拉曼光谱原理分析..39页PPT
合集下载
拉曼光谱原理和特点 ppt课件

• 散射光中的1010光子之一是非弹性散射(拉曼)
• 前…
后…
入射光
分子
• 光损失能量,使分子振动
Slide 4
PPT课件
分子振动
散射光
emission
excitation excit.-vib.
拉曼光谱的优点和特点
对样品无接触,无损伤; 样品无需制备; 快速分析,鉴别各种材料的特性与结构; 能适合黑色和含水样品; 高、低温及高压条件下测量; 光谱成像快速、简便,分辨率高; 仪器稳固,体积适中, 维护成本低,使用简单。
2500
N2
2000
1500
1000
500
1500
2000
2500
3000
3500
CO2
CH4
6000
4000
quartz
3000
H2O
2000 1087
1000
1164 1387 1280
1640
2331
1500
2000
2500
3000
3500
1087 1164
1287 1390
2328 2609 2914 3399 3639
Characteristic vibrational spectrum: 指纹性振动谱
Slide 6
PPT课件
Information obtained from Raman spectroscopy 拉曼光谱的信息
Slide 7
PPT课件
characteristic Raman
frequencies
拉曼频率的确认
changes in frequency of Raman peak
拉曼光谱原理和应用

Slide 12
精选可编辑ppt
拉曼光谱的信息
拉曼频率 的确认
parallel perpendicular
拉曼偏振
拉曼峰宽
Slide 13
精选可编辑ppt
拉曼峰强度
物质的组成 晶体对称性和取向
晶体质量好坏 物质总量
拉曼光谱的优点和特点
对样品无接触,无损伤; 样品无需制备; 快速分析,鉴别各种材料的特性与结构; 能适合黑色和含水样品; 高、低温及高压条件下测量; 光谱成像快速、简便,分辨率高; 仪器稳固,体积适中, 维护成本低,使用简单。
Slide 14
精选可编辑ppt
拉曼光谱的主要困难
• 拉曼散射信号弱(比荧光光谱平均小2-3数量级)。
• 激光激发强。
• 拉曼信号频率离激光频率很近。
• 激光瑞利散射比拉曼信号强1010-1014,对拉曼信号干扰很 大。
• 拉曼光谱仪器的设计,必须能排除瑞利散射光,并具有高灵 敏度(体现在弱信号检测的高信噪比 ),才能有效地收集拉 曼谱。
• 最常用的红外及拉曼光谱区域波长是2.5~25μm。(中红外区)
• 分子能级与分子光谱
分子运动包括整体的平动、转动、振动及电子的运动。分子总能量可近似看成是这些运动的 能量之和,即
式中 E t E e E v E r
E 总 = E t + E e E v E r
分别代表分子的平动能、电子运动能、振动能和转动能。除E t 外,其余三项都是量子化的,
Virtual State 虚能级
Mid IR Stokes Raman 红外 斯托克斯拉曼
Rayleigh Anti-Stokes Raman 瑞利散射 反斯托克斯拉曼
Fluorescence 荧光
拉曼光谱课件

总结词
利用拉曼光谱分析大气中的有害物质,如二氧化氮、二氧化硫、一氧化碳等,有助于监测和治理空气 污染。
详细描述
拉曼光谱能够检测大气中不同污染物的分子振动模式,从而确定污染物的种类和浓度。这种方法具有 非接触、无损、快速和高灵敏度的特点,对于大气污染的预防和治理具有重要意义。
水体污染物的拉曼光谱分析
总结词
拉曼光谱技术可用于检测水体中的有害物质,如重金属离子、有机污染物等,为水环境 的监测和治理提供有力支持。
详细描述
通过对水体样本进行拉曼光谱扫描,可以获取水中污染物的分子振动信息,从而判断污 染物的种类和浓度。这种方法在水质监测、饮用水安全等领域具有广泛的应用前景。
土壤污染物的拉曼光谱分析
总结词
用于分离拉曼散射信号中的不 同波长成分。
光电倍增管
用于检测拉曼散射信号,转换 为电信号。
实验操作流程
显微镜观察
使用显微镜观察样品,选择测 量区域和焦点。
数据采集
采集拉曼散射信号,记录光谱 数据。
样品准备
选择适当的样品,进行表面清 洁和干燥。
光路调整
调整拉曼光谱仪、单色仪和显 微镜的光路,确保测量区域的 聚焦。
与生物学和医学交叉
拓展拉曼光谱在生物分子结构和细胞代谢过程 中的应用。
与计算科学交叉
利用计算模拟方法预测分子拉曼光谱,指导实验设计和优化。
THANK YOU
总结词
高分子化合物的拉曼光谱分析主要依赖于链振动和侧基的振动,可以提供高分子化合物的结构和序列信息。
详细描述
拉曼光谱能够检测高分子化合物中主链和侧基的振动模式,从而推断出高分子的结构和序列。通过分析拉曼光谱 ,可以确定高分子化合物的聚合度、序列长度和支链结构等信息。
利用拉曼光谱分析大气中的有害物质,如二氧化氮、二氧化硫、一氧化碳等,有助于监测和治理空气 污染。
详细描述
拉曼光谱能够检测大气中不同污染物的分子振动模式,从而确定污染物的种类和浓度。这种方法具有 非接触、无损、快速和高灵敏度的特点,对于大气污染的预防和治理具有重要意义。
水体污染物的拉曼光谱分析
总结词
拉曼光谱技术可用于检测水体中的有害物质,如重金属离子、有机污染物等,为水环境 的监测和治理提供有力支持。
详细描述
通过对水体样本进行拉曼光谱扫描,可以获取水中污染物的分子振动信息,从而判断污 染物的种类和浓度。这种方法在水质监测、饮用水安全等领域具有广泛的应用前景。
土壤污染物的拉曼光谱分析
总结词
用于分离拉曼散射信号中的不 同波长成分。
光电倍增管
用于检测拉曼散射信号,转换 为电信号。
实验操作流程
显微镜观察
使用显微镜观察样品,选择测 量区域和焦点。
数据采集
采集拉曼散射信号,记录光谱 数据。
样品准备
选择适当的样品,进行表面清 洁和干燥。
光路调整
调整拉曼光谱仪、单色仪和显 微镜的光路,确保测量区域的 聚焦。
与生物学和医学交叉
拓展拉曼光谱在生物分子结构和细胞代谢过程 中的应用。
与计算科学交叉
利用计算模拟方法预测分子拉曼光谱,指导实验设计和优化。
THANK YOU
总结词
高分子化合物的拉曼光谱分析主要依赖于链振动和侧基的振动,可以提供高分子化合物的结构和序列信息。
详细描述
拉曼光谱能够检测高分子化合物中主链和侧基的振动模式,从而推断出高分子的结构和序列。通过分析拉曼光谱 ,可以确定高分子化合物的聚合度、序列长度和支链结构等信息。
拉曼光谱原理及应用免费课件

➢ 结构信息(晶体、无定形、同分异构 体…)
Intensity
Band postion band Position shift
Band Width
Raman shift
拉曼光谱的特征
拉曼频移
峰位与激发波长没有关系
多激发波长:选择适合的激发波长
70000
60000
Intensity (a.u.)
50000
20
White light Image
30
40
50
60
40
50
60
70
80
Length X (祄)
Length Y (祄)
2-纳米材料
碳纳米管研究
3.0
2.5
Tube Diameter
2.0
Tangential Modes (G-Modes)
Electronic properties
Radial Breathing Mode
9 000 8 000 7 000 6 000 5 000 4 000 3 000 2 000 1 000
0
SiC的拉曼光谱图
分辨率为 2 cm-s1i普c1通1-5分32辨18率00
4 000
分ssiicc11辨11--553322率1680000 为0.65 csmic-11高1-5分32辨60率0
20 000 15 000 10 000
5 000 0 -40
-30
-20
Z (祄)
共焦状态不好
-10
0
界面?
3-拉曼光谱在材料研究中的应用介绍
拉曼光谱应用领域:
1:半导体材料; 2:聚合体;3:碳材料; 4:地质学/矿物学/宝石鉴定; 5:生命科学; 6:医药;7:化学; 8:环境;9:物理 10:考古;11:薄膜; 12: 法庭科学:违禁药品检查;区分各种颜料,色素,油漆,纤维 等;爆炸物的研究;墨迹研究;子弹残留物和地质碎片研究
Intensity
Band postion band Position shift
Band Width
Raman shift
拉曼光谱的特征
拉曼频移
峰位与激发波长没有关系
多激发波长:选择适合的激发波长
70000
60000
Intensity (a.u.)
50000
20
White light Image
30
40
50
60
40
50
60
70
80
Length X (祄)
Length Y (祄)
2-纳米材料
碳纳米管研究
3.0
2.5
Tube Diameter
2.0
Tangential Modes (G-Modes)
Electronic properties
Radial Breathing Mode
9 000 8 000 7 000 6 000 5 000 4 000 3 000 2 000 1 000
0
SiC的拉曼光谱图
分辨率为 2 cm-s1i普c1通1-5分32辨18率00
4 000
分ssiicc11辨11--553322率1680000 为0.65 csmic-11高1-5分32辨60率0
20 000 15 000 10 000
5 000 0 -40
-30
-20
Z (祄)
共焦状态不好
-10
0
界面?
3-拉曼光谱在材料研究中的应用介绍
拉曼光谱应用领域:
1:半导体材料; 2:聚合体;3:碳材料; 4:地质学/矿物学/宝石鉴定; 5:生命科学; 6:医药;7:化学; 8:环境;9:物理 10:考古;11:薄膜; 12: 法庭科学:违禁药品检查;区分各种颜料,色素,油漆,纤维 等;爆炸物的研究;墨迹研究;子弹残留物和地质碎片研究
拉曼光谱分析法教学课件

增管、电荷耦合器件等。
拉曼光谱仪的使用方法
样品制备
将待测样品制备成适合测量的 形态,如固体、液体或气体等 。
光谱采集
将制备好的样品放入样品室, 关闭样品室门,开始采集拉曼 光谱。
开机预热
打开拉曼光谱仪电源,进行预 热,使仪器处于稳定工作状态 。
参数设置
根据样品类型和测量要求,设 置合适的激光波长、功率、积 分时间等参数。
拉曼光谱分析法的发展前景与展望
拓宽应用领域
01
拉曼光谱分析法在环境监测、食品安全、生物医药等领域有着
广泛的应用前景,未来将进一步拓宽其应用领域。
提高检测效率
02
通过优化光路设计、改进信号处理方法等手段,提高拉曼光谱
分析法的检测效率,实现更快速、更准确的检测。
加强国际合作与交流
03
加强国际间的合作与交流,共同推动拉曼光谱分析法的发展与
拉曼光谱分析法特点
01
02
03
无损检测
拉曼光谱分析法是一种无 损检测技术,可以在不破 坏样品的情况下进行分析 。
高分辨率
拉曼光谱分析法具有高分 辨率,能够区分不同的化 学键和官能团。
广泛应用
拉曼光谱分析法在化学、 生物、医学、材料科学等 领域都有广泛的应用。
拉曼光谱仪的构成
02
与使用
拉曼光谱仪的构成
拉曼光谱分析法的
04
数据处理与解析
拉曼光谱数据的预处理方法
基线校正
消除光谱基线漂移,提高信噪比 。
平滑处理
降低光谱噪声,提高数据质量。
归一化处理
消除光强差异,便于不同光谱间 的比较。
拉曼光谱数据的解析方法
峰位识别
确定拉曼特征峰的位置,鉴别物 质种类。
拉曼光谱仪的使用方法
样品制备
将待测样品制备成适合测量的 形态,如固体、液体或气体等 。
光谱采集
将制备好的样品放入样品室, 关闭样品室门,开始采集拉曼 光谱。
开机预热
打开拉曼光谱仪电源,进行预 热,使仪器处于稳定工作状态 。
参数设置
根据样品类型和测量要求,设 置合适的激光波长、功率、积 分时间等参数。
拉曼光谱分析法的发展前景与展望
拓宽应用领域
01
拉曼光谱分析法在环境监测、食品安全、生物医药等领域有着
广泛的应用前景,未来将进一步拓宽其应用领域。
提高检测效率
02
通过优化光路设计、改进信号处理方法等手段,提高拉曼光谱
分析法的检测效率,实现更快速、更准确的检测。
加强国际合作与交流
03
加强国际间的合作与交流,共同推动拉曼光谱分析法的发展与
拉曼光谱分析法特点
01
02
03
无损检测
拉曼光谱分析法是一种无 损检测技术,可以在不破 坏样品的情况下进行分析 。
高分辨率
拉曼光谱分析法具有高分 辨率,能够区分不同的化 学键和官能团。
广泛应用
拉曼光谱分析法在化学、 生物、医学、材料科学等 领域都有广泛的应用。
拉曼光谱仪的构成
02
与使用
拉曼光谱仪的构成
拉曼光谱分析法的
04
数据处理与解析
拉曼光谱数据的预处理方法
基线校正
消除光谱基线漂移,提高信噪比 。
平滑处理
降低光谱噪声,提高数据质量。
归一化处理
消除光强差异,便于不同光谱间 的比较。
拉曼光谱数据的解析方法
峰位识别
确定拉曼特征峰的位置,鉴别物 质种类。
拉曼光谱简介PPT课件

RaContents
• 背景简介 • 基本原理 • 发展应用 • 激光拉曼 • 表面增强拉曼
2019/11/10
优质
2
背景简介
• 1923年德国的Smeka理论上预言了光的非弹 性散射 。
• 1926年印度物理学家Raman在论文中开始并 没有肯定这种散射是非弹性的,以后的许 多次实验最终证明了这种散射的非弹性,他 将这种效应称为“一种新辐射”。
2. 定量分析中的应用 依据拉曼谱线的强度与入射光的强度和样品分子的浓度
的正比例关系,可以利用拉曼谱线来进行定量分析。
2019/11/10
优质
12
发展应用
• 半导体材料 • 聚合物 • 碳材料 • 地质学、矿物学、宝石鉴定 • 生命科学 • 医学 • 化学 • 物理
• 法庭科学:违禁品检测、爆炸物研究、 墨迹研究、子弹碎片等
优质
8
基本原理
• 红外活性:如果某一简正振动对应的分子 偶极矩变化不为零,即则是红外活性的; 反之,是红外非活性的。
• 拉曼活性:如果某一简正振动对应于分子 的极化率变化不为零,即则是拉曼活性的, 反之,是拉曼非活性的。
2019/11/10
优质
9
基本原理
• 互不相容原理: 具有对称中心的分子:红外活性的振动模,拉曼 非活性 拉曼活性的振动模,红外非活性 红外+拉曼→全部振动谱
• 1930年42岁的Raman为此获得了诺贝尔物理 学奖,这是亚洲人获得的第一个诺贝尔科 学奖。
2019/11/10
优质
3
基本原理
瑞利散射 拉曼散射
2019/11/10
优质
4
基本原理
2019/11/10
优质
• 背景简介 • 基本原理 • 发展应用 • 激光拉曼 • 表面增强拉曼
2019/11/10
优质
2
背景简介
• 1923年德国的Smeka理论上预言了光的非弹 性散射 。
• 1926年印度物理学家Raman在论文中开始并 没有肯定这种散射是非弹性的,以后的许 多次实验最终证明了这种散射的非弹性,他 将这种效应称为“一种新辐射”。
2. 定量分析中的应用 依据拉曼谱线的强度与入射光的强度和样品分子的浓度
的正比例关系,可以利用拉曼谱线来进行定量分析。
2019/11/10
优质
12
发展应用
• 半导体材料 • 聚合物 • 碳材料 • 地质学、矿物学、宝石鉴定 • 生命科学 • 医学 • 化学 • 物理
• 法庭科学:违禁品检测、爆炸物研究、 墨迹研究、子弹碎片等
优质
8
基本原理
• 红外活性:如果某一简正振动对应的分子 偶极矩变化不为零,即则是红外活性的; 反之,是红外非活性的。
• 拉曼活性:如果某一简正振动对应于分子 的极化率变化不为零,即则是拉曼活性的, 反之,是拉曼非活性的。
2019/11/10
优质
9
基本原理
• 互不相容原理: 具有对称中心的分子:红外活性的振动模,拉曼 非活性 拉曼活性的振动模,红外非活性 红外+拉曼→全部振动谱
• 1930年42岁的Raman为此获得了诺贝尔物理 学奖,这是亚洲人获得的第一个诺贝尔科 学奖。
2019/11/10
优质
3
基本原理
瑞利散射 拉曼散射
2019/11/10
优质
4
基本原理
2019/11/10
优质
拉曼光谱共40页

29五拉曼光谱在生物医学中的应用30研究人体有意摄入的药物探测物和无意感染病毒污染物物质与人体的相互作用利用拉曼光谱迚行体内和体外的的医学诊断拉曼光谱在生物医学中的应用31拉曼光谱在生物医学中的应用拉曼光谱成为研究恶性肿瘤早期诊断癌变机理研究的重要手段拉曼光谱成为研究恶性肿瘤早期诊断癌变机理研究的重要手段拉曼手术刀拉曼光谱研究拉曼光谱研究dnadna结构变化与浓度变化的关系结构变化与浓度变化的关系dnadna的损伤等的损伤等傅里叶近红外拉曼光谱研究人血红细胞的结构利用拉曼光谱分析进行经皮肤的非入侵式验血技术利用拉曼光谱进行制药监测药物成分分析等32拉曼光谱应用于肿瘤检测诊断肿瘤检测sharo等对肝癌组织细胞迚行拉曼研究发现与正常细胞相比肝癌细胞的拉曼光谱在1040cm11080cm1处峰的强度较正常细胞的拉曼光谱强度增加在1241cm1处峰的强度减弱lorinez等发现用拉曼光谱分析技术能够区分正常肝组织有活力的瘤组织和纤维化肝母细胞瘤研究显示了拉曼光谱技术在临床诊断方面的潜力及应用价值33肿瘤检测人体组织由蛋白质核酸碳水化合物和脂类等生物分子组成在组织癌变过程中组成组织的各种生物分子只是在不同组织内的构型构象以及各种成分的构成比例不同这些早期的变化幵不引起临床症状和医学影像学的变化而拉曼光谱却能从分子水平反映这些变化拉曼光谱应用于肿瘤检测诊断34拉曼光谱应用于肿瘤检测诊断肺组织冰冻切片样品谱带归属表35拉曼手术刀拉曼手术刀目前在恶性病变肿瘤组织如癌症等的外科手术过程中主要是由有经验的医生判断病灶的位置以及需要切除的部位幵且要借助于病理解剖学及组织细胞学来迚行确认利用表面增强拉曼散射原理将拉曼散射光探针与手术刀结合为一体手术过程中即时测量人体组织肿瘤的拉曼散射光谱信叵与资料库迅速比对之后能够确定该组织细胞是否为良性肿瘤或恶性的癌细胞处某一部位的组织36拉曼手术刀37拉曼手术刀使用近红外区波长的的连续激光激发样品不易产生干扰样品拉曼光谱的荧光激励光通过光纤到达拉曼智能手术刀三角共38拉曼手术刀39
拉曼光谱课件

c 相互禁止规则:少数分子的振动,既非拉曼活性, 又非红外活性。 如:乙烯分子的扭曲振动,在红外和拉曼光谱中 均观察不到该振动的谱带。
• 红外光谱图中主要研究振动中有偶极矩 变化的化合物,因此,除了单原子分子 和同核分子外,几乎所有的化合物在红 外光区均有吸收。
拉曼光谱与红外光谱分析方法比较
拉曼光谱 光 谱 范 围 40-4000C m -1
激光拉曼光谱基本原理
principle of Raman spectroscopy
激发虚态
h(0 - )
Rayleigh散射:
E1 + h0
弹性碰撞;无 能量交换,仅改变 方向; Raman散射:
非弹性碰撞; 方向改变且有能量
E0 + h0 h0
h0 h0
h0 +
E1
V=1
E0
V=0
Rayleigh散射
4
动模式较低。
三、 仪器结构与原理
高压电源
凹面镜 样品
单色仪
光电倍增管
驱动电路
光子计数器
激
光
器
计算机
显示器
仪器组成
– 激光拉曼光谱仪的基本组成有激光光源,样品 室,单色器,检测记录系统和计算机五大部分。
– 拉曼光谱仪中最常用的是He~Ne气体激光器。 – 其输出激光波长为6328埃,功率在100mW以下。
– 在激光拉曼光谱中,完全自由取向的分子所散射的光 也可能是偏振的,因此一般在拉曼光谱中用退偏振比 (或称去偏振度)ρ表征分子对称性振动模式的高低。
I I //
I•∥和I⊥ —3 —的分谱别带代称表为与偏激光振电谱矢带量,平表行示和垂分直子的有谱较线高的的强度 对称振4 动模式 。
• 红外光谱图中主要研究振动中有偶极矩 变化的化合物,因此,除了单原子分子 和同核分子外,几乎所有的化合物在红 外光区均有吸收。
拉曼光谱与红外光谱分析方法比较
拉曼光谱 光 谱 范 围 40-4000C m -1
激光拉曼光谱基本原理
principle of Raman spectroscopy
激发虚态
h(0 - )
Rayleigh散射:
E1 + h0
弹性碰撞;无 能量交换,仅改变 方向; Raman散射:
非弹性碰撞; 方向改变且有能量
E0 + h0 h0
h0 h0
h0 +
E1
V=1
E0
V=0
Rayleigh散射
4
动模式较低。
三、 仪器结构与原理
高压电源
凹面镜 样品
单色仪
光电倍增管
驱动电路
光子计数器
激
光
器
计算机
显示器
仪器组成
– 激光拉曼光谱仪的基本组成有激光光源,样品 室,单色器,检测记录系统和计算机五大部分。
– 拉曼光谱仪中最常用的是He~Ne气体激光器。 – 其输出激光波长为6328埃,功率在100mW以下。
– 在激光拉曼光谱中,完全自由取向的分子所散射的光 也可能是偏振的,因此一般在拉曼光谱中用退偏振比 (或称去偏振度)ρ表征分子对称性振动模式的高低。
I I //
I•∥和I⊥ —3 —的分谱别带代称表为与偏激光振电谱矢带量,平表行示和垂分直子的有谱较线高的的强度 对称振4 动模式 。