通信协议与编程
MODBUS通讯协议及编程

MODBUS通讯协议及编程协议名称:MODBUS通讯协议及编程一、引言MODBUS通讯协议是一种常用的串行通信协议,用于在自动化控制系统中实现设备之间的数据交换。
本协议旨在详细描述MODBUS通讯协议的各种功能和编程实现方法,以便开发人员能够准确地理解和应用该协议。
二、协议概述MODBUS通讯协议是一种基于主从结构的协议,主要用于在工业自动化系统中实现设备之间的数据传输。
该协议定义了一组功能码,用于读取和写入设备的寄存器和线圈。
MODBUS通讯协议支持多种物理层传输介质,如串行通信和以太网通信。
三、协议功能1. 读取线圈状态(功能码01)该功能码用于读取设备中的线圈状态,返回线圈的当前状态。
开发人员可以通过该功能码实现对设备的远程监控和控制。
2. 读取离散输入状态(功能码02)该功能码用于读取设备中的离散输入状态,返回输入信号的当前状态。
开发人员可以通过该功能码实现对设备输入信号的实时监测。
3. 读取保持寄存器(功能码03)该功能码用于读取设备中的保持寄存器的值,返回寄存器的当前值。
开发人员可以通过该功能码实现对设备状态的实时获取。
4. 读取输入寄存器(功能码04)该功能码用于读取设备中的输入寄存器的值,返回寄存器的当前值。
开发人员可以通过该功能码实现对设备输入信号的实时获取。
5. 写单个线圈(功能码05)该功能码用于写入设备中的单个线圈,将线圈的状态设置为开或闭。
开发人员可以通过该功能码实现对设备的远程控制。
6. 写单个保持寄存器(功能码06)该功能码用于写入设备中的单个保持寄存器,设置寄存器的值。
开发人员可以通过该功能码实现对设备状态的远程控制。
7. 写多个线圈(功能码15)该功能码用于写入设备中的多个线圈,同时设置多个线圈的状态。
开发人员可以通过该功能码实现对设备的批量控制。
8. 写多个保持寄存器(功能码16)该功能码用于写入设备中的多个保持寄存器,同时设置多个寄存器的值。
开发人员可以通过该功能码实现对设备状态的批量控制。
Modbus 通讯协议编程

Modbus 通讯协议编程协议名称:Modbus 通讯协议编程一、引言Modbus 通讯协议是一种用于工业自动化领域的通信协议,常用于连接不同设备之间的数据交换。
本协议旨在规范Modbus通讯协议的编程实现,确保各种设备之间的数据传输准确、可靠和高效。
二、协议版本本协议基于Modbus通讯协议的最新版本进行编程实现,目前版本为Modbus协议v2.0。
三、通讯方式1. Modbus RTUModbus RTU是一种串行通讯方式,使用二进制编码进行数据传输。
通讯速率可根据实际需求进行配置,常见的包括9600bps、19200bps、38400bps等。
2. Modbus ASCIIModbus ASCII是一种基于ASCII码的串行通讯方式,使用可见字符进行数据传输。
通讯速率可根据实际需求进行配置,常见的包括9600bps、19200bps、38400bps等。
3. Modbus TCP/IPModbus TCP/IP是一种基于以太网的通讯方式,使用TCP/IP协议进行数据传输。
通讯速率可根据实际需求进行配置,常见的包括10Mbps、100Mbps、1000Mbps等。
四、数据格式1. Modbus RTU 数据格式Modbus RTU 数据帧由起始符、地址、功能码、数据、CRC校验码组成。
具体格式如下:起始符:1个字节,固定为0xFF。
地址:1个字节,表示设备地址。
功能码:1个字节,表示读取或者写入数据的功能。
数据:根据功能码的不同,数据长度可变。
CRC校验码:2个字节,用于检验数据帧的完整性。
2. Modbus ASCII 数据格式Modbus ASCII 数据帧由起始符、地址、功能码、数据、LRC校验码组成。
具体格式如下:起始符:1个字符,固定为冒号(:)。
地址:2个字符,表示设备地址。
功能码:2个字符,表示读取或者写入数据的功能。
数据:根据功能码的不同,数据长度可变。
LRC校验码:2个字符,用于检验数据帧的完整性。
modbustcp编程

modbustcp编程【一、modbustcp简介】Modbus TCP/IP是一种基于以太网的通信协议,起源于Modbus串行通信协议。
Modbus TCP/IP协议广泛应用于工业自动化和楼宇自动化领域,用于实现设备之间的通信和数据交换。
Modbus TCP/IP协议具有简单、易于实现、传输速率较高、传输距离较远等优点。
【二、modbustcp通信协议原理】Modbus TCP/IP通信协议采用客户端-服务器架构。
通信过程中,客户端向服务器发送请求,服务器接收请求并返回响应。
通信数据采用结构化的数据帧,包括设备地址、功能码、数据长度和校验和等字段。
【三、modbustcp编程实践】1.客户端编写:客户端编程主要包括以下几个步骤:a.初始化网络连接。
b.创建Modbus TCP/IP客户端实例。
c.连接到Modbus TCP/IP服务器。
d.发送请求并处理响应。
2.服务器端编写:服务器端编程主要包括以下几个步骤:a.初始化网络连接。
b.创建Modbus TCP/IP服务器实例。
c.监听端口,等待客户端连接。
d.处理客户端请求并返回响应。
【四、modbustcp编程实战案例】以下是一个简单的modbustcp编程实战案例:1.安装Python的modbus库(如:pymodbus)。
2.编写一个Modbus TCP/IP客户端程序,实现与服务器的通信。
3.编写一个Modbus TCP/IP服务器程序,监听端口并处理客户端请求。
4.运行客户端程序,连接到服务器,发送请求并处理响应。
【五、总结与展望】Modbus TCP/IP通信协议在工业自动化和楼宇自动化领域具有广泛的应用。
通过掌握modbustcp编程,可以实现设备之间的便捷通信和数据交换。
上位机与下位机之间的通信编程

上位机与下位机之间的通信编程在现代工业自动化系统中,上位机和下位机之间的通信起着至关重要的作用。
上位机是指控制整个系统的计算机,而下位机则是指负责执行具体任务的设备或机器。
通过上位机与下位机之间的通信,上位机可以向下位机发送指令,控制其工作状态,并实时获取下位机的数据反馈。
本文将探讨以上位机与下位机之间的通信编程技术。
1. 通信协议在上位机与下位机之间进行通信时,需要定义一种通信协议,以确保双方能够正确地交换数据。
常用的通信协议包括Modbus、Profibus、CAN等。
这些协议定义了数据的格式、传输方式以及错误处理机制,使得上位机和下位机能够按照统一的规范进行通信。
2. 通信接口上位机与下位机之间的通信可以通过串口、以太网、无线网络等多种方式实现。
在编程时,需要选择合适的通信接口,并根据接口特点进行相应的编程配置。
例如,在使用串口进行通信时,需要配置串口的波特率、数据位、停止位等参数;在使用以太网进行通信时,需要配置IP地址、端口号等参数。
3. 数据交换在通信过程中,上位机和下位机需要交换各种类型的数据,如控制指令、传感器数据、报警信息等。
为了确保数据的准确性和可靠性,通常会使用特定的数据格式进行数据交换。
常见的数据格式包括二进制、ASCII码、JSON等。
在编程时,需要根据数据格式的要求进行数据的打包和解包操作。
4. 通信流程通信流程是指上位机与下位机之间通信的具体步骤和顺序。
在通信编程中,需要明确通信流程,确保上位机和下位机能够按照预定的顺序进行通信。
通常,通信流程包括建立连接、数据交换、关闭连接等步骤。
5. 异常处理在通信过程中,可能会出现各种异常情况,如通信超时、通信中断、数据错误等。
为了保证通信的稳定性和可靠性,需要在编程时对这些异常情况进行处理。
常见的异常处理方式包括重新连接、重发数据、错误提示等。
6. 安全性在工业自动化系统中,数据的安全性至关重要。
为了保护通信过程中的数据安全,需要在通信编程中加入相应的安全机制。
Modbus通信协议及编程举例

Modbus通信协议一、Modbus 协议简介Modbus 协议是应用于电子控制器上的一种通用语言。
通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。
它已经成为一通用工业标准。
有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。
此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。
它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。
它制定了消息域格局和内容的公共格式。
当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。
如果需要回应,控制器将生成反馈信息并用Modbus协议发出。
在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。
这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。
1、在Modbus网络上转输标准的Modbus口是使用一RS-232C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。
控制器能直接或经由Modem组网。
控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。
其它设备(从设备)根据主设备查询提供的数据作出相应反应。
典型的主设备:主机和可编程仪表。
典型的从设备:可编程控制器。
主设备可单独和从设备通信,也能以广播方式和所有从设备通信。
如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。
Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。
从设备回应消息也由Modbus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。
如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。
2、在其它类型网络上转输在其它网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。
MODBUS通讯协议及编程

MODBUS通讯协议及编程一、协议概述MODBUS通讯协议是一种常用的串行通信协议,用于在工业自动化领域中实现设备之间的数据交换。
该协议简单、易于实现,并且具有广泛的应用范围。
本协议旨在提供一种规范的通信方式,以确保不同设备之间的互操作性。
二、协议结构MODBUS通讯协议采用主从结构,其中主机负责发起通信请求,从机负责响应请求并提供所需的数据。
通信过程中,主机通过发送请求帧来获取或设置从机的数据。
1. 物理层MODBUS通讯协议可以在不同的物理层上实现,如串口、以太网等。
在选择物理层时,需根据具体的应用场景和设备特性进行合理选择。
2. 帧格式MODBUS通讯协议的帧格式如下:- 起始位:一个起始位,用于标识帧的开始。
- 地址位:一个地址位,用于指定从机的地址。
- 功能码:一个功能码,用于指定所需的操作类型。
- 数据域:根据具体的功能码,用于传输数据。
- CRC校验:一个循环冗余校验,用于检测数据传输过程中的错误。
3. 功能码MODBUS通讯协议定义了一系列功能码,用于指定不同的操作类型。
常用的功能码包括:- 读取线圈状态:用于读取从机的线圈状态。
- 读取输入状态:用于读取从机的输入状态。
- 读取保持寄存器:用于读取从机的保持寄存器数据。
- 读取输入寄存器:用于读取从机的输入寄存器数据。
- 写单个线圈:用于设置从机的单个线圈状态。
- 写单个寄存器:用于设置从机的单个寄存器数据。
三、编程实现MODBUS通讯协议的编程实现可以通过不同的编程语言来完成。
下面以Python语言为例,介绍如何使用Python编写MODBUS通讯程序。
1. 安装依赖库首先,需要安装Python的MODBUS依赖库,如pymodbus等。
可以通过pip 命令进行安装。
2. 连接从机使用Python的MODBUS库,可以通过以下代码连接从机:```pythonfrom pymodbus.client.sync import ModbusSerialClient# 创建串口连接client = ModbusSerialClient(method='rtu', port='/dev/ttyUSB0', baudrate=9600) # 连接从机client.connect()```3. 读取数据使用Python的MODBUS库,可以通过以下代码读取从机的数据:```python# 读取保持寄存器数据result = client.read_holding_registers(address=0, count=10, unit=1)# 解析数据if result.isError():print("读取数据失败")else:print("读取数据成功")for i in range(result.registers):print(f"寄存器{i}的值为:{result.registers[i]}")```4. 写入数据使用Python的MODBUS库,可以通过以下代码向从机写入数据:```python# 写入单个寄存器数据result = client.write_register(address=0, value=1234, unit=1)# 检查写入结果if result.isError():print("写入数据失败")else:print("写入数据成功")```四、总结本协议详细介绍了MODBUS通讯协议及编程实现。
《plc通信协议及编程》

《plc通信协议及编程》PLC通信协议及编程近年来,随着工业自动化的快速发展,PLC(Programmable Logic Controller)在工业控制领域得到了广泛应用。
PLC通信协议及编程成为了工程师们需要掌握的重要技能之一。
本文将围绕这一主题展开讨论,介绍PLC通信协议的基本知识以及编程的相关技巧。
一、PLC通信协议的基本概念PLC通信协议是指PLC与其他设备或系统之间进行数据交换和通信的规则和约定。
常见的PLC通信协议包括Modbus、Profibus、CANopen等。
这些协议定义了数据传输的格式、通信机制以及错误处理等内容,确保了设备之间能够正确、高效地进行数据交换。
1.1 Modbus协议Modbus协议是一种串行通信协议,广泛用于工业自动化系统中。
它包括Modbus RTU、Modbus ASCII和Modbus TCP/IP三种变种。
Modbus RTU和Modbus ASCII是基于串口通信的协议,而Modbus TCP/IP则是基于以太网的协议。
Modbus协议简单易懂,传输效率高,适用于数据量较小的场景。
1.2 Profibus协议Profibus协议是一种现场总线通信协议,广泛应用于工业自动化领域。
它提供了高速、可靠的数据传输,适用于大规模的工业控制系统。
Profibus协议支持多主从结构,通过总线来连接各个设备,实现数据的传输和控制。
1.3 CANopen协议CANopen协议是一种基于CAN总线的通信协议,用于工业自动化和机械控制等领域。
它具有高实时性、可靠性和灵活性,适用于复杂的控制系统。
CANopen协议定义了数据通信的格式和通信机制,支持多种数据类型和网络拓扑结构。
二、PLC通信协议的应用PLC通信协议在工业控制中起着至关重要的作用。
它能够实现PLC 与其他设备或系统的数据交换,实现工业过程的监控、控制和优化。
下面将介绍几个典型的应用场景。
2.1 数据采集与监控通过PLC通信协议,PLC可以与传感器、仪表等设备进行数据交换,实现对工业过程中各种参数的采集和监控。
三菱通信协议完整版及程序

三菱FX系列PLC编程口通信协议总览三菱FX系列PLC编程口通信协议总览该协议实际上适用于PLC编程端口以及 FX-232AW 模块的通信。
感谢网友visualboy提供。
通讯格式:命令命令码目标设备DEVICE READ CMD "0" X,Y,M,S,T,C,DDEVICE WRITE CMD "1" X,Y,M,S,T,C,DFORCE ON CMD " 7" X,Y,M,S,T,CFORCE OFF CMD "8" X,Y,M,S,T,C传输格式: RS232C波特率: 9600bps奇偶: even校验: 累加方式(和校验)字符: ASCII16进制代码:ENQ 05H 请求ACK 06H PLC正确响应NAK 15H PLC错误响应STX 02H 报文开始ETX 03H 报文结束帧格式:STX CMD DATA ...... DATA ETX SUM(upper) SUM(lower)例子:STX ,CMD ,ADDRESS, BYTES, ETX, SUM02H, 30H, 31H,30H,46H,36H, 30H,34H, 03H, 37H,34HSUM=CMD+......+ETX;30h+31h+30h+46h+36h+30h+34h+03h=74h;累加和超过两位取低两位三菱FX系列PLC编程口通信协议举例三菱FX系列PLC专用协议通信指令一览FX系列PLC专用协议通信指令一览以下将详细列出PLC专用协议通信的指令:指令注释BR 以1点为单位,读出位元件的状态WR 以16点为单位,读出位元件的状态,或以1字为单位,读出字元件的值BW 以1点为单位,写入位元件的状态WW 以16点为单位,写入位元件的状态,或以1字为单位,写入值到字元件BT 以1点为单位,SET/RESET位元件WT 以16点为单位,SET/RESET位元件,或写入值到字元件RR 控制PLC运行RUNRS 控制PLC停止STOPPC 读出PLC设备类型TT 连接测试注:位元件包括X,Y,M,S以及T,C的线圈等;字元件包括D,T,C,KnX,KnY,KnM等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MODBUS通讯协议及编程
ModBus通讯协议分为RTU协议和ASCII协议,我公司的多种仪表都采用ModBus RTU 通讯协议,如:YD2000智能电力监测仪、巡检表、数显表、光柱数显表等。
下面就ModBus RTU协议简要介绍如下:
一、通讯协议
(一)、通讯传送方式:
通讯传送分为独立的信息头,和发送的编码数据。
以下的通讯传送方式定义也与MODBUS RTU通讯规约相兼容:
初始结构= ≥4字节的时间
地址码= 1 字节
功能码= 1 字节
数据区= N 字节
错误校检= 16位CRC码
结束结构= ≥4字节的时间
地址码:地址码为通讯传送的第一个字节。
这个字节表明由用户设定地址码的从机将接收由主机发送来的信息。
并且每个从机都有具有唯一的地址码,并且响应回送均以各自的地址码开始。
主机发送的地址码表明将发送到的从机地址,而从机发送的地址码表明回送的从机地址。
功能码:通讯传送的第二个字节。
ModBus通讯规约定义功能号为1到127。
本仪表只利用其中的一部分功能码。
作为主机请求发送,通过功能码告诉从机执行什么动作。
作为从机响应,从机发送的功能码与从主机发送来的功能码一样,并表明从机已响应主机进行操作。
如果从机发送的功能码的最高位为1(比如功能码大与此同时127),则表明从机没有响应操作或发送出错。
数据区:数据区是根据不同的功能码而不同。
数据区可以是实际数值、设置点、主机发送给从机或从机发送给主机的地址。
CRC码:二字节的错误检测码。
(二)、通讯规约:
当通讯命令发送至仪器时,符合相应地址码的设备接通讯命令,并除去地址码,读取信息,如果没有出错,则执行相应的任务;然后把执行结果返送给发送者。
返送的信息中包括地址码、执行动作的功能码、执行动作后结果的数据以及错误校验码。
如果出错就不发送任何信息。
1.信息帧结构
地址码:地址码是信息帧的第一字节(8位),从0到255。
这个字节表明由用户设置地址的从机将接收由主机发送来的信息。
每个从机都必须有唯一的地址码,并且只有符合地址码的从机才能响应回送。
当从机回送信息时,相当的地址码表明该信息来自于何处。
功能码:主机发送的功能码告诉从机执行什么任务。
表1-1列出的功能码都有具体的含义及操作
数据区:数据区包含需要从机执行什么动作或由从机采集的返送信息。
这些信息可以是数值、参考地址等等。
例如,功能码告诉从机读取寄存器的值,则数据区必需包含要读取寄存器的起始地址及读取长度。
对于不同的从机,地址和数据信息都不相同。
错误校验码:主机或从机可用校验码进行判别接收信息是否出错。
有时,由于电子噪声或其它一些干扰,信息在传输过程中会发生细微的变化,错误校验码保证了主机或从机对在传送过程中出错的信息不起作用。
这样增加了系统的安全和效率。
错误校验采用CRC-16校验方法。
注:信息帧的格式都基本相同:地址码、功能码、数据区和错误校验码。
2.错误校验
冗余循环码(CRC)包含2个字节,即16位二进制。
CRC码由发送设备计算,放置于发送信息的尾部。
接收信息的设备再重新计算接收到信息的 CRC码,比较计算得到的CRC码是否与接收到的相符,如果两者不相符,则表明出错。
CRC码的计算方法是,先预置16位寄存器全为1。
再逐步把每8位数据信息进行处理。
在进行CRC码计算时只用8位数据位,起始位及停止位,如有奇偶校验位的话也包括奇偶校验位,都不参与CRC码计算。
在计算CRC码时,8位数据与寄存器的数据相异或,得到的结果向低位移一字节,用0填补最高位。
再检查最低位,如果最低位为1,把寄存器的内容与预置数相异或,如果最低位为0,不进行异或运算。
这个过程一直重复8次。
第8次移位后,下一个8位再与现在寄存器的内容相相异或,这个过程与以上一样重复8次。
当所有的数据信息处理完后,最后寄存器的内容即为CRC码值。
CRC 码中的数据发送、接收时低字节在前。
计算CRC码的步骤为:
∙预置16位寄存器为十六进制FFFF(即全为1)。
称此寄存器为CRC寄存器;
∙把第一个8位数据与16位CRC寄存器的低位相异或,把结果放于CRC寄存器;
∙把寄存器的内容右移一位(朝低位),用0填补最高位,检查最低位;
∙如果最低位为0:重复第3步(再次移位); 如果最低位为1:CRC寄存器与多项式A001(1010 0000 0000 0001)进行异或;
∙重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理;
∙重复步骤2到步骤5,进行下一个8位数据的处理;
∙最后得到的CRC寄存器即为CRC码。
3.功能码03,读取点和返回值:
仪表采用Modbus RTU通讯规约,利用通讯命令,可以进行读取点(“保持寄存器”) 或返回值(“输入寄存器” )的操作。
保持和输入寄存器都是16位(2字节)值,并且高位在前。
这样用于仪表的读取点和返回值都是2字节。
一次最多可读取寄存器数是60。
由于一些可编程控制器不用功能码03,所以功能码03被用作读取点和返回值。
从机响应的命令格式是从机地址、功能码、数据区及CRC码。
数据区中的寄存器数据都是每两个字节高字节在前。
4.功能码06,单点保存
主机利用这条命令把单点数据保存到仪表的存储器。
从机也用这个功能码向主机返送信息。
二、编程举例
下面是一个用VC编写的ModBus RTU通讯的例子
(一)、通讯口设置
DCB dcb;
hCom=CreateFile("COM1",
GENERIC_READ|GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
0,
NULL);
if(hCom==INVALID_HANDLE_VALUE)
{
MessageBox("createfile error,error"); }
BOOL error=SetupComm(hCom,1024,1024);
if(!error)
MessageBox("setupcomm error");
error=GetCommState(hCom,&dcb);
if(!error)
MessageBox("getcommstate,error"); dcb.BaudRate=2400;
dcb.ByteSize=8;
dcb.Parity=EVENPARITY;//NOPARITY;
dcb.StopBits=ONESTOPBIT;
error=SetCommState(hCom,&dcb);
(二)、CRC校验码计算
UINT crc
void calccrc(BYTE crcbuf)
{
BYTE i;
crc=crc ^ crcbuf;
for(i=0;i<8;i++)
{
BYTE TT;
TT=crc&1;
crc=crc>>1;
crc=crc&0x7fff;
if (TT==1)
crc=crc^0xa001;
crc=crc&0xffff;
}
}
(三)、数据发送
zxaddr=11;//读取地址为11的巡检表数据
zxnum=10;//读取十个通道的数据
writebuf2[0]=zxaddr;
writebuf2[1]=3;
writebuf2[2]=0;
writebuf2[3]=0;
writebuf2[4]=0;
writebuf2[5]=zxnum;
crc=0xffff;
calccrc(writebuf2[0]);
calccrc(writebuf2[1]);
calccrc(writebuf2[2]);
calccrc(writebuf2[3]);
calccrc(writebuf2[4]);
calccrc(writebuf2[5]);
writebuf2[6]=crc & 0xff;
writebuf2[7]=crc/0x100;
WriteFile(hCom,writebuf2,8,&comnum,NULL);
(四)、数据读取
ReadFile(hCom,writebuf,5+zxnum*2,&comnum,NULL);//读取zxnum个通道数据可增加错误处理程序,如地址码错误、CRC码错误判断、通讯故障处理等。