2019最新高等数学(上册)期末考试试题(含答案)ALB

合集下载

2019最新高等数学(上册)期末考试试题(含答案)LO

2019最新高等数学(上册)期末考试试题(含答案)LO

2019最新高等数学期末考试试题(含答案)一、解答题1.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x→∞-+ 解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴== ⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →, 2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=2.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…; (2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑; (3)21121n n x n -∞=-∑; (4)()2112n n x n n ∞=-⋅∑; 解:(1)因为11lim lim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11n n n ∞=-∑,由lim(1)0n x n n →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1). (2)因为()()1111!11lim lim lim lim e 1!11n n n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e n n n n n ∞=∑;应用洛必达法则求得()10e e 1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-< ⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1. 当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n →∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212n n t n n ∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112n n n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]3.求下列各曲线所围图形的面积: (1) y =12x 2 与x 2+y 2=8(两部分都要计算); 解:如图D 1=D 2解方程组⎩⎨⎧y =12x 2x 2+y 2=8得交点A (2,2) (1)D 1=⎠⎛02⎝⎛⎭⎫8-x 2-12x 2d x =π+23 ∴ D 1+D 2=2π+43, D 3+D 4=8π-⎝⎛⎭⎫2π+43=6π-43.。

2019最新高等数学(上册)期末考试试题(含答案)NJ

2019最新高等数学(上册)期末考试试题(含答案)NJ

2019最新高等数学期末考试试题(含答案)一、解答题1.求函数1()f x x=在01x =-处的n 阶泰勒公式. 解: 121211(1)(1)1(1)n n n n n x x x x x x θ+++=--++-+-++ 12211()1[(1)](1) {1(1)(1)(1)} (01).[1(1)]n n n f x x x x x x x x θθ++∴==-+-++=-++++++++<<-+2.将函数()0arctan d xt F t x t =⎰展开成x 的幂级数. 解:由于()210arctan 121n n n t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n x n n n n t t F t t x t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1) 3.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31n n n ∞=+∑; (3)232333331222322n n n +++++⋅⋅⋅⋅;(4) 12!n n n n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<, 由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散. (3) ()()11132lim lim 2313lim21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散. (4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n n n n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.4.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力。

2019最新高等数学(上册)期末考试试题(含答案)VR

2019最新高等数学(上册)期末考试试题(含答案)VR

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列函数在0x x =处的三阶泰勒展开式:⑴04);y x = ⑵ 0(1)ln (1).y x x x =-=解:⑴ 1357(4)222211315 , , ,.24816y x y x y x y x ----''''''==-==- 所以113(4) , (4) ,(4)432256y y y ''''''==-= (4)7215[4(4)]16[4(4)]y x x θθ+-=-+-423721115(4)(4)(4)(4) (01).464512128[4(4)]x x x x x θθ----+--<<+-⑵ 2344ln(1)234(1)x x x x x x θ+=-+-+ 234434524(1)ln (1)ln[1(1)](1)(1)(1) (1){(1)}234[1(1)](1)(1)(1) (1).234[1(1)]y x x x x x x x x x x x x x x x θθ∴=-=-+----=---+-+----=--+-+-2.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为 R =y -800=2528.4-800=1728.4(万元)收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年3.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力。

2019最新高等数学(上册)期末考试试题(含答案)BG

2019最新高等数学(上册)期末考试试题(含答案)BG

2019最新高等数学期末考试试题(含答案)一、解答题1.试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值. 证明:232y ax bx c '=++,令0y '=,得方程2320ax bx c ++=,由于 22(2)4(3)4(3)0b a c b ac ∆=-=-<,那么0y '=无实数根,不满足必要条件,从而y 无极值.2.求下列旋转体的体积: (1) 由y =x 2与y 2=x 3围成的平面图形绕x 轴旋转; 解: 求两曲线交点⎩⎨⎧y =x 2y 2=x 3得(0,0),(1,1) V =π⎠⎛01()x 3-x 4d x =π⎣⎡⎦⎤14x 4-15x 510 =π20. (14) (2)由y =x 3,x =2,y =0所围图形分别绕x 轴及y 轴旋转;解:见图14,V x =π⎠⎛02x 6d x =1287π V y =π⎠⎛08⎝⎛⎭⎫22-y 23d y =645π. (2)星形线x 2/3+y 2/3=a 2/3绕x 轴旋转; 解:见图15,该曲线的参数方程是: ⎩⎨⎧x =a cos 3t y =a sin 3t0≤t ≤2π , 由曲线关于x 轴及y 轴的对称性,所求体积可表示为V x =2π⎠⎛0ay 2d x=2π⎠⎜⎛π20()a sin 3t 2d ()a cos 3t =6πa 3⎠⎜⎛0π2sin 7t cos 2t d t =32105πa 3(15)3.求下列各曲线所围图形的面积: (1) y =12x 2 与x 2+y 2=8(两部分都要计算); 解:如图D 1=D 2解方程组⎩⎨⎧y =12x 2x 2+y 2=8得交点A (2,2) (1)D 1=⎠⎛02⎝⎛⎭⎫8-x 2-12x 2d x =π+23 ∴ D 1+D 2=2π+43, D 3+D 4=8π-⎝⎛⎭⎫2π+43=6π-43. (2)y =1x 与直线y =x 及x =2; 解: D 1=⎠⎛12⎝⎛⎭⎫x -1x d x =⎣⎡⎦⎤12x 2-ln x 21=32-ln2. (2)(3) y =e x ,y =e -x 与直线x =1;解:D =⎠⎛01()e x -e -x d x =e+1e-2.(3)(4)y =ln x ,y 轴与直线y =ln a ,y =ln b .(b>a>0); 解:D =⎠⎛l n a l n b e yd y=b -a .(4)(5) 抛物线y =x 2和y =-x 2+2;解:解方程组⎩⎨⎧y =x 2y =-x 2+2得交点 (1,1),(-1,1)。

2019最新高等数学(上册)期末考试试题(含答案)LO

2019最新高等数学(上册)期末考试试题(含答案)LO

2019最新高等数学期末考试试题(含答案)一、解答题1.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x →∞-+ 解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴== ⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →,2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=2.求下列幂级数的收敛半径及收敛域: (1)x +2x 2+3x 3+…+nx n+…;(2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑; (3)21121n n x n -∞=-∑;(4)()2112nn x n n ∞=-⋅∑;解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n ∞=-∑,由lim(1)0nx nn →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e nnn n n ∞=∑;应用洛必达法则求得()10e e1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-<⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1).(4)令t =x -1,则级数变为212n n t n n ∞=⋅∑,因为()()2122lim lim 1211n n n na n na n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]3. 求下列各曲线所围图形的面积: (1)y =12x 2 与x 2+y 2=8(两部分都要计算); 解:如图D 1=D 2解方程组⎩⎨⎧y =12x 2x 2+y 2=8得交点A (2,2)(1)D 1=⎠⎛02⎝⎛⎭⎫8-x 2-12x 2d x =π+23∴ D 1+D 2=2π+43,D 3+D 4=8π-⎝⎛⎭⎫2π+43=6π-43.(2)y =1x与直线y =x 及x =2; 解: D 1=⎠⎛12⎝⎛⎭⎫x -1x d x =⎣⎡⎦⎤12x 2-ln x 21=32-ln2.(2)(3)y =e x ,y =e -x 与直线x =1;解:D =⎠⎛01()e x -e -xd x =e+1e-2.(3)(4) y =ln x ,y 轴与直线y =ln a ,y =ln b .(b>a>0); 解:D =⎠⎛l n al n b e y d y =b -a .(4)(5)抛物线y =x 2和y =-x 2+2;解:解方程组⎩⎨⎧y =x 2y =-x 2+2得交点 (1,1),(-1,1) D =⎠⎛-11()-x 2+2-x 2d x =4⎠⎛01()-x 2+1d x =83.(5)(6)y =sin x ,y =cos x 及直线x =π4,x =94π;解:D =2⎠⎜⎜⎛π45π4(sin x -cos x )d x=2[]-cos x -sin x 5π4π4=42.(6)(7) 抛物线y =-x 2+4x -3及其在(0,-3)和(3,0)处的切线;解:y′=-2x +4. ∴y ′(0)=4,y ′(3)=-2.∵抛物线在点(0,-3)处切线方程是y =4x -3 在(3,0)处的切线是y =-2x +6 两切线交点是(32,3).故所求面积为(7)()()()()()33222302332223024343d 2643d d 69d 9.4D x x x x x x x x x x x x x⎡⎤⎡⎤=---+-+-+--+-⎣⎦⎣⎦=+-+=⎰⎰⎰⎰(8) 摆线x =a (t -sin t ),y =a (1-cos t )的一拱 (0≤t ≤2π)与x 轴;解:当t =0时,x =0, 当t =2π时,x =2πa .所以()()()2π2π002π2202d 1cos d sin 1cos d 3π.aS y x a t a t t at ta ==--=-=⎰⎰⎰(8)(9)极坐标曲线 ρ=a sin3φ;解:D =3D 1=3·a 22⎠⎜⎛0π3sin 23φd φ=3a 22 ·⎠⎜⎛0π3 1-cos6φ2d φ =3a 24 ·⎣⎡⎦⎤φ-16sin6φπ3=πa 24.(9)(10) ρ=2a cos φ;解:D =2D 1=2⎠⎜⎛0π212·4a 2·cos 2φd φ=4a 2⎠⎜⎛0π21+cos2φ2d φ =4a 2·12⎣⎡⎦⎤φ+12sin2φπ2=4a 2·12·π2=πa 2.(10)4.证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题五5.已知()d 1p x x +∞-∞=⎰,其中1,()0,1,x p x x <=≥⎩求C . 解:111()d 0d 0d p x x x x x x +∞-+∞-∞-∞--=⋅++⋅=⎰⎰⎰⎰⎰11001arcsin arcsin π1x x C xC xC --=+=⋅+⋅==⎰⎰所以1πC =.6.计算下列定积分:3(1);x ⎰解:原式43238233x ==-221(2)d x x x --⎰;解:原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰1232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩解:原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰ 222(4)max{1,}d ;x x -⎰解:原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5).x解:原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=7.用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R .8.问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y′=3ax 2+2bx , y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得 39,22a b =-=.9.求数列1000n ⎧⎫⎨⎬+⎩⎭的最大的项.解:令y =y '===令0y '=得x =1000.因为在(0,1000)上0y '>,在(1000,)+∞上0y '<, 所以x =1000为函数y的极大值点,也是最大值点,max (1000)y y ==.故数列的最大项为1000a =.10.试证:方程sin x x =只有一个实根.证明:设()sin f x x x =-,则()cos 10,f x x =-≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.11.求下列极限问题中,能使用洛必达法则的有( ).⑴ 201sinlimsin x x x x →; ⑵ lim (1)x x k x→+∞+;⑶ sin lim sin x x xx x→∞-+; ⑷ e e lim .e e x x xx x --→+∞-+ 解:⑴ ∵200111sin2sin coslimlim sin cos x x x x x x x x x→→-=不存在,(因1sin x ,1cos x 为有界函数) 又2001sin1limlim sin 0sin x x x x x x x→→==, 故不能使用洛必达法则. ⑶ ∵sin 1cos limlimsin 1cos x x x x xx x x→∞→∞--=++不存在, 而sin 1sin lim lim 1.sin sin 1x x x x x x xx x x→∞→∞--==++故不能使用洛必达法则.⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xxx x x x x x x x ------→+∞→+∞→+∞-+-==+-+ 利用洛必达法则无法求得其极限.而22e e 1e lim lim 1e e 1e x x xxx xx x ----→+∞→+∞--==++. 故答案选(2).12.计算抛物线y =4x -x 2在它的顶点处的曲率. 解:y =-(x -2)2+4,故抛物线顶点为(2,4) 当x =2时, 0,2y y '''==- , 故 23/22.(1)y k y ''=='+13.椭圆22169400x y +=上哪些点的纵坐标减少的速率与它的横坐标增加的速率相同? 解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x y x y t t ⋅+⋅= 由d d d d x y t t -=. 得 161832,9y x y x ==代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.14.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)15.求函数()e xf x x =的n 阶麦克劳林公式.解: 21e 1e 2!(1)!!n n x x x x x x n n θ-=+++++- 312()e e (01)2!(1)!!n n xx x x x f x x x x n n θθ+∴==+++++<<-16.没1()1x f x x -=+,求1(0),(),().f f x f x- 解: 10(0)110f -==+,1()1(),1()1x x f x x x --+-==+--1111().111x x f x x x--==++17.求下列函数的高阶微分:⑴ y 2d y ; ⑵ xy x =,求2d y ; ⑶ cos 2y x x =⋅,求10d y ; ⑷ 3ln y x x =⋅,求d ny ;⑸ 2323cos sin 0r a θθ⋅-=(a 为常数),求2d r .解:⑴d d y x x '==,2d d y x '=3222(1)d .x x -=+⑵ (ln )(ln )(1ln ).xy y y y x x x x '''===+21[(1ln )],x y x x x''=++故 2221d [(1ln )]d (0).x y x x x x x=++> ⑶ 由莱布尼兹公式,得1010(10)10()(10)101001091010d (cos 2)d [C cos 2]d 10π9[2cos(2)102cos(2π)]d 221024(cos 25sin 2)d .ii i i y x x x x x x x x x x x x x x -====++⋅⋅+=-+∑ ⑷ 由莱布尼兹公式,得3()13(1)23(2)33(3)31223124d [(ln )C ()(ln )C ()(ln )C ()(ln )]d (1)!(2)!(1)(3)![(1)3(1)6(1)2(1)(2)( +6(1)6n n n n n n n n n n n n n n n n y x x x x x x x x x n n n n n x n x x x x xn n n n ---------'''=⋅+⋅+⋅'''+⋅----=⋅-⋅+⋅⋅-⋅+⋅⋅----⋅⋅-334)!]d [(1)6(4)!]d .nn n n n x xn x x --=-⋅⋅- ⑸ 223tan r a θ=两端求导,得2222323tan sec 2rr a r θθθ''=⋅⇒= 等式两端再求导得22232223(2tan sec 4tan sec )r rr a θθθθ'''+=⋅+⋅解得24314sin 4cos r a θθ+''=故2224314sin d d .4cos r a θθθ+=18.设()f x 具有二阶连续导数,且(0)0f =,试证:(), 0,()(0), 0,f x xg x xf x ⎧≠⎪=⎨⎪'=⎩ 可导,且导函数连续.证明:因()f x 具有二阶连续导数,故0x ≠时,()g x 可导,又002000()(0)()(0)(0)lim lim 0()(0)()(0)lim lim2()(0)lim ,22x x x x x f x f g x g xg x xf x f x f x f x xf x f →→→→→'--'==-'''-⋅-==''''== 故 ()g x 是可导的,且导函数为 2()(), 0,()(0), 0, 2xf x f x x xg x f x '-⎧≠⎪⎪'=⎨''⎪=⎪⎩又因2()()lim ()limx x xf x f x g x x→→'-'= 000()()()lim2()(0)lim lim (0) 22x x x f x xf x f x xf x fg →→→''''+-='''''===故()g x 的导函数是连续的.19.若π1()1,(arccos )3f y f x '==,求2d d x y x=.解:22d 11(arccos )(()d d π11(d 344x y f x x x y f x ='=⋅-'===20.求下列函数在给定点处的导数: ⑴ 1sin cos ,2y x x x =+求π4d d x y x =;解:11sin cos sin sin cos 22y x x x x x x x '=+-=+π41ππππsin cos )244442x y ='=+=+⑵ 23(),55x f x x =+-求(0)f '和(2)f ';解:232()(5)5f x x x '=+-317(0) (2)2515f f ''== ⑶ 254, 1,()43, 1,x x f x x x x -≤⎧=⎨->⎩求(1)f '.解:211()(1)431(1)limlim 511x x f x f x x f x x +++→→---'===-- 11()(1)541(1)lim lim 511x x f x f x f x x ---→→---'===-- 故(1) 5.f '=21.已知sin ,0,(),0,x x f x x x <⎧=⎨≥⎩求()f x '.解:当0x <时,()cos ,f x x '= 当0x >时,()1,f x '= 当0x =时,0sin 0(0)lim 1,0x x f x --→-'==- 00(0)lim 1,0x x f x ++→-'==- 故(0) 1.f '= 综上所述知cos ,0,()1,0.x x f x x <⎧'=⎨≥⎩22.讨论函数y =0x =点处的连续性和可导性.解:00(0)x f →==,故函数在0x =处连续.又2300limlim 0x x x x -→→==∞-,故函数在0x =处不可导.23.(1) 设1()f x x=,求00()(0);f x x '≠解:0021()().x x f x f x x =''==-(2) 设()(1)(2)(),f x x x x x n =--⋅⋅-求(0).f '解:00()(0)(0)limlim(1)(2)()0(1)!x x n f x f f x x x n x n →→-'==--⋅⋅--=-24.研究下列函数的连续性,并画出图形:2,1,,01,(1)()(2)()1,1;2,12;x x x x f x f x x x x ≤⎧≤≤⎧==⎨⎨>-<<⎩⎩ 221(3)()lim ;(4)()lim .1x x nx x nn n n n x f x f x x n n x --→∞→∞--==++解:(1)由初等函数的连续性知,()f x 在(0,1),(1,2)内连续,又21111lim ()lim(2)1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=== 1lim ()1,x f x →∴= 而(1)1f =,()f x ∴在1x =处连续,又,由2lim ()lim 0(0)x x f x x f ++→→===,知()f x 在0x =处右连续, 综上所述,函数()f x 在[0,2)内连续. 函数图形如下:图1-2(2) 由初等函数的连续性知()f x 在(,1),(1,1),(1,)-∞--+∞内连续,又由1111lim ()lim 11,lim ()lim 1,x x x x f x f x x --++→-→-→-→-====-知1lim ()x f x -→-不存在,于是()f x 在1x =-处不连续.又由1111lim ()lim 1,lim ()lim11,x x x x f x x f x --++→→→→==== 及(1)1f =知1lim ()(1)x f x f →=,从而()f x 在x =1处连续,综上所述,函数()f x 在(,1)-∞-及(1,)-+∞内连续,在1x =-处间断.函数图形如下:图1-3(3)∵当x <0时,221()lim lim 1,1x x x xx x n n n n n f x n n n --→∞→∞--===-++ 当x =0时,00()lim 0,n n n f x n n →∞-==+当x >0时,2222111()limlim lim 1111x xxx x xx n n n xn n n n f x n n n n --→∞→∞→∞---====+++1,0,()lim0,0,1,0.xxx xn x n n f x x n n x --→∞-<⎧-⎪∴===⎨+⎪>⎩由初等函数的连续性知()f x 在(,0),(0,)-∞+∞内连续, 又由 0lim ()lim11,lim ()lim(1)1x x x x f x f x ++--→→→→===-=- 知0lim ()x f x →不存在,从而()f x 在0x =处间断.综上所述,函数()f x 在(,0),(0,)-∞+∞内连续,在0x =处间断.图形如下:图1-4(4)当|x |=1时,221()lim0,1nn n x f x x x →∞-==+ 当|x |<1时,221()lim,1nnn x f x x x x →∞-==+ 当|x |>1时,2222111()limlim 111nnn n n n x x f x x x x x x →∞→∞⎛⎫- ⎪-⎝⎭==⋅=-+⎛⎫+ ⎪⎝⎭即 ,1,()0,1,, 1.x x f x x x x <⎧⎪==⎨⎪->⎩由初等函数的连续性知()f x 在(-∞,-1),(-1,1),(1,+∞)内均连续,又由1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-知1lim ()x f x →-不存在,从而()f x 在1x =-处不连续.又由 1111lim ()lim()1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=-== 知1lim ()x f x →不存在,从而()f x 在1x =处不连续.综上所述,()f x 在(-∞,-1),(-1,1),(1,+∞)内连续,在1x =±处间断. 图形如下:图1-525.利用0sin lim1x xx→=或等价无穷小量求下列极限:002000sin (1)lim ;(2)lim cot ;sin 1cos 2(3)lim ;sin arctan 3(5)lim;(6)lim 2sin ;2x x x x x n n x n mxx x nx x x x x xx →→→→→→∞-22102320020041arctan (7)lim ;(8)lim ;arcsin(12)sin arcsin 2tan sin cos cos (9)lim ;(10)lim ;sin 1cos 4(12)lim 2sin t x x x x x x x x x x x x x x x x xx x x αβ→→→→→→-----+ 222200;an ln cos ln(sin e )(13)lim ;(14)lim .ln cos ln(e )2x x x x x ax x xbx x x→→+-+-解:(1)因为当0x →时,sin ~,sin ~,mx mx nx nx 所以00sin limlim .sin x x mx mx mnx nx n→→==00002000limcos cos (2)lim cot lim cos lim 1.sin sin sin lim1cos 22sin sin (3)lim lim 2lim 2.sin sin x x x x x x x x x x x x x x x xx x xx x x x x x x x→→→→→→→→=⋅===-=== (4)因为当0x →时,2221ln(1e sin )~e sin 1~2x x x x x +,所以22200002e sin sin lim lim 2e lim 2.12x x x x x x x x x x x→→→→⎛⎫==⋅= ⎪⎝⎭(5)因为当0x →时,arctan3~3,x x 所以00arctan 33limlim 3x x x xxx →→==.sinsin22(6)lim 2sin lim lim .222n n n n n n n n nx xx x x x x x →∞→∞→∞=⋅== (7)因为当12x →时,arcsin(12)~12x x --,所以22111122224141(21)(21)lim lim lim lim(21) 2.arcsin(12)1212x x x x x x x x x x x x →→→→---+===-+=---- (8)因为当0x →时,22arctan ~,sin~,arcsin ~,22x xx x x x 所以 2200arctan lim lim 2sin arcsin 22x x x x xx x x →→==⋅. (9)因为当0x →时,2331sin ~,1cos ~,sin ~2x x x x x x -,所以233300001tan sin sin (1cos )2lim lim lim sin sin cos cos 11lim .2cos 2x x x x x x x x x x x x xx x x →→→→⋅--==⋅== (10)因为当0x →时,sin~,sin~2222x x x x αβαβαβαβ++--,所以22002222sinsincos cos 22lim lim 222lim1().2x x x x xx xx x x xx αβαβαβαβαββα→→→+---=+--⋅⋅==-(11)因为当0x →时,~)~,x x --所以000 1.x x x →→→==-=-(12)因为当0x →时,sin ~,sin 2~2,x x x x 所以2222200222200201cos 42sin 2lim lim 2sin tan sin (2sec )2(2)8lim lim (2sec )2sec 84.lim(2sec )x x x x x x x x x x x x x x x x x x xx x →→→→→-=++⋅==++==+ (13)因为ln cos ln[1(cos 1)],ln cos ln[1(cos 1)],ax ax bx bx =+-=+- 而当0x →时,cos 10,cos 10ax bx -→-→故 ln[1(cos 1)]~cos 1,ln[1(cos 1)]~cos 1,ax ax bx bx +--+-- 又当x →0进,2222111cos ~,1cos ~,22ax a x bx b x --所以 22220000221ln cos cos 11cos 2lim lim lim lim .1ln cos cos 11cos 2x x x x a xax ax ax a bx bx bx b b x→→→→--====-- (14)因为当0x →时,222sin 0,0e ex x x x →→ 故 222222sin sin ln ~,ln ~,11e ee e x x xx x xx x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 所以22222222200022222000020sin ln 1ln(sin e )ln(sin e )ln e e lim lim lim ln(e )2ln(e )ln e ln 1e sin sin sin e lim lim e lim e lim e e 1 1.x x x x x x x x x x x x x xx x x x xx x x x x x x x xx x x x x →→→→→→→⎛⎫+ ⎪+-+-⎝⎭==+-+-⎛⎫+ ⎪⎝⎭⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪⎝⎭⎝⎭=⋅=26.当0x →时,22x x -与23x x -相比,哪个是高阶无穷小量?解:232200limlim 022x x x x x x x x x→→--==-- ∴当0x →时,23x x -是比22x x -高阶的无穷小量.27.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim elim elim ee e x x x x x x x x xx x x x x x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦28.解:因为221(1)()(1)11x a x a b x b ax b x x +--++---=++由已知211lim 21x x ax b x →∞⎛⎫+=-- ⎪+⎝⎭知,分式的分子与分母的次数相同,且x 项的系数之比为12,于是 10a -= 且()112a b -+= 解得 31,2a b ==-.29.设()2,()ln xf xg x x x ==,求(()),(()),(())f g x g f x f f x 和(())g g x . 解: ()ln (())22,g x x x f g x ==(())()ln ()2ln 2(ln 2)2,x x x g f x f x f x x ==⋅=⋅()2(())22,(())()ln ()ln ln(ln ).xf x f f xg g x g x g x x x x x ====30.一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解:d d de e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无 3.无 4.无 5.无 6.无 7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019最新高等数学(上册)期末考试试题(含答案)WP

2019最新高等数学(上册)期末考试试题(含答案)WP

2019最新高等数学期末考试试题(含答案)一、解答题1.某人走过一桥的速度为4km ·h -1,同时一船在此人底下以8 km ·h -1的速度划过,此桥比船高200m ,求3min 后,人与船相离的速度.解:设t 小时后,人与船相距s 公里,则d d s s t === 且120d 8.16d t s t ==≈ (km ·h -1)2.将f (x ) = 2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n ∞=∑的和. 解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…) ()()11010d 22d 5a f x x x x -==+=⎰⎰ ()()()11102cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx x n n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以 ()()()221cos 21π542π21n n x f x n ∞=-=--∑,x ∈[-1,1] 取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n ∞==∑3.设f (x ) = x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数.解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn n b f x nx x x nx x n==+--+=⋅⎰⎰ 从而()()()1111π2sin πn n f x nx n∞=--+=∑ (0<x <π) 若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰ 从而()()()21cos 21π242π21n n x f x n ∞=-+=--∑ (0≤x ≤π)4.用根值判别法判别下列级数的敛散性: (1) 1531n n n n ∞=⎛⎫ ⎪+⎝⎭∑; (2) ()[]11ln 1n n n ∞=+∑; (3) 21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑; (4) 1n n n b a ∞=⎛⎫ ⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数. 解:(1)55lim 1313n n n n →∞==>+, 故原级数发散.(2) ()1lim 01ln 1n n n →∞==<+, 故原级数收敛.(3)121lim 1931n n n n n -→∞⎛⎫==< ⎪-⎝⎭, 故原级数收敛.(4) lim lim n n n b b a a →∞==,。

2019最新高等数学(上册)期末考试试题(含答案)GT

2019最新高等数学(上册)期末考试试题(含答案)GT

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列极限问题中,能使用洛必达法则的有( ).⑴ 201sinlim sin x x x x →; ⑵ lim (1)x x k x →+∞+; ⑶ sin lim sin x x x x x →∞-+; ⑷ e e lim .e e x x x xx --→+∞-+ 解:⑴ ∵200111sin2sin cos lim lim sin cos x x x x x x x x x →→-=不存在,(因1sin x ,1cos x 为有界函数) 又2001sin1lim lim sin 0sin x x x x x x x →→==, 故不能使用洛必达法则.⑶ ∵sin 1cos lim lim sin 1cos x x x x x x x x→∞→∞--=++不存在, 而sin 1sin lim lim 1.sin sin 1x x xx x x x x x x →∞→∞--==++ 故不能使用洛必达法则.⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xx x x x x x x x x ------→+∞→+∞→+∞-+-==+-+ 利用洛必达法则无法求得其极限. 而22e e 1e lim lim 1e e 1e x x xx x xx x ----→+∞→+∞--==++. 故答案选(2).2.判定下列级数的敛散性:(1)1n ∞=∑; (2) ()()11111661111165451n n +++++⋅⋅⋅-+; (3) ()23133********3nn n --+-++-;(4)155n ++++;解:(1)(11n S n =++++=从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭ 从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.3.已知电压u (t )=3sin2t ,求(1) u (t)在π0,2⎡⎤⎢⎥⎣⎦上的平均值; 解: π2026()3sin2d .ππu t tt ==⎰ (2) 电压的均方根值.解:均方根公式为()f x =故 ()u t ===4. 设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B ,求这截锥体的体积。

2019最新高等数学(上册)期末考试试题(含答案)SD

2019最新高等数学(上册)期末考试试题(含答案)SD

2019最新高等数学期末考试试题(含答案)一、解答题1.已知函数()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()0f a f b ==,试证:在(a ,b )内至少有一点ξ,使得()()0, (,)f f a b ξξξ'+=∈.证明:令()()e ,x F x f x =⋅()F x 在[a ,b ]上连续,在(a ,b )内可导,且()()0F a F b ==,由罗尔定理知,(,)a b ξ∃∈,使得()0F ξ'=,即()e ()e f f ξξξξ'+=,即()()0, (,).f f a b ξξξ'+=∈2.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++;(2)22212131112131nn +++++++++++(3)1πsin 3n n ∞=∑; (4)1n ∞=;(5)()1101n n a a ∞=>+∑; (6) ()1121nn ∞=-∑. 解:(1)∵ ()()21135n U n n n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛.(2)∵221111n n n U n n n n ++=≥=++而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsin sin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n =<=而3121n n ∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散. 综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散. (6)由021lim ln 2x x x →-=知121lim ln 211n x n →∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.3.判定下列级数的敛散性:(1)1n ∞=∑; (2) ()()11111661111165451n n +++++⋅⋅⋅-+; (3) ()23133222213333n n n --+-++-;(4)155n +++++; 解:(1)(11n S n =++++=从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭ 从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019最新高等数学期末考试试题(含答案)
一、解答题
1.求下列极限问题中,能使用洛必达法则的有( ).
⑴ 201
sin
lim sin x x x x →; ⑵ lim (1)x x k x →+∞+; ⑶ sin lim sin x x x x x
→∞-+; ⑷ e e lim .e e x x x x x --→+∞-+ 解:⑴ ∵200111sin
2sin cos lim lim sin cos x x x x x x x x x →→-=不存在,(因1sin x ,1cos x 为有界函数) 又2001
sin
1lim lim sin 0sin x x x x x x x →→==, 故不能使用洛必达法则.
⑶ ∵sin 1cos lim lim sin 1cos x x x x x x x x
→∞→∞--=++不存在, 而sin 1sin lim lim 1.sin sin 1x x x
x x x x x x x →∞→∞-
-==++ 故不能使用洛必达法则.
⑷ ∵e e e e e e lim lim lim e e e e e e
x x x x x x
x x x x x x x x x ------→+∞→+∞→+∞-+-==+-+ 利用洛必达法则无法求得其极限. 而22e e 1e lim lim 1e e 1e x x x
x x x
x x ----→+∞→+∞--==++. 故答案选(2).
2.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:
(1) f (x )=1-x 2 1122x ⎛⎫-
≤< ⎪⎝⎭; (2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩
解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)
()()11
222100211
2d 41d 6a f x x x x -==-=⎰⎰,
()()()()
11
222
10
21222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x x n n -+==--==⎰⎰
所以
()()1
22
11111cos 2π12πn n f x n x n +
∞=-=+∑ (-∞<x <+∞) (2) ()()303
033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰,
()()()()
330330221πcos d 331π1π
21cos d cos d 33336
11,1,2,3,πn n
n x
a f x x
n x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰
()()()()
3
30
33011πsin d 331
π1π21sin d sin d 33336
1,1,2,πn n n x b f x x
n x n x x x x n n --+==++=-=⎰⎰⎰
而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞
+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x
≠3(2k +1)
,k =0,±1,±2,…)
3.将函数f (x ) = x -1(0≤x ≤2)展开成周期为4的余弦级数.
解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…) ()()22
0201d 1d 02a f x x x x -==-=⎰⎰
()()()222022221ππcos d 1cos d 2224[11]π0,2,
4,6,
8
,1,3,5,πn n
n x n x
a f x x x x
n n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰
⎰。

相关文档
最新文档