常用巧算和速算的方法
第1讲 速算与巧算

第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。
1.加法巧算。
(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。
字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。
如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。
字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。
(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。
字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。
字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。
(1)乘法交换律:两个数相乘,交换因数的位置,积不变。
字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。
字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。
如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。
(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。
巧算和速算方法

校本课程数学计算方法目录第一讲生活中几十乘以几十巧算方法. 错误!未定义书签。
第二讲常用巧算速算中的思维与方法(1)........ - 4 - 第三讲常用巧算速算中的思维与方法(2)........ - 6 - 第四讲常用巧算速算中的思维与方法(3)........ - 8 - 第五讲常用巧算速算中的思维与方法(4)........ - 9 - 第六讲常用巧算速算中的思维与方法(5)....... - 10 - 第七讲常用巧算速算中的思维与方法(6)....... - 11 - 第八讲小数的速算与巧算...................... - 12 - 第九讲乘法速算1............................. - 13 - 第十讲乘法速算2............................. - 15 - 第十一讲乘法速算3............................. - 17 - 第十二讲乘法速算4............................. - 17 - 第十三讲乘法速算5............................. - 18 - 第十四讲乘法速算6............................. - 19 - 第十五讲乘法速算7............................. - 22 - 第十六讲乘法速算8............................. - 24 - 注:《速算技巧》.............................. - 27 - 第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1 ×1 = 12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
常用的巧算和速算方法

小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确.一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2。
计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。
(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90—6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+"、“—”号的混合算式中,运算顺序可改变计算:(1)45—18+19(2)45+18-19解:(1)45—18+19=45+19-18=45+(19—18)=45+1=46这样想:把+19带着符号搬家,搬到—18的前面。
三年级速算与巧算

学科培优数学速算与巧算知识定位本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
重点难点:找出题目中可以进行“凑整”的数。
利用运算律或者公式调整运算顺序。
考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。
适当调整运算顺序。
知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。
2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。
其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a +c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
速算巧算公式大全

速算巧算公式大全一、加法速算。
1. 凑整加法。
- 公式:如果两个数相加,其中一个数接近整十、整百、整千等,就把这个数看作整十、整百、整千等与一个较小数的和或差,然后再进行计算。
- 例如:计算28 + 97。
- 把97看作100 - 3。
- 则28+97 = 28+(100 - 3)=28 + 100-3 = 128 - 3 = 125。
2. 互补数加法。
- 定义:两个数相加,若能恰好凑成整十、整百、整千等,就称这两个数互为互补数。
- 公式:如果a和b是互补数(a + b = c,c为整十、整百、整千等),在加法算式中有a + b + d=(a + b)+d = c + d。
- 例如:13+87+56。
- 因为13和87是互补数,13+87 = 100。
- 所以13+87+56 = 100+56 = 156。
二、减法速算。
1. 凑整减法。
- 公式:当减数接近整十、整百、整千等时,把减数看作整十、整百、整千等与一个较小数的和或差,然后进行计算。
- 例如:计算132 - 98。
- 把98看作100 - 2。
- 则132−98 = 132-(100 - 2)=132 - 100+2 = 32 + 2 = 34。
2. 同尾相减。
- 公式:被减数与减数的尾数相同,先把被减数和减数同时减去这个相同的尾数,再进行计算。
- 例如:计算234 - 134。
- 先同时减去134的尾数4,得到230 - 130。
- 230 - 130 = 100。
三、乘法速算。
1. 乘法分配律。
- 公式:a×(b + c)=a× b+a× c,a×(b - c)=a× b - a× c。
- 例如:计算12×(10 + 5)。
- 根据乘法分配律,12×(10 + 5)=12×10+12×5 = 120+60 = 180。
- 再如:计算15×(20 - 3)。
四则运算常用速算与巧算方法

一、“凑整”先算
1.计算:(1)24+44+56
(2)53+36+47
解:(1)24+44+56
= 24+(44+56)
= 24+100
= 124
44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47
= 53+47+36
=(53+47)+36
= 100+36
= 136
53+47=100是个整百的数,先把+47带着符号搬家,然后再把53+47的和算出来。
2.计算:(1)96+15
(2)52+69
解:(1)96+15
= 96+(4+11)
=(96+4)+11
= 100+11
= 111
把15分拆成15=4+11,这是因为96+4=100,可凑整先算。
(2)52+69
=(21+31)+69
= 21+(31+69)
= 21+100
= 121
69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
=(1+10)×5 = 11×5 = 55 共10个数,个数的一半是5,首数是1,末数是10。 (2)计算:3+5+7+9+11+13+15+17 =(3+17)×4 = 20×4 =80 共8个数,个数的一半是4,首数是3,末数是17。
巧算和速算方法

校本课程数学计算方法目录第一讲生活中几十乘以几十巧算方法 .............................. - 2 - 第二讲常用巧算速算中的思维与方法〔1〕 .................... - 4 - 第三讲常用巧算速算中的思维与方法〔2〕 .................... - 6 - 第四讲常用巧算速算中的思维与方法〔3〕 .................... - 9 - 第五讲常用巧算速算中的思维与方法〔4〕 ...................- 10 - 第六讲常用巧算速算中的思维与方法〔5〕 ...................- 14 - 第七讲常用巧算速算中的思维与方法〔6〕 ...................- 16 - 第八讲小数的速算与巧算.................................................- 18 - 第九讲乘法速算1..............................................................- 19 - 第十讲乘法速算2..............................................................- 21 - 第十一讲乘法速算3..............................................................- 23 - 第十二讲乘法速算4..............................................................- 23 - 第十三讲乘法速算5..............................................................- 24 - 第十四讲乘法速算6..............................................................- 25 - 第十五讲乘法速算7..............................................................- 28 - 第十六讲乘法速算8..............................................................- 30 - 注:《速算技巧》 ...............................................................- 33 -第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
小学数学速算巧算

小学数学速算巧算速算是指利用数与数之间的特殊关系进行较快的加减乘除运算。
速算是数学学习中的一项重要技能,能够帮助学生更快速、准确地完成计算,提高数学成绩。
在小学数学学习中,掌握速算技巧对于学生的数学能力提升非常重要。
一、乘法速算乘法速算是指利用乘法口诀和数字规律进行快速计算。
以下是几个常用的乘法速算技巧:1、头同尾合十法:这种方法适用于头数相同,尾数相加等于10的两个数相乘。
例如:27×23=621(7×9=63),38×32=1216(4×8=32)。
2、头差尾补法:这种方法适用于头数相差为1,尾数相乘后再加上一个数能够凑成10的两个数相乘。
例如:46×44=2024(4×6=24),27×23=621(3×7=21)。
3、头同尾补法:这种方法适用于头数相同,尾数相差为1的两个数相乘。
例如:67×63=4221(6×7=42),48×42=2016(5×8=40)。
4、头尾互补法:这种方法适用于头数和尾数互补的两个数相乘。
例如:73×37=2711(7×3=21),88×82=7136(9×8=72)。
二、加法速算加法速算是指利用特殊的加法规律进行快速计算。
以下是几个常用的加法速算技巧:1、补数加法:这种方法适用于两个加数的补数相加。
例如:98+89=187(9+8=17),76+64=140(7+6=13)。
2、分组凑整法:这种方法适用于两个加数的尾数相加为整十或整百的情况。
例如:34+66=100(3+6=9),45+55=100(5+5=10)。
3、基准数法:这种方法适用于一组数相加,其中有几个相同的数或者相邻的数。
例如:50+55+58+59+62+65=(50+65)×6÷2=240。
三、减法速算减法速算是指利用特殊的减法规律进行快速计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用的巧算和速算的方法
1、顺逆相加
1+ 2 + 3+ 4+ 5+……+100
+100+99+ 98+ 97+ 96+……+1
101+ 101+101+101+101+……+101
101×100÷2
=5050
举一反三
3+5+7+……+97+99=
2、分组计算
4.75-9.64+8.25-1.36=_____.
3.17-2.74+
4.7+
5.29-0.26+
6.3=_____
3、乘法分配律与结合律
(5.25+0.125+5.75)⨯8=_____.
34.5⨯8.23-34.5+2.77⨯34.5=
19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.
常用的整十整百整千 :_________________________________________________ 4、由小推大
计算“100×100”的方阵的和
1 2 3 4 5 6 (100)
2 3 4 5 6 7 (101)
3 4 5 6 7 8 (102)
4 5 6 7 8 9 (103)
5 6 7 8 9 10 (104)
6 7 8 9 10 11 (105)
………………………
100 101 102 103 104 105 (199)
先化大为小
计算“5⨯5”的方阵
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8 5 6 7 8 9
对角线上五个5之和为25 ,五个斜行每个斜行数之和都为25,所以“5⨯5”方阵和为25×5=125 即 5⨯5×5=53=125 所以,“100×100”的方阵和为1003=1000 000
5、凑整方法
计算13.5⨯9.9+6.5⨯10.1=_____.
1.5×105= 104×
2.5=
2.5×32×12.5= 举一反三
计算 25×12 = 125×72 =
17×32-17×22= 3200÷4÷25 =
6、整体思想
计算
32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.5378.
原式=32.14+64.28⨯0.5378⨯(0.25+0.75-8⨯0.125) =32.14+64.28⨯0.5378⨯0 =32.14 举一反三
(1) 计算
(2+3.15+5.87)×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87) 的值 7、拆数加减
12
+16
+ 112
+120
+
1
30
+
142
+ 156
+ 172
+ 1
90
=
11×2
+
1
2×3
+
13×4
+
1
4×5
+
1
5×6
+
1
6×7
+
17×8
+
18×9+
19×10
=(1-1
2)+(1
2−1
3)+(13−14)+(1
4−1
5)+(1
5−1
6)+(1
6−1
7)+(1
7−1
8)+
(1
8−1
9)+(1
9−1
10)
=1-110
= 9
10
举一反三 计算 (1) 1
3+
115
+
135
+
163
+ 1
99
(2)3
2
−5
6+
712
−
920
+
1130
−
1342
=
4 3
−
815
+
1235
−
1663
+ 20
99
=
8、个数折半
(1)分母相同的所有真分数相加。
15+25+35+4
5
=4÷2=2 举一反三
110+
2
10
+
310
+
410
+
510
+
610
+
710
+
810
+
910
=
(2)分母为偶数,分子为奇数的所有同分母的真分数相加。
1+3+5+7
=4÷2=2
举一反三
110
+
310
+
510
+
710
+
910
=
(3)分母相同的所有最简真分数相加。
112+512+712+1112
=4÷2=2
举一反三
1 16+3
16
+5
16
+7
16
+9
16
+11
16
+13
16
+15
16
=
1 10+3
10
+7
10
+9
10
=
家庭作业
1、计算题
6.5×8.4 3.2×2.5 2.6×1.08
0.86×7 3.5×16 7×0.86
12.5×42 1.8×23 0.37×0.4 28.6÷11 20.4÷24 7.65÷0.85
15.6÷12 328÷16 12.6÷0.28
5.04÷6 7
6.5÷45 0.84÷28
2、脱式计算
72×0.81+10.4 7.06×2.4-5.7 50.4×1.9-1.8
0.75×18÷0.15 2.07÷0.23÷0.45 21.36÷0.8-12.9
1.08×0.8÷0.27
2.05÷0.82+3
3.6 4
4.28÷0.9÷4.1
5.5×17.3+
6.7×5.5 3.8+4.29+2.1+4.2 9.07-22.78÷3.4
3、简算
0.25×4×4.78 0.65×201 4.8×0.25
1.5×105 1.2×
2.5+0.8×2.5 0.034×0.6
0.5×1.25×2×8×11 3.2×2.5 104×2.5
1.25×(4-0.8)
2.33×0.5×4 102×0.45。