ansys-workbench-接触的总结
ANSYS workbench 接触简介

Contact Status Open p
Contact Status Open p
Penetration
Gap
Penetration
Gap
Closed 法向拉格朗日法
3-8
Closed 罚函数法
Penetration
Workbench Mechanical - Introduction to Contact
积分点探测
节点探测
3-9
Workbench Mechanical - Introduction to Contact
... 接触公式
Training Manual
• 对于特定的“绑定”和“不分离”两个面间的接触类型,可用多点约束 (MPC) 算法.
– MPC 内部添加约束方程来“联结”接触面间的位移 – 这种方法不基于罚函数法或Lagrange乘子法 .它是直接有效的关联绑定接触面 方式。 – MPC算法基础的绑定接触也支持大变形效应
– “N “Normal lL Lagrange” ” 法是因为拉格朗日乘子公式用于法线方向而罚函 数 方法用于切线方向而得名的.
3-12
Workbench Mechanical - Introduction to Contact
… 公式对比
Training Manual
• 下表列出不同接触算法的比较,用“+”表优势,“-”表劣势:
F
当接触协调性不被强制时会发生渗透.
Contact
Target
F
3-4
Workbench Mechanical - Introduction to Contact
B. 接触公式
• 对非线性接触实体表面, 可使用罚函数或增强拉格朗日公式:
Ansys与Workbench等软件的联合应用

联合ANSYS WORKBENCH和经典界面进行后处理前面几篇文章已经提到过,ANSYS WORKCENCH主要是为不大懂ANSYS 命令和编程的工程师服务的,而经典界面则适用于初学者和研究人员。
初学者和研究人员是完全不同的两个层次,为什么ANSYS经典界面却同时适合二者呢?实际上,学好ANSYS,关键并非是操作界面,而是要学好有限元。
如果初学者直接从WORKBENCH来学习ANSYS,那么对于有限元就毫无收获,可以说一头雾水。
而如果从经典界面进去,因为涉及到很多与有限元概念密切相关的操作,对于理解有限元很有好处。
只是学到一定程度以后,需要转移到WORKBENCH中进行三维零件的分析和装配体的分析。
而当我们用到一定程度以后,发现WOKRBENCH虽然操作方便,但是的确不容易操作底层。
前面的文章已经说明了如何联合二者进行仿真,以充分使用WOKRNBEHCN对于建模的方便性以及经典界面对于底层的操控性。
这里再举一个例子,说明如何用WOKRBENCH进行建模,而后在经典界面中进行后处理,目的是为研究人员提供参考。
一个两边固定的梁,上面受到分布载荷作用如下图。
该分布载荷随时间而改变,其载荷的时间历程如下曲线,从0-1秒,载荷增加到1Mpa,而后保持1秒钟,接着减小到0Mpa,终止时间是3秒。
为了便于控制,这里对每个载荷步均采用自定义载荷子步的方式,划分为10个载荷子步,见下面的细节视图。
然后进行瞬态隐式动力学分析,得到该梁的位移和von mises应力。
我们现在要知道该梁上某一个应力最大的点,其应力是如何随时间而改变的。
这个任务使用WOKRBENCH很难达到,但是用经典界面则轻而易举,因此我们决定使用经典界面进行后处理。
要使用经典界面后处理,只需要把WORKBENCH中生成的结果文件导入到经典界面中即可。
首先找到WORKBENCH中生成的结果文件如下图所示的路径。
该文件叫file.rst,为了方便,把file.rst拷贝到D盘的根目录下,然后启动ANSYS APDL,即经典界面。
ANSYS高级接触分析

图3-1
• 接触面和目标面确定准则
• 如凸面和平面或凹面接触,应指定平面或凹面为目标 面;
• 如一个面上的网格较粗而另一个面上的网格较细,应 指定粗网格面为目标面;
• 如一个面比另一个面的刚度大,应指定刚度大的面为 目标面;
• 如一个面为高阶单元而另一面为低阶单元,应指定低 阶单元面为目标面;
• 如一个面比另一个面大,应指定大的面为目标面。
• 接触单元就是掩盖在分析模型接触面上 的一层单元。
• 在 ANSYS 中可以承受三种不同的单元 来模拟接触:
•
面一面接触单元;
•
点一面接触单元;
§2 接触单元
• 不同的单元类型具有完全不同的单元特性和分 析过程。
• 1. 面一面接触单元用于任意外形的两个外表接 触
• 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例如: 面一面接触可以模拟金属成型,如轧制
•
面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触
单元具有很多优点:
•
与低阶单元和高阶单元都兼容
•
供给更好的接触结果〔于后处理接触压力和摩擦应力〕
•
可考虑壳和梁的厚度,以及壳的厚度变化
•
半自动接触刚度计算
•
刚性外表由“把握节点 – pilot node”把握
•
热接触特性
•
众多的高级选项来处理简洁问题。
2、摩擦消耗能量,并且是路径相关行为。 为获得较高的精度,时间步长必需很小〔图2-1〕
图2-1
3、ANSYS 中,摩擦承受库仑模型,并有附加选项可 处理简洁的粘着和剪切行为。 库仑法则是宏观模型,表述物体间的等效剪力 FT 不能超过正压力 FN 的一局部: FT <= μ× FN 式中: μ- 摩擦系数 一旦所受剪力超过 FT,两物体将发生相对滑动。
ansysworkbench接触实例分析

前言WokBench 是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方,欢迎指出,便于大家共同提高。
问题描述这是一个塑料小卡扣的例子,主要想使用WorkBench 了解在使用中,塑料件的变形是否足够。
模型是用ProE 制作的,为了简化,只切取了关于变形的部分,如下图:其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。
大体的尺寸如下,单位是毫米:注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE 中,模型装配关系决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手动扩大接触区域。
如果距离太远,在手动设置Pinball 类型的接触区域时,Pinball 的半径要设得很大,可能导致无法计算。
请参考上面的尺寸图纸调节两个部件之间的距离。
之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出,千万不要加无用的面。
将Pinball Region 设置为Radius 方式(4),并将Radius 设置一个合适的值(5),本例设置了3 毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。
还需要将接触方式设置为无摩擦的(6)。
最后将接触面计算方式设置为Adjust To Touch(7)。
也可以尝试其他的方式,不过对于这个仅研究红色部件变形的例子就无所谓了。
关于单元格WorkBench 中可以不自行划分单元格(在解算的时候,如果没有手动的设置,软件就会先自动划分),软件帮你自动产生。
如果你的其他设置正确,即便是这个自动的值也能很精确了。
添加分析这个分析用静力学就可以了(1)。
之后要设置Analysis Setting(2)。
将Nuber Of Step 设置为2(3)。
注意:1)蓝色部件在运动的过程中,先压迫红色部件,再逐渐松开,因此必须将这个过程至少分解为至少两个阶段(阶段指“Step”)。
ANSYSWorkbench五种接触类型

ANSYSWorkbench五种接触类型ANSYS Workbench五种接触类型(1) Workbench中提供了以下5种接触类型:Bonded绑定:这是AWE中关于接触的默认设置,如果接触区域被设置为绑定不允许面或线间有相对滑动或分离,可以将此区域看做被连接在一起,因为接触长度/面积是保持不变的所以这种接触可以用作线性求解,如果接触是从数学模型中设定的程序将填充所有的间隙忽略所有的初始渗透。
(无相对位移如同共用节点)No Separation不分离:这种接触方式和绑定类似,它只适用于面,不允许接触区域的面分离但是沿着接触面可以有小的无摩擦滑动。
(法向不分离切向可以有小位移)Frictionless无摩擦:这种接触类型代表单边接触,即如果出现分离则法向压力为零,只适用于面接触,因此根据不同的载荷模型间可以出现间隙。
它是非线性求解因为在载荷施加过程中接触面积可能会发生改变,假设摩擦系数为零因此允许自由滑动,使用这种接触方式时需注意模型约束的定义防止出现欠约束。
程序会给装配体加上弱弹簧帮助固定模型以得到合理的解。
(法向可分离,但不渗透,切向自由滑动)Rough粗糙的:这种接触方式和无摩擦类似,但表现为完全的摩擦接触即没有相对滑动,只适用于面接触,默认情况下不自动消除间隙。
这种情况相当于接触体间的摩擦系数为无穷大。
(法向可分离,不渗透,切向不滑动)Frictional有摩擦:这种情况下在发生相对滑动前两接触面可以通过接触区域传递一定数量的剪应力,有点像胶水,模型在滑动发生前定义一个等效的剪应力作为接触压力的一部分,一旦剪应力超过此值两面将发生相对滑动。
只适用于面接触,摩擦系数可以是任意非负值。
(法向可分离,不渗透,切向滑动,有摩擦力)。
ansys workbench 接触容差类型

ansys workbench 接触容差类型
题目:ANSYS Workbench接触容差类型及其应用
摘要:
ANSYS Workbench是一种用于有限元分析和计算流体力学的强大软件工具。
在工程设计中,接触问题是一种常见的现象,它涉及两个或多个物体之间的接触行为。
接触容差则是描述接触过程中的差异和变形的关键概念之一。
本文将围绕ANSYS Workbench中的接触容差类型展开,分别介绍了经典的接触模型和应用案例,并提供一步一步的解答。
第一节:引言
1.1 背景介绍
1.2 研究目的
第二节:接触容差的概念与分类
2.1 接触容差的定义
2.2 接触容差的分类
第三节:ANSYS Workbench中的经典接触容差类型及其物理意义
3.1 基本接触模型介绍
3.2 定义接触容差
3.3 接触容差的影响因素
3.4 深入理解接触容差的物理意义
第四节:ANSYS Workbench中的接触容差模拟实践4.1 实例一:刚体-刚体接触模拟
4.2 实例二:弹性体-弹性体接触模拟
4.3 实例三:刚体-弹性体接触模拟
4.4 分析与结果讨论
第五节:接触容差模拟的应用案例
5.1 机械设计
5.2 汽车工程
5.3 航空航天工程
第六节:接触容差模拟的局限性与发展趋势
6.1 模拟精度与误差控制
6.2 软件功能的不足与需求
6.3 接触容差模拟技术的发展趋势
第七节:结论
7.1 总结
7.2 展望
关键词:ANSYS Workbench、接触问题、接触容差类型、接触模型、应用案例。
ANSYS接触分析_学习手记

◆前提:◇有限元模型。
◇已识别接触面及目标面。
(*可应用自由度耦合来替代接触。
)选择目标面和接触面的准则:1.凸面和凹面或平面接触是,选平面或凹面为目标面。
2、接触的两个面网格划分有粗细的话,选粗网格所在面为目标面。
3两个面刚度不同时,选择刚度大的面为目标面4如果两个面为一个高阶单元,一个为低阶单元,选低阶单元为目标面 5.如果一个面比另一个面大选大的面为目标面。
2.◆定义接触单元及实常数◇(刚性)目标单元—— TARGE169 TARGE170 ;◇(柔性)接触单元—— CONTA171~CONTA172。
***Commands***ET,K,169 !K - 指定的单元编号ET,K+1,172*** ****◇实常数——一个接触对对应同一个实常数号。
TARGE单元的实常数包括:R1、R2 —定义目标单元几何形状CONTA单元的实常数包括:No. Name Description1 R1 Target circle radius(刚性环半径)2 R2 Superelement thickness(单元厚度)*3 FKN Normal penalty stiffness factor(法向接触刚度因子)*4 FTOLN Penetration tolerance factor(最大允许的穿透)*5 ICONT Initial contact closure(初始闭合因子)6 PINB Pinball region(“Pinball”区域)*7 PMAX Upper limit of initial allowable penetration(初始穿透的最大值)*8 PMIN Lower limit of initial allowable penetration(初始穿透的最小值)*9 TAUMAX Maximum friction stress(最大的接触摩擦)*10 CNOF Contact surface offset(施加于接触面的正或负的偏移值)11 FKOP Contact opening stiffness or contact damping*12 FKT Tangent penalty stiffness factor(切向接触刚度)13 COHE Contact cohesion(滑动抗力粘聚力)14 TCC Thermal contact conductance(热接触传导系数)15 FHTG Frictional heating factor(摩擦耗散能量的热转换率)16 SBCT Stefan-Boltzmann constant17 RDVF Radiation view factor18 FWGT Heat distribution weighing factor19 ECC Electric contact conductance20 FHEG Joule dissipation weight factor21 FACT Static/dynamic ratio(静摩擦系数和动摩擦系数的比率)22 DC Exponential decay coefficient(摩擦衰减系数)23 SLTO Allowable elastic slip24 TNOP Maximum allowable tensile contact pressure25 TOLS Target edge extension factor附注:+值作为比例因子,-值作为绝对值;带*号的实常数比较重要,关乎接触分析的收敛;一般实常数可为缺省值。
5.3.9 接触设置综合实例[共10页]
![5.3.9 接触设置综合实例[共10页]](https://img.taocdn.com/s3/m/cabc9f6769dc5022abea0018.png)
5.3 状态非线性分析——接触5.3.9 接触设置综合实例通过前面例子的学习,已经了解了WB中接触设置。
下面以一个2D压片弯曲挤压胶片,胶片再承受密封流体压力的例子综合描述接触分析。
本例包含刚柔接触、自接触、密封流体压力。
1.建立2D模型如图5-3-99所示,建立一个含压模板、压片、胶片的2D模型。
由于压片上端为曲线,且压片与胶片均处于相对自由状态,所以很难精确定义压模板和胶片与压片相切的位置,因此压模板距压片有微小间隙,胶片与压片呈过盈状态。
压模板在整个过程中几乎不变形,而且也不是本分析所关注的目标,所以将其定义为刚体;压片在整个过程中存在大的弯曲变形,其结果将表现为首尾相接触,将其材料定义为非线性铝合金;胶片为橡胶件,整个过程中存在大应变,且胶片内部存在自接触可能,将其本构定义为Ogden 3rd Order类型。
压模板,命名tie,刚体压片,命名Surface Body,材料本构为非线性铝合金胶片,命名rub,材料本构为Ogden 3rd Order图5-3-99 2D模型2.2D模型及材料设置调用WB默认材料库内的非线性铝合金(General Non-linear Materials→Aluminum Alloy NL),新增一个材料,命名为rub,本构选择Hyperelastic→Ogden 3rd Order,9个参数分别为:MU1=0.043438MPa,A1=1.3,MU2=8.274E−5MPa,A2=5,MU3=−0.0006895MPa,A3=−2,D1=0.029MPa^−1,D2=0MPa^−1,D3=0MPa^−1。
在Geometry→2D Behavior处定义为Plane Stress(平面应力),如图5-3-100所示。
– 435 –第5章 非线性静力学分析– 436 – 3.Virtual Topology (虚拟拓扑)设置虚拟拓扑一般用于合并几个不同平面,使其保证为一个有限元拓扑模型,除此之外,还可用于分割模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①下面对非对称行为接触表面的正确选择给出选择指导:
–如果一凸的表面要和一平面或凹面接触,应该选取平面或凹面为目标面.
–如果一个表面有粗糙的网格而另一个表面网格细密,则应选择粗糙网格表面为目标面.
–如果一个表面比另一个表面硬,则硬表面应为目标面.
–如果一个表面为高阶而另一个为低阶,则低阶表面应为目标面.
–如果一个表面大于另一个表面,则大的表面应为目标面.
②法向刚度WB-Mechanical系统默认自动设定。
–用户可以输入“法向刚度因子Normal Stiffness Factor” (FKN) 它是计算刚度代码的乘子.因子越小,接触刚度就越小。
•默认 FKN =10 (对于绑定和不分离的接触)
•默认 FKN=10(其他形式接触) 默认 FKN1.0 (其他形式接触)
•接触问题法向刚度选择一般准则:
–体积为主的问题: 用“Program Controlled”或手动输入“Normal Stiffness Factor”为“1”
–弯曲为主的问题: 手动输入“Normal Stiffness Factor”为“0.01”到“0.1”之
间的数值。
-在大变形问题的无摩擦或摩擦接触中建议使用“Augmented Lagrange”
法向接触刚度 knormal是影响精度和收敛行为最重要的参数.
–刚度越大,结果越精确,收敛变得越困难.
–如果接触刚度太大,模型会振动,接触面会相互弹开。
- 其中update stifness 设置可以控制计算收敛与否。
③
-刚度增加, 渗透减少,而最大压力增加. 并且通常会有更多的迭代和更长运行时间
④ 不管使用了何种接触行为 (对称或反对称), 模型的变形和等效应力本质
是相同的. 对称行为可以提高收敛. 但对称接触结果不容易解释,为接触面与目标面结果的平均值。
0.0032902 0.0033033 0.0033052 0.0033055 0.0033053
565.05Mp a 774.12Mp a 811.34Mp a 816.26Mp a 812.78Mp a
0.011864 0.0016253 0.0017035 0.000017138 0.000019984
17 17 20 24 57
⑤在详细窗口中用户可以选择“Adjusted to Touch”或“AddOffset”
-“AdjstedtoToch”让Simlation 决定需要多大的接触偏移量来闭合缝隙建立初始接触。
注意,Pinball 区域大小会影响这种自动方法,因此必须保证Pinball 半径大於最小的缝隙距离.
-“AddOffset”让用户来指定允许接触面偏移的正负距离.正值是指关闭缝隙而负值是指打开缝隙.该选项用于把模型调整到合适位置而不需要修改几何值.让几何在刚好接触的位置上,改变正距离到穿透值。
“Add Offset, Ramped Effects”–在一个载荷步内分几个
子步逐步施加干涉。
–该选项对富于挑战的干涉问题的收敛是有帮助的。
“Add Offset, No Ramping”–在第一个子步内一次完成载
荷的施加。
⑥接触类型及其可供的选项总结如下表所示:。