午看的页数,就可以了.题目中明确告诉了我们等量关系即“上午看了60页,相当于下午看的页数的78又4页”.2. 已知一个长方形的长是20米,如果把它的宽减少4米,新得到一个长方形,它的面积想法于原来长方形的面积的57,原来长方形的周长是多少?思路分析:这道题的所求问题是求原来长方形的周长,而题目中明确告诉了我们等量关系即“新得到的长方形的面积相当于原来长方形面积的57.”如果没有原来长方形的宽为x 米,原来长方形的面积就是20x 平方米;新的长方形的宽就是(x —4)米;新的长方形面积就是204⨯-()x 平方米.3. 两根绳共长90米,已知第一根绳长的25等于第二根绳长的12,求两根绳各长多少米?思路分析:解答时,首先抓住题目中的等量关系“第一根绳长的25等于第二根绳长的12”再根据第一根绳长为(90-x )米,就可以列出方程.三. 灵活运用,创造发展.1. 甲乙两个粮仓共有粮食55万千克,如果甲仓运出35,乙仓运出6万千克,则甲乙两仓存粮相等,甲、乙两仓原来各存粮多少万千克?2. 用5千克含盐20%的盐水,如果把它稀释为含盐15%的盐水,需要加水多少千克?3. 有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐余下的310比乙筐余下的13多5千克.求两筐苹果原来各多少千克?4. 同学们到郊区野炊.一个同学到老师那里去领碗,老师问他领多少,他说领55个.又问“多少人吃饭”,他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗.”算一算,有多少人吃饭.【练习答案】二. 尝试体验,合作交流.阅读下面各题,根据题中的分析,找出题中的等量关系,并解答出来.1. 李红看一本小说,上午看了60页,相当于下午看的页数的78又4页,李红这天共看了多少页小说?思路分析:这道题和求的问题是这一天共看了多少页小说.题目中已知上午看了60页,所以,只要求出下午看的页数,就可以了.题目中明确告诉了我们等量关系即“上午看了60页,相当于下午看的页数的78又4页”.等量关系:下午看的页数×78+4=上午看的页数解:法(一):设下午看了x 页.78460x += 78604x =-7856x =x x =÷=56786460+64=124页答:这天共看了124页. 解:解法(二):这一天共看了x 页.()x -⨯+=6078460786078460x -⨯+= 78605254x =+-.781085x =.x x =÷=108578124.答:这一天共看了124页.2. 已知一个长方形的长是20米,如果把它的宽减少4米,新得到一个长方形,它的面积想法于原来长方形的面积的57,原来长方形的周长是多少?思路分析:这道题的所求问题是求原来长方形的周长,而题目中明确告诉了我们等量关系即“新得到的长方形的面积相当于原来长方形面积的57.”如果没有原来长方形的宽为x 米,原来长方形的面积就是20x 平方米;新的长方形的宽就是(x —4)米;新的长方形面积就是204⨯-()x 平方米.等量关系:原长方形面积×57=新长方形面积解:设原长方形的宽是x 米 根据题意列方程,得2042057⨯-=⨯()x x20801007x x -=20100780x x -= 40780x =x x =÷=8040714()1420268+⨯=答:原来长方形的周长是68米.3. 两根绳共长90米,已知第一根绳长的25等于第二根绳长的12,求两根绳各长多少米?思路分析:解答时,首先抓住题目中的等量关系“第一根绳长的25等于第二根绳长的12”再根据第一根绳长为(90-x )米,就可以列出方程.等量关系:第一根绳长×25=第二根绳长×12解:设第一根绳长x 米,第二根绳长(90-x )米,根据题意列方程,得251290x x =⨯-()254512x x=- 91045x =x x =÷=459105090-50=40答:第一根绳长50米,第二根绳长40米.三. 灵活运用,创造发展.1. 甲乙两个粮仓共有粮食55万千克,如果甲仓运出35,乙仓运出6万千克,则甲乙两仓存粮相等,甲、乙两仓原来各存粮多少万千克?解:设甲仓原有粮食有x 万千克,则乙仓原有粮食(55-x )万千克.根据题意列方程,得()135556-=--x x2549x x=-x x +=25497549x =x x =÷=49753555-35=20答:甲仓原有35万千克,乙仓原有20万千克.2. 用5千克含盐20%的盐水,如果把它稀释为含盐15%的盐水,需要加水多少千克? 解:设需要加水x 千克. ()515%520%+⨯=⨯x015025..x =x =123答:需要加水123千克.3. 有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐余下的310比乙筐余下的13多5千克.求两筐苹果原来各多少千克?解:设乙筐原有苹果x 千克.()()x x -⨯+=+-⨯101352010310 131********x x -+=+⨯() 131233103x x +=+ 130113x = x =4040+20=60答:甲筐原有苹果60千克,乙筐原有40千克.4. 同学们到郊区野炊.一个同学到老师那里去领碗,老师问他领多少,他说领55个.又问“多少人吃饭”,他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗.”算一算,有多少人吃饭. 解:设参加野炊活动的人数为x 人.x x x ++=12135515655x =x x =÷=55156 30答:参加野炊活动的有30人.。

五年级奥数:列方程解应用题

五年级奥数:列方程解应用题
10、某厂有两个车间,第一个车间每小时生产零件 25 个,当第一车间完成 160 个零件后,第二个车间 才开始生产,第二个车间生产 4 小时后,两个车间生产的零件数相等.第二车间每小时生产零件多少个?
11、一辆小轿车和一辆大卡车都从甲城开往乙城,大卡车每小时行 50 千米,小轿车比大卡车迟开 2 小 时,小轿车开出 2.5 小时后两辆汽车同时达到乙城.已知甲乙两城相距 400 千米,小轿车的速度是多少?
3、一个长方形,长是宽的 1.4 倍,如果宽增加 2 厘米,这个长方形就变长一个正方形,这个长方形的
长和宽各是多少厘米?
4、书架的上层有 120 本书,下层有书 56 本,如果两层书架有各自放上同样本数的书,这时上层的本 数是下层的 1.5 倍,两层书架都放了几本书?
5、师徒两个人加工同一种零件,师傅每小时加工 120 个,徒弟每小时加工 90 个,徒弟先加工 2 小时 后,师傅才开始工作,师傅工作几小时后两人做的零件数相等?
8、AB 两地相距 9 千米,甲乙两人同时从 AB 两地出发,同向而行,甲在前,乙在后,甲每小时行 4.5 千米,乙每小时行 6 千米.几小时后乙追上甲?
9、两辆汽车都从甲地开往乙地,甲车每小时行 60 千米,乙车每小时行 80 千米.甲车出发行了 50 千米 后,乙车才出发.乙车行了多少小时后追上甲车?
20、两辆汽车同时从甲乙两地对开,客车每小时行 40 千米,吉普车每小时行 60 千米.两车相遇后,吉 普车继续行驶 4 小时才到达甲地.两地距离多少千米?
21、一批树苗,原计划 8 个人栽,每人要栽 28 棵;后来增加到 16 个人栽,每人要栽几棵?
22、学校有一批图书,分给几个班级,如果每班分 15 本,就多 10 本,如果每个班分 18 本,那么就有 一个班只分到 4 本,这些图书有多少本?分给几个班级?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数知识讲解列方
程解应用题一
Revised by Liu Jing on January 12, 2021
★小学五年级奥数专题讲解之“列方程解应用题(一)”
同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。

用算术方法解答比较困难,如果用方程解就简便得多。

它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:
(一)审题;(弄清已知数和未知数以及它们之间的关系)
(二)用字母表示未知数;(通常用“x”表示)
(三)根据等量关系列出方程;
(四)解方程求出未知数的值;
(五)验算并答题。

例1. 金台小学学生参加申奥植树活动,六年级共植树252棵,比五年级植树
总数的1
1
4倍少8棵,五年级植树多少棵?
思路分析:六年级比五年级植树总数的1
1
4倍少8棵,就是六年级的
1
1
4倍
的数少8,等于六年级植树的总数。

等量关系是:五年级的1
1
4倍-8=六年级
的植树总数。

解:设五年级植树x棵,根据题意列方程,得验算:把x=208代入原方程
左边=⨯-=
1
1
4
2088252
右边=252左边=右边
x=208是原方程的解。

答:五年级植树208棵。

例2. 一瓶农药700克,其中水比硫磺粉的6倍还多25克,含硫磺粉的重量是石灰的2倍,这瓶农药里,水、硫磺粉和石灰粉各多少克?
思路分析:这是道比较复杂的“和倍应用题”,硫磺粉和水有直接关系,硫磺粉和石灰也有直接关系,因此应设未知数硫磺粉为x克。

水的重量是硫磺的6倍还多25克,也就是(6x+25)克,石灰的重量就是硫磺粉的重量除以
2,也就是1
2
x
克。

等量关系式表示为:
水+硫磺粉+石灰=农药重量
解:设硫磺粉的重量是x克,那么,水的重量是(625
x+)克,石灰重量
是1
2
x
克。

根据题意列方程,解。

验算:把x=90代入原方程
左边
=⨯+++⨯=
6902590
1
2
90700
右边=700
左边=右边
x=90是原方程的解。

例3. 两袋米同样重,第一袋吃去18千克,第二袋吃去25千克,余下的第
一袋刚好是第二袋的2倍,两袋原来各有多少千克?
思路分析:题中告诉我们原来两袋大米同样重,解答时可以设两袋大米原来各重x 千克,第一袋剩下的则是()x -18千克,第二袋剩下的则是()x -25千克。

根据题意,第一袋剩下的大米是第二袋剩下的2倍,也就是说,如果把第二袋剩下的扩大2倍就和第一袋剩下的相等。

解:设两袋大米原来的重量各为x 千克,根据题意,列方程得 验算:左边=-⨯=()3225214 右边=32-18=14 左边=右边
x =32是原方程的解
答:两袋大米原来各重32千克。

二. 尝试体验,合作交流。

阅读下面各题,根据题中的分析,找出题中的等量关系,并解答出来。

1. 李红看一本小说,上午看了60页,相当于下午看的页数的7
8又4页,李
红这天共看了多少页小说?
思路分析:这道题和求的问题是这一天共看了多少页小说。

题目中已知上午看了60页,所以,只要求出下午看的页数,就可以了。

题目中明确告诉了
我们等量关系即“上午看了60页,相当于下午看的页数的7
8又4页”。

2. 已知一个长方形的长是20米,如果把它的宽减少4米,新得到一个长方
形,它的面积想法于原来长方形的面积的5
7,原来长方形的周长是多少?
思路分析:这道题的所求问题是求原来长方形的周长,而题目中明确告诉
了我们等量关系即“新得到的长方形的面积相当于原来长方形面积的5
7。

”如
果没有原来长方形的宽为x 米,原来长方形的面积就是20x 平方米;新的长方形的宽就是(x —4)米;新的长方形面积就是204⨯-()x 平方米。

3. 两根绳共长90米,已知第一根绳长的25等于第二根绳长的1
2,求两根绳
各长多少米?
思路分析:解答时,首先抓住题目中的等量关系“第一根绳长的2
5等于第二根绳长的1
2”再根据第一根绳长为(90-x )米,就可以列出方程。

三. 灵活运用,创造发展。

1. 甲乙两个粮仓共有粮食55万千克,如果甲仓运出3
5,乙仓运出6万千
克,则甲乙两仓存粮相等,甲、乙两仓原来各存粮多少万千克?
2. 用5千克含盐20%的盐水,如果把它稀释为含盐15%的盐水,需要加水多少千克?
3. 有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果
从两筐中各取出10千克,这时甲筐余下的310比乙筐余下的1
3多5千克。

求两
筐苹果原来各多少千克?
4. 同学们到郊区野炊。

一个同学到老师那里去领碗,老师问他领多少,他说领55个。

又问“多少人吃饭”,他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗。

”算一算,有多少人吃饭。

【练习答案】
二. 尝试体验,合作交流。

阅读下面各题,根据题中的分析,找出题中的等量关系,并解答出来。

1. 李红看一本小说,上午看了60页,相当于下午看的页数的7
8又4页,李
红这天共看了多少页小说?
思路分析:这道题和求的问题是这一天共看了多少页小说。

题目中已知上午看了60页,所以,只要求出下午看的页数,就可以了。

题目中明确告诉了
我们等量关系即“上午看了60页,相当于下午看的页数的7
8又4页”。

等量关系:下午看的页数×7
8+4=上午看的页数
解:法(一):设下午看了x页。

60+64=124页
答:这天共看了124页。

解:解法(二):这一天共看了x页。

答:这一天共看了124页。

2. 已知一个长方形的长是20米,如果把它的宽减少4米,新得到一个长方
形,它的面积想法于原来长方形的面积的5
7,原来长方形的周长是多少?
思路分析:这道题的所求问题是求原来长方形的周长,而题目中明确告诉
了我们等量关系即“新得到的长方形的面积相当于原来长方形面积的5
7。

”如
果没有原来长方形的宽为x 米,原来长方形的面积就是20x 平方米;新的长方形的宽就是(x —4)米;新的长方形面积就是204⨯-()x 平方米。

等量关系:原长方形面积×5
7=新长方形面积
解:设原长方形的宽是x 米 根据题意列方程,得
答:原来长方形的周长是68米。

3. 两根绳共长90米,已知第一根绳长的25等于第二根绳长的1
2,求两根绳
各长多少米?
思路分析:解答时,首先抓住题目中的等量关系“第一根绳长的2
5等于第二根绳长的1
2”再根据第一根绳长为(90-x )米,就可以列出方程。

等量关系:第一根绳长×25=第二根绳长×1
2
解:设第一根绳长x 米,第二根绳长(90-x )米,根据题意列方程,得 90-50=40
答:第一根绳长50米,第二根绳长40米。

三. 灵活运用,创造发展。

1. 甲乙两个粮仓共有粮食55万千克,如果甲仓运出3
5,乙仓运出6万千
克,则甲乙两仓存粮相等,甲、乙两仓原来各存粮多少万千克?
解:设甲仓原有粮食有x万千克,则乙仓原有粮食(55 x)万千克。

根据题意列方程,得
55-35=20
答:甲仓原有35万千克,乙仓原有20万千克。

2. 用5千克含盐20%的盐水,如果把它稀释为含盐15%的盐水,需要加水多少千克?
解:设需要加水x千克。

答:需要加水1
2
3千克。

3. 有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果
从两筐中各取出10千克,这时甲筐余下的
3
10比乙筐余下的
1
3多5千克。

求两
筐苹果原来各多少千克?
解:设乙筐原有苹果x千克。

40+20=60
答:甲筐原有苹果60千克,乙筐原有40千克。

4. 同学们到郊区野炊。

一个同学到老师那里去领碗,老师问他领多少,他说领55个。

又问“多少人吃饭”,他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗。

”算一算,有多少人吃饭。

解:设参加野炊活动的人数为x人。

答:参加野炊活动的有30人。

相关文档
最新文档