北航数值分析计算实习二

合集下载

北航数值分析大作业二(纯原创,高分版)

北航数值分析大作业二(纯原创,高分版)
(R_4 ,I_4 )=( 1.590313458807e+000, 0.000000000000e+000)
(R_5 ,I_5 )=(-1.493147080915e+000, 0.000000000000e+000)
(R_6 ,I_6 )=(-9.891143464723e-001, 1.084758631502e-001)
-0.8945216982
-0.0993313649
-1.0998317589
0.9132565113
-0.6407977009
0.1946733679
-2.3478783624
2.3720579216
1.8279985523
-1.2630152661
0.6790694668
-0.4672150886
6.220134985374e-001
-1.119962139645e-001
-2.521344456568e+000
-1.306189420531e+000
-3.809101150714e+000
8.132800093357e+000
-1.230295627285e+000
-6.753086301215e-001
而其本质就是
1.令 以及最大迭代步数L;
2.若m≤0,则结束计算,已求出A的全部特征值,判断 或 或m≤2是否成立,成立则转3,否则转4;
3.若 ,则得一个特征值 ,m=m-1,降阶;若 ,则计算矩阵:
的特征值得矩阵A的两个特征值,m=m-2,降阶,转2.;
4.若k≤L,成立则令
k=k+1,转2,否则结束计算,为计算出矩阵A的全部特征值;

数值分析实验报告2

数值分析实验报告2

实验报告实验项目名称函数逼近与快速傅里叶变换实验室数学实验室所属课程名称数值逼近实验类型算法设计实验日期班级学号姓名成绩512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1并得到Figure,图像如下:实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。

要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下:function Pn=Legendre(n,x)syms x;if n==0Pn=1;else if n==1Pn=x;else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n);endx=[-1:0.1:1];A=sym2poly(Pn);yn=polyval(A,x);plot (x,yn,'-o');hold onend在command Windows中输入命令:Legendre(10),得出的结果为:Legendre(10)ans =(46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256并得到Figure,图像如下:实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下:function [C,D]=lagr1(X,Y)n=length(X);D=zeros(n,n);D(:,1)=Y';for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)= C(m)+D(k,k);end在command Windows 中输入如下命令:clear,clf,hold on;k=0:10;X=cos(((21-2*k)*pi)./22); %这是切比雪夫的零点Y=1./(1+25*X.^2);[C,D]=lagr1(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.01:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到Figure ,图像如下所示:比较后发现,使用切比雪夫零点做拉格朗日插值不会发生龙格现象。

北航数值分析实验报告

北航数值分析实验报告

北航‎数值‎分析‎实验‎报告‎‎篇一‎:‎北航‎数值‎分析‎报告‎第一‎大题‎《‎数值‎分析‎》计‎算实‎习报‎告‎第一‎大题‎学‎号:‎D‎Y1‎30‎5‎姓名‎:‎指导‎老师‎:‎一、‎题目‎要求‎已‎知5‎01‎*5‎01‎阶的‎带状‎矩阵‎A,‎其特‎征值‎满足‎?1‎?‎2‎..‎.‎?5‎01‎。

试‎求:‎1‎、?‎1,‎?5‎01‎和?‎s的‎值;‎‎2、‎A的‎与数‎?k‎??‎1?‎k‎?5‎01‎??‎1‎40‎最‎接近‎的特‎征值‎?i‎k(‎k=‎1,‎2,‎..‎.,‎39‎);‎‎3、‎A的‎(谱‎范数‎)条‎件数‎c n‎d(‎A)‎2和‎行列‎式d‎e t‎A。

‎‎二、‎算法‎设计‎方案‎题‎目所‎给的‎矩阵‎阶数‎过大‎,必‎须经‎过去‎零压‎缩后‎进行‎存储‎和运‎算,‎本算‎法中‎压缩‎后的‎矩阵‎A1‎如下‎所示‎。

‎?0‎?0‎?A‎1?‎?a‎1‎??‎b?‎?c‎0‎b a‎2b‎c‎c b‎b c‎.‎..‎..‎..‎..‎..‎.‎c b‎b c‎c‎b a‎50‎0b‎0‎a ‎3.‎..‎a4‎99‎c‎?‎b?‎?a‎50‎1?‎?‎0?‎0?‎?‎由矩‎阵A‎的特‎征值‎满足‎的条‎件可‎知‎?1‎与?‎50‎1之‎间必‎有一‎个最‎大,‎则采‎用幂‎法求‎出的‎一‎个特‎征值‎必为‎其中‎的一‎个:‎当‎所求‎得的‎特征‎值为‎正数‎,则‎为?‎50‎1;‎否则‎为?‎1。

‎在求‎得?‎1与‎?‎50‎1其‎中的‎一个‎后,‎采用‎带位‎移的‎幂法‎则可‎求出‎它们‎中的‎另一‎个,‎且位‎移量‎即为‎先求‎出的‎特‎征值‎的值‎。

用‎反幂‎法求‎得的‎特征‎值必‎为?‎s。

‎由条‎件数‎的性‎质可‎得,‎c n‎d(‎A)‎2为‎模最‎大的‎特征‎值与‎模最‎小的‎特征‎值之‎比的‎模,‎因此‎,求‎出?‎1,‎?5‎01‎和?‎s的‎值后‎,则‎可以‎求得‎c n‎d(‎A)‎2。

北航数值分析计算实习题目二 矩阵QR分解

北航数值分析计算实习题目二 矩阵QR分解

数值分析实习二院(系)名称航空科学与工程学院专业名称动力工程及工程热物理学号SY0905303学生姓名解立垚1. 题目试用带双步位移QR 的分解法求矩阵A=[a ij ]10*10的全部特征值,并对其中的每一个实特征值求相应的特征向量。

已知()sin 0.50.2,1.5cos 1.2,ij i j i j a i j i j ⎧⎫+≠⎪⎪=⎨⎬+=⎪⎪⎩⎭(),1,2,...,10i j =。

说明:1、求矩阵特征值时,要求迭代的精度水平为1210ε-=。

2、打印以下内容:算法的设计方案;全部源程序(要求注明主程序和每个子程序的功能); 矩阵A 经过拟上三角话之后所得的矩阵()1n A -;对矩阵()1n A-进行QR 分解方法结束后所得的矩阵;矩阵A 的全部特征值()(),1,2,......10i i iR I i λ=,和A 的相应于实特征值的特征向量;其中()(),.i e i m i R R I I λλ==如果i λ是实数,则令0.i I =3、采用e 型输出数据,并且至少显示12位有效数字。

2. 算法设计方案本题采用带双步位移的QR 分解方法。

为了使程序简洁,自定义类Xmatrix ,其中封装了所需要的函数方法。

在Xmatrix 类中封装了运算符重载的函数,即定义了矩阵的加、减、乘、除、数乘运算及转置运算(T())。

同时为了避免传递数组带来的额外内存开销,使用引用(&)代替值传递,以节省内存空间,避免溢出.(1)此程序的主要部分为Xmatrix 中的doubleQR()方法,具体如下:Step1:使用矩阵拟上三角化的算法将A 化为拟上三角阵A (n-1)(此处调用Xmatrix 中的preQR()方法)Step2:令121,,10k m n ε-===, 其中k 为迭代次数。

Step3:如果,1m m a ε-≤,则得到A 的一个特征值,m m a ,令1m m =-,goto Step4;否则goto Step5.Step4: 如果1m =,则得到A 的一个特征值11a ,goto Step11;如果0m =,则goto Step11;如果1m >,则goto Step3;Step5(Step6):如果2m =,则得到A 的两个特征值12s s 和(12s s 和为右下角两阶子阵对应的特征方程21,1,()det 0m m m m a a D λλ---++=的两个根。

数值分析计算实习题

数值分析计算实习题

数值分析计算实习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《数值分析》计算实习题姓名:学号:班级:第二章1、程序代码Clear;clc;x1=[ ];y1=[ ];n=length(y1);c=y1(:);for j=2:n %求差商for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1));endendsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式df(i)=df(i-1)*(x-x1(i-1));d(i)=c(i-1)*df(i);endP4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数pp=csape(x1,y1, 'variational');%调用三次样条函数q=;q1=q(1,:)*[^3;^2;;1];q1=vpa(collect(q1),5)q2=q(1,:)*[^3;^2;;1];q2=vpa(collect(q2),5)q3=q(1,:)*[^3;^2;;1];q3=vpa(collect(q3),5)q4=q(1,:)*[^3;^2;;1];q4=vpa(collect(q4),5)%求解并化简多项式2、运行结果P4 =*x - *(x - *(x - - *(x - *(x - *(x - - *(x - *(x - *(x - *(x - + q1 =- *x^3 + *x^2 - *x +q2 =- *x^3 + *x^2 - *x + q3 =- *x^3 + *x^2 - *x + q4 =- *x^3 + *x^2 - *x +3、问题结果4次牛顿差值多项式4()P x = *x - *(x - *(x - - *(x - *(x - *(x - - *(x - *(x - *(x - *(x - +三次样条差值多项式()Q x0.10.20.30.40.50.60.70.80.910.40.50.60.70.80.911.1323232321.33930.803570.40714 1.04,[0.2,0.4]1.3393 1.60710.88929 1.1643,[0.4,0.6]1.3393 2.4107 1.6929 1.4171,[0.6,0.8]1.3393 3.21432.8179 1.8629,[0.8,1.0]x x x x x x x x x x x x x x x x ⎧-+-+∈⎪-+-+∈⎪⎨-+-+∈⎪⎪-+-+∈⎩第三章1、程序代码Clear;clc; x=[0 1]; y=[1 ];p1=polyfit(x,y,3)%三次多项式拟合 p2=polyfit(x,y,4)%四次多项式拟合 y1=polyval(p1,x);y2=polyval(p2,x);%多项式求值plot(x,y,'c--',x,y1,'r:',x,y2,'y-.')p3=polyfit(x,y,2)%观察图像,类似抛物线,故用二次多项式拟合。

数值分析实验(2)

数值分析实验(2)

实验二 插值法 P50专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的1、熟悉MATLAB 编程;2、学习插值方法及程序设计算法。

二、实验题目1、已知函数在下列各点的值为i x 0.2 0.4 0.6 0.8 1.0()i f x0.980.920.810.640.38试用4次牛顿插值多项式()4P x 及三次样条函数()S x (自然边界条件)对数据进行插值用图给出(){},,0.20.08,0,1,11,10iiix y x i i =+=,()4P x 及()S x 。

2、在区间[]1,1-上分别取10,20n =用两组等距节点对龙格函数()21125f x x=+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。

3、下列数据点的插值 x 0 1 4 9 16 25 36 49 64 y 0 12345678可以得到平方根函数的近似,在区间[]0,64上作图 (1)用这9个点作8次多项式插值()8L x (2)用三次样条(第一边界条件)程序求()S x从得到结果看在[]0,64上,哪个插值更精确;在区间[]0,1上,两种插值哪个更精确? 三、实验原理与理论基础 1、拉格朗日差值公式)()(111k kk kk k x x x x y y y x L ---+=++ 点斜式kk kk k k k kx x x x y x x x x y x L --+--=++++11111)( 两点式2、n 次插值基函数 ....,2,1,0,)()(0n j y x l y x L ijnk kk j n ===∑=n k x x x x x x x x x x x x x l n k n k k k k k ,...,1,0,)()(...)()(...)()()(1100=------=--3、牛顿插值多项式...))(](,,[)](,[)()(102100100+--+++=x x x x x x x f x x x x f x f x P n ))...(](,...,[100---+n n x x x x x x f)(],...,,[)()()(10x x x x f x P x f x R n n n n +=-=ω4、三次样条函数若函数],,[)(2b a C x S ∈且在每个小区间],[1+j j x x 上是三次多项式,其中,b x x x a n =<<<=...10是给定节点,则称)(x S 是节点n x x x ,...,,10上的三次样条函数。

北航数值分析第二次大作业--QR分解

北航数值分析第二次大作业--QR分解

《数值分析A》计算实习题目二姓名学号联系方式班级指导教师2012年10月一、算法设计方案整个程序主要分为四个函数,主函数,拟上三角化函数,QR分解函数以及使用双步位移求解矩阵特征值、特征向量的函数。

因为在最后一个函数中也存在QR分解,所以我没有采用参考书上把矩阵M进行的QR分解与矩阵Ak的迭代合并的方法,而是在该函数中调用了QR分解函数,这样增强了代码的复用性,减少了程序长度;但由于时间关系,对阵中方法的运算速度没有进行深入研究。

1.为了减少QR分解法应用时的迭代次数,首先对给定矩阵进行拟上三角化处理。

2.对经过拟上三角化处理的矩阵进行QR分解。

3.注意到计算特征值与特征向量的过程首先要应用前面两个函数,于是在拟上三角化矩阵的基础上对QR分解函数进行了调用。

计算过程中,没有采用goto语句,而是根据流程图采用其他循环方式完成了设计,通过对迭代过程的合并,简化了程序的循环次数,最后在计算特征向量的时候采用了列主元高斯消去法。

二、源程序代码#include<stdio.h>#include<math.h>#include<string.h>int i,j,k,l,m; //定义外部变量double d,h,b,c,t,s;double A[10][10],AA[10][10],R[10][10],Q[10][10],RQ[10][10]; double X[10][10],Y[10][10],Qt[10][10],M[10][10];double U[10],P[10],T[10],W[10],Re[10]={0},Im[10]={0}; double epsilon=1e-12;void main(){void Quasiuppertriangular(double A[][10]);void QRdecomposition(double A[][10]);void DoublestepsQR(double A[][10]);int i,j;for(i=0;i<10;i++){for(j=0;j<10;j++){A[i][j]=sin(0.5*(i+1)+0.2*(j+1));Q[i][j]=0;AA[i][j]=A[i][j];}A[i][i]=1.5*cos(2.2*(i+1));AA[i][i]=A[i][i];}Quasiuppertriangular(A); //调用拟上三角化函数printf( "\n A经过拟上三角化矩阵为:\n\n");for(i=0;i<10;i++) //输出拟上三角化矩阵{for(j=0;j<10;j++){printf("%.12e ",A[i][j]); //输出拟上三角化矩阵}printf( "\n\n");}QRdecomposition(A); //调用QR分解函数printf( " 进行QR分解后,R矩阵为:\n\n"); //输出R矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",R[i][j]);}printf( "\n\n");}printf( " Q矩阵为:\n\n"); //输出Q矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",Q[i][j]);}printf( "\n\n");}printf( " RQ矩阵为:\n\n"); //输出RQ矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",RQ[i][j]);}printf( "\n\n");}DoublestepsQR(A); //调用双步位移函数printf( "\n\n 特征值实部依次为:\n\n"); //输出特征值实部for(j=0;j<10;j++){printf("%.12e ",Re[j]);}printf("\n\n 特征值虚部依次为:\n\n "); //输出特征值虚部for(j=0;j<10;j++){printf("%.12e ",Im[j]);}//按行输出特征向量printf( "\n\n 按行输出实特征根相应特征向量为:\n\n");for(i=0;i<10;i++){if(i==1||i==2||i==5||i==6){continue;}for(j=0;j<10;j++){printf("%.12e ",X[i][j]);}printf( "\n\n");}getchar();}//拟上三角化函数void Quasiuppertriangular(double A[][10]) {for(j=0;j<8;j++){for(i=0;i<10;i++){U[i]=0;P[i]=0;T[i]=0;W[i]=0;}m=0;for(i=j+2;i<10;i++){if(A[i][j]!=0){m=m+1;}}if(m==0){continue;}d=0;for(i=j+1;i<10;i++){d=d+pow(A[i][j],2);}d=sqrt(d);c=-d;if(A[j+1][j]<=0){c=d;}h=c*(c-A[j+1][j]);U[j+1]=A[j+1][j]-c;for(i=j+2;i<10;i++){U[i]=A[i][j];}for(i=0;i<10;i++){for(k=0;k<10;k++){P[i]=P[i]+U[k]*A[k][i];}P[i]=P[i]/h;}t=0;for(i=0;i<10;i++){for(k=0;k<10;k++){T[i]=T[i]+U[k]*A[i][k];}T[i]=T[i]/h;t=t+P[i]*U[i];}t=t/h;for(i=0;i<10;i++){W[i]=T[i]-t*U[i];for(k=0;k<10;k++){A[i][k]=A[i][k]-W[i]*U[k]-U[i]*P[k];if(abs(A[i][k])<1e-12){A[i][k]=0;}}}}}//QR分解函数void QRdecomposition(double A[][10]) {for(i=0;i<10;i++){for(j=0;j<10;j++){RQ[i][j]=0;Q[i][j]=0;R[i][j]=A[i][j];}Q[i][i]=1;}for(j=0;j<9;j++){for(i=0;i<10;i++){U[i]=0;P[i]=0;W[i]=0;}m=0;for(i=j+1;i<10;i++){if(R[i][j]!=0){m=m+1;}}if(m==0){continue;}d=0;for(i=j;i<10;i++){d=d+pow(R[i][j],2);}d=sqrt(d);c=-d;if(R[j][j]<=0){c=d;}h=c*(c-R[j][j]);U[j]=R[j][j]-c;for(i=j+1;i<10;i++){U[i]=R[i][j];}for(i=0;i<10;i++){for(k=0;k<10;k++){W[i]=W[i]+U[k]*Q[i][k];}}for(i=0;i<10;i++){for(k=0;k<10;k++){Q[i][k]=Q[i][k]-((W[i]*U[k])/h);}}for(i=0;i<10;i++){for(k=0;k<10;k++){P[i]=P[i]+U[k]*R[k][i];}P[i]=P[i]/h;}for(i=0;i<10;i++){for(k=0;k<10;k++){R[i][k]=R[i][k]-U[i]*P[k];if(abs(R[i][k])<epsilon){R[i][k]=0;}}}}for(i=0;i<10;i++) //计算A(n+1)=RQ {for(j=0;j<10;j++){for(k=0;k<10;k++){RQ[i][j]=RQ[i][j]+R[i][k]*Q[k][j];}}}}//双步位移法计算特征值特征向量函数void DoublestepsQR(double A[][10]){int L=1000,m=9; //定义最大循环次数for(i=0;i<L;i++){for(;m>-1;){if(abs(A[m][m-1])<=epsilon){Re[m]=A[m][m];m=m-1; //降阶if(m==0) //4{Re[0]=A[0][0];break;}if(m==-1){break;}if(m>1){continue;}}b=-A[m][m]-A[m-1][m-1]; //5c=A[m][m]*A[m-1][m-1]-A[m][m-1]*A[m-1][m];if(m==1) //6{if((b*b-4*c)>=0){Re[m]=(-b+sqrt(b*b-4*c))/2;Re[m-1]=(-b-sqrt(b*b-4*c))/2;}if((b*b-4*c)<0){Re[m]=-b/2; Im[m]=sqrt(4*c-b*b)/2;Re[m-1]=-b/2; Im[m-1]=-sqrt(4*c-b*b)/2;}m=m-1; //循环出口条件break;}if((m>1)&&(abs(A[m-1][m-2])>epsilon)) //8{if(i==L-1){printf("No results! \n");m=0; //循环出口条件break;}break;}if((m>1)&&(abs(A[m-1][m-2])<=epsilon)) //7 {if((b*b-4*c)>0){Re[m]=(-b+sqrt(b*b-4*c))/2;Re[m-1]=(-b-sqrt(b*b-4*c))/2;}if((b*b-4*c)<0){Re[m]=-b/2; Im[m]=sqrt(4*c-b*b)/2;Re[m-1]=-b/2; Im[m-1]=-sqrt(4*c-b*b)/2;}m=m-2; //降阶if(m>0){continue;}if(m==0){Re[0]=A[0][0];break;}}}if(m<=0){break;}s=A[m-1][m-1]+A[m][m]; //9t=A[m][m]*A[m-1][m-1]-A[m][m-1]*A[m-1][m];for(j=0;j<10;j++){for(k=0;k<10;k++){Qt[j][k]=0;Q[j][k]=0;M[j][k]=0;X[j][k]=0;Y[j][k]=0;}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){M[j][k]=M[j][k]+A[j][l]*A[l][k];}}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){M[j][k]=M[j][k]-s*A[j][k];}M[j][j]=M[j][j]+t;}//调用QR分解函数对M矩阵进行分解并传递参数矩阵QQRdecomposition(M);for(j=0;j<10;j++){for(k=0;k<10;k++){Qt[j][k]=Q[k][j];}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){X[j][k]=X[j][k]+Qt[j][l]*A[l][k];}}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){Y[j][k]=Y[j][k]+X[j][l]*Q[l][k];}}}for(j=0;j<10;j++){{A[j][k]=Y[j][k];}}}//应用列主元高斯消元法计算实部特征向量for(l=0;l<10;l++){if(l==1||l==2||l==5||l==6){continue;}for(k=0;k<10;k++){for(m=0;m<10;m++){A[k][m]=AA[k][m];}A[k][k]=A[k][k]-Re[l];}for(j=0;j<9;j++){m=j;for(i=j+1;i<10;i++){if(abs(A[i][j])>abs(A[m][j])){m=i;}}{Y[j][k]=A[j][k];A[j][k]=A[m][k];A[m][k]=Y[j][k];}for(k=j+1;k<10;k++){b=A[k][j]/A[j][j];for(i=j;i<10;i++){A[k][i]=A[k][i]-A[j][i]*b;}}}X[l][9]=1;for(i=8;i>=0;i--){c=0;for(j=i+1;j<10;j++){c=c+A[i][j]*X[l][j];}X[l][i]=-c/A[i][i];}}}三、程序输出结果1819。

数值分析实验报告心得(3篇)

数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。

通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。

以下是我对数值分析实验的心得体会。

一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。

2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。

3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。

4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。

二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。

(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。

最后,我们将插值多项式与原始函数进行比较,分析误差。

2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。

(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。

最后,比较不同方法的收敛速度和精度。

3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。

(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。

最后,比较不同方法的计算量和精度。

4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。

(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M<=2 ?
k=k+1
得到最后一个或两个 特征根
超过最大迭代次数 失败
得到全部特征根 成功
结束
图 1 带双步位移的 QR 分解法求特征根算法流程图
Hr 的构造方法如下: 若������������������������������������ = 0,(������������ ≥ ������������ + 2),则取������������������������ = ������������ ; 否则,取
其中 Q 为正交阵。
′ ′ ,λ′ 因此������������������������+1 与 A 相似,设 A 和������������������������+1 的特征值分别为λ1 ,λ2 … λ������������ 和λ1 2 … λ������������ ,对应的特 ′ ′ ′ ,x2 … x������������ ,则有 征值分别为x1 ,x2 … x������������ 和x1 (������������ = 1,2 … ������������) λ������������ = λ′ ������������ ′ (������������ = 1,2 … ������������) x������������ = Qx������������ 实特征根对应的特征向量即为 Q 中对应的列向量。
������������������������ = ������������(������������) ������������������������ ������������������������ = ������������(������������)������������ ������������������������
( ) (������������) (������������ )
(������������)
则有
4. 拟上三角化 用 QR 方法求特征值时, 直接对 A 进行分解迭代次数太多, 因此先对 A 进行拟上三角化, 再对得到的拟上三角阵进行 QR 分解,从而减少迭代次数。 拟上三角化过程与 QR 分解类似,从 r=1 开始,记������������(1) = ������������,构造相似变换矩阵 Hr,使 r=n-2 时,有 ������������(������������−1) = ������������������������−2 ������������(������������−2) ������������������������−2 得到的������������(������������−1) 即为拟上三角阵。 Hr 的构造方法如下: ������������(������������+1) = ������������������������ ������������(������������) ������������������������
ห้องสมุดไป่ตู้
开始
对A进行拟上三角化 得到A(n-1)
初始化 给定精度er0, 最大迭代次数L
k=1 m=n A1=A(n-1)
|am, m-1 (k)| < er0 ? N |am-1, m-2 (k)| < er0 ? N k=L ? N 带双步位移的 QR分解
Y
Y
Y
得到一对 共轭特征根 m=m-2
得到一个 实特征根 m=m-1
数值分析计算实习(二)
姓名:张时毓 学号:SY1403531
一、方案设计 1. 用带双步位移的 QR 分解法求 A 的全体特征根 先对 A 进行拟上三角化,得到������������(������������−1) ,然后对������������(������������−1) 用带双步位移的 QR 分解法进行 QR 分解,逐步得到 A 的全部特征根。算法流程图如图 1 所示。 2. 求实特征根对应的特征向量 设拟上三角化过程为 其中������������′ 为正交阵。 QR 分解迭代过程为 ������������(������������−1) = ������������′−1 ������������������������′
������������������������ = (0 … 0, ������������������������������������ … ������������������������������������ )������������
(������������)
(������������)
3. QR 分解 从 r=1 开始,记������������(1) = ������������,构造相似变换矩阵 Hr,使 r=n-1 时,有 其中 ������������(������������) = ������������������������−1 ������������(������������−1) R = ������������(������������) Q = ������������1 ������������2 … ������������������������−1 A = QR ������������(������������+1) = ������������������������ ������������(������������)
若每步计算先算 Hr,再由������������(������������+1) = ������������������������ ������������(������������) 计算������������(������������+1) ,则需做一次矩阵减法、一次向量 乘法和一次矩阵乘法,即 n2 次减法和 n2+n3 次乘法,计算量大,因此,令 ℎ������������ = 1 ‖������������ ‖2 2 ������������ ������������������������ ������������������������ = ℎ������������
若������������������������������������ = 0,(������������ ≥ ������������ + 1),则取������������������������ = ������������ ; 否则,取
������������������������ = (0 … 0, ������������������������+1,������������ … ������������������������������������ )������������ +‖������������������������ ‖ ������������������������ = � +‖������������������������ ‖ e = ������������������������+1 ������������������������+1,������������ ≤ 0 ������������������������+1,������������ > 0
������������ ������������(������������+1) = ������������(������������) − ������������������������ ������������������������ ������������ ������������(������������+1) = ������������ (������������) − ������������������������ ������������������������ 此时,计算������������(������������+1) 只需作 n2 次减法和 n+ n2 次乘法,计算量大大降低。
������������ ������������������������ = ������������������������ − ������������������������ ������������������������ = (0 … 0, ������������������������������������ − ������������������������ … ������������������������������������ )������������ ������������ 2������������������������ ������������������������ 0 ������������ = � ������������−1 � ������������������������ = ������������ − 2 0 ������������ ‖������������������������ ‖2 ������������−1
������������1 = ������������(������������−1) −1 −1 −1 −1 ������������������������+1 = ������������������������ ������������������������ ������������������������ = ������������������������ … ������������2 ������������1 ������������1 ������������1 ������������2 … ������������������������ = (������������1 ������������2 … ������������������������ )−1 ������������(������������−1) (������������1 ������������2 … ������������������������ ) 记������������′ ′ = ������������1 ������������2 … ������������������������ ,则有 ������������������������+1 = ������������′′−1 ������������(������������−1) ������������′′ = ������������′′−1 ������������′−1 ������������������������′ ������������′′ = (������������′ ������������′′ )−1 ������������(������������′ ������������′′ ) 其中������������′′ 为正交阵。 记Q = ������������′ ������������′′ ,则有 ������������������������+1 = ������������−1 ������������������������
相关文档
最新文档