蚁群算法程序,在最短路中的应用,稍加扩展即可应用于机器人路径规划

合集下载

基于蚁群算法的路径规划

基于蚁群算法的路径规划

基于蚁群算法的路径规划路径规划是指在给定起点和终点的情况下,找到一条最优路径使得在特定条件下完成其中一种任务或达到目标。

蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁寻找食物路径的启发式算法,已经广泛应用于路径规划领域。

本文将详细介绍基于蚁群算法的路径规划的原理、方法和应用,旨在帮助读者深入理解该领域。

1.蚁群算法原理蚁群算法的灵感源自蚂蚁在寻找食物过程中携带信息以及通过信息交流来引导其他蚂蚁找到食物的群体行为。

算法的基本原理如下:1)路径选择方式:蚂蚁根据信息素浓度和距离的启发信息进行路径选择,信息素浓度高的路径和距离短的路径更容易被选择。

2)信息素更新方式:蚂蚁在路径上释放信息素,并通过信息素挥发过程和信息素增强机制来更新路径上的信息素浓度。

3)路径优化机制:较短路径上释放的信息素浓度较高,经过多次迭代后,社会积累的信息素会指引蚂蚁群体更快地找到最优路径。

4)局部和全局:蚂蚁在选择路径时,既有局部的能力,也有全局的能力,这使得算法既能收敛到局部最优解,又能跳出局部最优解继续探索新的路径。

2.蚁群算法步骤1)定义问题:明确起点、终点以及路径上的条件、约束等。

2)初始化信息素与距离矩阵:设置初始信息素值和距离矩阵。

3)蚂蚁移动:每只蚂蚁根据信息素浓度和距离的启发选择下一个节点,直到到达终点。

4)信息素更新:蚂蚁根据路径上释放的信息素更新信息素矩阵。

5)迭代:不断重复蚂蚁移动和信息素更新过程,直到满足停止条件为止。

6)输出最优路径:根据迭代结果输出最优路径。

3.蚁群算法应用1)TSP问题:旅行商问题(Traveling Salesman Problem,TSP)是蚁群算法应用的典型问题之一、该问题是在给定一组城市以及它们之间的距离,求解一条经过每个城市一次且最短的路径。

蚁群算法通过模拟蚂蚁在城市之间的移动来求解该问题,并能够较快地找到接近最优解的路径。

2)无人机路径规划:无人机路径规划是指在给定起点和终点的情况下,找到无人机的最优飞行路径。

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用概述:在现实世界中,路径规划是一个非常重要的问题。

无论是导航系统、交通规划还是物流调度,都需要找到最优的路径来解决问题。

蚁群算法作为一种模拟蚂蚁寻找食物的行为的优化算法,被广泛应用于路径规划问题中。

本文将介绍蚁群算法的原理和几种常见的应用。

蚁群算法的原理:蚁群算法源于观察到蚂蚁在寻找食物时留下的信息素行为。

当蚁群中的一只蚂蚁找到食物之后,它会沿着返回的路径释放信息素。

这些信息素将吸引其他蚂蚁沿着该路径行动,随着时间的推移,更多的蚂蚁会选择这条路径,从而形成更强的信息素效应。

蚁群算法通过模拟这种信息素行为来找到最优解。

蚁群算法的应用:1. 路径规划:蚁群算法在路径规划中的应用是最常见的。

蚂蚁在搜索食物时,会选择性地释放信息素来引导其他蚂蚁寻路。

类似地,蚁群算法可以模拟蚂蚁行为来搜索最短路径或最优路径。

例如,在导航系统中,蚁群算法可以通过模拟蚂蚁在地图上搜索路径的行为,帮助用户找到最短路径。

2. 物流调度:物流调度是一个复杂的问题,涉及到多个因素,如货物的运输时间、成本、路径等。

蚁群算法可以应用于物流调度中,通过模拟蚂蚁在搜索食物的行为,帮助选择最优的路径和调度策略。

这可以有效减少成本,并提高物流的效率。

3. 机器人导航:在机器人导航中,蚁群算法可以帮助机器人找到最优的路径和规避障碍物。

类似于蚂蚁寻找食物的行为,机器人可以释放“信息素”来引导其他机器人选择合适的路径。

这种算法可以帮助机器人自主探索未知环境,并找到最短路径。

4. 电子游戏中的敌人行为:在电子游戏中,敌人的行为通常是通过编程来实现的。

蚁群算法可以用于模拟敌人的智能行为,使其更加具有逼真的表现。

通过使用蚁群算法,敌人可以模拟蚂蚁的寻找食物行为,从而更加灵活地寻找玩家并采取相应的行动。

总结:蚁群算法在路径规划中的应用能够有效解决复杂的问题,如寻找最短路径、物流调度、机器人导航和电子游戏的敌人行为。

通过模拟蚂蚁寻找食物的行为,蚁群算法可以帮助我们找到最优的解决方案。

(word完整版)蚁群算法内容简介

(word完整版)蚁群算法内容简介

蚁群算法内容简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻经的行为而提出的一种基于种群的启发式随机搜索算法,蚁群算法具有并行性、鲁棒性、正反馈性等特点.蚁群算法最早成功应用于解决著名的旅行商问题以及二次分配问题、车间任务调度问题、图的着色问题、网络路由等许多复杂的组合问题。

蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

随着人们对效益的要求越来越高,人们发现组合优化的各种方法,但在一些复杂度比较高的问题上,一些传统的方法显示了他的限制,列如计算量上升太快,时间复杂度很高,这就需要一些新的方法来解决这些问题,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。

蚁群系统(Ant Colony System),这种算法是目前国内外启发式算法中的研究热点和前沿课题,被成功地运用于旅行商问题的求解,蚁群算法在求解复杂优化问题方面具有很大的优越性和广阔的前景。

但是,根据观察实验发现,蚁群中的多个蚂蚁的运动是随机的,在扩散范围较大时,在较短时间内很难找出一条较好的路径,在算法实现的过程中容易出现停滞现象和收敛速度慢现象。

在这种弊端的情况下,学者们提出了一种自适应蚁群算法,通过自适应地调整运行过程中的挥发因子来改变路径中信息素浓度,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。

下面是一些最常用的变异蚁群算法精英蚂蚁系统全局最优解决方案在每个迭代以及其他所有的蚂蚁的沉积信息素.最大最小蚂蚁系统( MMAS)添加的最大和最小的信息素量[ τmax ,τmin ],只有全局最佳或迭代最好的巡逻沉积的信息素。

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用摘要蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。

通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。

蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。

针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。

关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法1.车辆路径问题车辆路径问题(VRP)来源于交通运输,1959年由Dantzig 提出,它是组合优化问题中一个典型的NP-hard问题。

最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。

车路优化问题如下:已知有一批客户,各客户点的位置坐标和货物需求已知,供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。

现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。

2、蚁群系统基本原理在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。

因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。

当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。

与此同时释放出与路径长度有关的信息素。

路径越长,释放的激素浓度越低。

当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。

这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。

最终整个蚁群会找出最优路径。

蚁群算法在路径规划策略中的应用

蚁群算法在路径规划策略中的应用

本论文通过推导阐明了地图上的路径搜索问题是个寻找最短路径的 最优化问题,并且提出了一种基于蚁群算法(ACO)的解决方法。蚁群 算法是最近提出的一种基于种群的启发式仿生进化算法,被用来解决许 多组合优化问题,例如旅行商问题,二次分配问题,图片着色问题, 抽水蓄 能电站排序优选问题。该算法与其他算法不同之处在于其实现比较简单、 灵活,更重要的是该算法不易陷入局部解。为了适应一些像交通运输管 理方面的应用,本论文采取路径最大负荷量来控制网络的流量。 论文的结构: 论文是包括以下章节:第二部分阐明了路径规划问题,第三部分介绍 了蚁群算法。第四部分介绍了如何应用蚁群算法解决路径规划问题。第 五部分介绍实验结果。
转移概率公式:
4.AOC算法的应用
5.仿真结果
图,节点数超过200后,蚁群算法明源自更加高效。表1为蚁群算法与其他算法的比较。从表中可以看出,给定一幅地
6.结论
本文讨论在给定地图或者网络中搜索最优路径的方法。路径规 划问题可以看成是在考虑负载约束下查找最短路径的问题,本文在蚁 群算法基础上提出了一种路径规划的新方法。该方法有以下优点:1) 这种算法实现简单,可以用来解决许多最优化问题;2)算法灵活, 鲁班性强;3)算法不易陷于局部最优解,能达到全局最优解。 最后, 算法在几个网络上做了测试并取得了不错的效果。
2.问题数学化
3.蚁群算法的基本原理
蚁群算法(ACO)是一种基于种群的启发式仿生进化算法。蚁群算法 中人工蚂蚁的行为是模拟生物界中的蚂蚁的觅食行为。在生物界中,单 只蚂蚁的行为也是非常简单的。当它们走过一个地方时,在路径上留下 一种叫信息素的化学物质。而其他蚂蚁的则根据路径上的信息素来选择 觅食线路。蚂蚁会选择其中一条信息素浓度最大的线路。当然,人工蚂 蚁有着生物界蚂蚁不具备的特性。其中很重要的一点就是人工蚂蚁工作 在离散环境中,它们需要实现从节点到节点的转移。他们的行为往往和 存储在内存特定数据结构有关。 信息素的更新值是发生在人工蚂蚁完成起点到终点的线路后,而不 是在这个过程当中。每只人工蚂蚁都存有常量的信息素,当从起点到达 终点后,信息素会被均匀地分配到线路上。如果该蚂蚁选择的是一条好 的线路,分配的信息素就会多些。相反,如果该线路不好,则分配的信 息素就会很少。线路质量的好坏就与信息素的多少联系起来。路线上的 信息素随着时间逐渐减少,避免陷入局部最优解。

蚁群算法应用场景

蚁群算法应用场景

蚁群算法应用场景
蚁群算法是一种模拟蚂蚁寻找食物的算法,它可以应用于许多实际问题中,例如:
1. 路径规划:蚁群算法可以用于寻找最短路径,例如在交通网络中找到最短路径。

2. 旅行商问题:蚁群算法可以用于解决旅行商问题,即找到一条最短路径,使得旅行商能够访问所有城市。

3. 任务分配:蚁群算法可以用于任务分配,例如在生产线上分配任务给不同的机器人或工人。

4. 网络优化:蚁群算法可以用于优化网络拓扑结构,例如在无线传感器网络中优化传感器节点的位置。

5. 组合优化:蚁群算法可以用于求解组合优化问题,例如在装载物品时找到最优的组合方式。

综上所述,蚁群算法具有广泛的应用场景,能够解决许多实际问题,特别是在路径规划、旅行商问题、任务分配、网络优化和组合优化方面表现出色。

- 1 -。

蚁群算法的基本原理和应用

蚁群算法的基本原理和应用

蚁群算法的基本原理和应用简介蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的启发式算法,它源于对蚂蚁在寻找食物时的行为规律的研究。

蚁群算法模拟了蚂蚁在寻找最佳路径时释放信息素、选择路径的策略,通过蚁群成员之间的相互合作和信息共享来求解各类优化问题。

蚁群算法具有较高的适应性和鲁棒性,被广泛应用于优化问题求解中。

基本原理蚁群算法基于一种基本的反馈机制:蚂蚁在行动过程中释放信息素,并根据所释放的信息素密度来选择路径。

信息素在路径上的积累程度会影响蚂蚁选择路径的概率,从而引导整个蚁群向目标位置集中。

具体的基本原理如下:1.蚂蚁的行动规则:蚂蚁按照一定的规则进行移动,每个蚂蚁根据当前位置的信息素密度以及启发式信息(例如距离、路径质量等)选择下一步的移动方向。

2.信息素的更新:蚂蚁在路径上释放信息素,并且信息素的蒸发和更新过程会导致信息素的动态变化。

经过多次迭代后,信息素会逐渐积累在最优路径上,从而引导后续的蚂蚁选择该路径。

3.路径选择概率:蚂蚁在选择下一步移动方向时,会根据当前位置的信息素和启发式信息计算路径选择概率。

较高的信息素密度和启发式信息将增加路径的选择概率。

应用领域蚁群算法在众多领域中取得了广泛的应用,以下列举几个示例:1.路径规划问题:蚁群算法可以用于解决路径规划问题,例如在城市中找到最短路径。

蚁群算法通过模拟蚂蚁的觅食行为,可以在复杂的网络中找到最优路径,无论是在城市道路网络还是在电信网络中。

–寻找最短路径:蚁群算法可以应用于解决最短路径问题,例如在城市导航、物流路径规划等领域。

–车辆路径优化:蚁群算法可以优化车辆的路线,减少行驶距离和时间,提高运输效率。

2.优化问题:蚁群算法在求解各种优化问题中具有较好的性能,例如旅行商问题、装箱问题等。

–旅行商问题:蚁群算法可以应用于解决旅行商问题,找到最短的旅行路线,减少旅行的距离和时间。

–装箱问题:蚁群算法可以优化装箱问题,将不同大小的物品装入不同大小的容器中,减少空间浪费。

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用蚁群算法是一种模拟蚂蚁在寻找食物时的行为方式的优化算法,通过模拟蚂蚁的行为和信息传递,可以有效解决路径规划问题。

蚁群算法在路径规划中的应用广泛,并且在实际应用中取得了良好的效果。

本文将介绍蚁群算法的基本原理、路径规划问题以及蚁群算法在路径规划中的具体应用。

首先,我们来了解一下蚁群算法的基本原理。

蚁群算法主要受到蚂蚁在寻找食物时的行为启发。

当蚂蚁在寻找食物时,会通过释放一种称为信息素的物质,来标记通往食物的路径。

其他蚂蚁通过检测到这些信息素的浓度,会选择跟随信息素浓度较高的路径,从而找到食物。

基于这个思想,蚁群算法就是通过模拟蚂蚁的行为和信息传递来寻找优化解的一种算法。

路径规划问题是指在给定起点和终点的情况下,确定一条满足特定约束条件的最佳路径。

在现实生活中,路径规划问题广泛存在于物流运输、智能交通等领域。

传统的路径规划算法,如Dijkstra算法、A*算法等,往往需要对整个搜索空间进行全局搜索,计算量较大且效率不高。

而蚁群算法通过模拟蚂蚁的行为,可以在搜索过程中逐步调整路径选择,从而有效地解决路径规划问题。

蚁群算法在路径规划中的具体应用有以下几个方面。

首先,蚁群算法可以用于解决最短路径问题。

最短路径问题是指在给定图中寻找一条从起点到终点的最短路径。

蚁群算法通过模拟蚂蚁的行为和信息素的释放,可以逐步调整路径选择,从而找到最短路径。

在该问题中,蚂蚁模拟了图中的节点,路径上的信息素模拟了节点之间的距离。

蚂蚁根据信息素的浓度选择下一步的移动方向,信息素更新的规则也与路径上的距离有关。

通过多次迭代优化,蚁群算法可以找到最短路径,并且能够适应路径中的变化条件。

其次,蚁群算法可以用于解决车辆路径规划问题。

车辆路径规划问题是指在给定一组出发点和一组目的地点的情况下,确定每辆车的路径,使得总的路径成本最小。

在该问题中,蚂蚁模拟了车辆,信息素模拟了路径上的成本(如距离、时间等)。

蚂蚁根据信息素浓度选择下一步的移动方向,信息素更新的规则与路径上的成本有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)%% ---------------------------------------------------------------% ACASP.m% 蚁群算法动态寻路算法% ChengAihua,PLA Information Engineering University,ZhengZhou,China% Email:aihuacheng@% All rights reserved%% ---------------------------------------------------------------% 输入参数列表% G 地形图为01矩阵,如果为1表示障碍物% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)% K 迭代次数(指蚂蚁出动多少波)% M 蚂蚁个数(每一波蚂蚁有多少个)% S 起始点(最短路径的起始点)% E 终止点(最短路径的目的点)% Alpha 表征信息素重要程度的参数% Beta 表征启发式因子重要程度的参数% Rho 信息素蒸发系数% Q 信息素增加强度系数%% 输出参数列表% ROUTES 每一代的每一只蚂蚁的爬行路线% PL 每一代的每一只蚂蚁的爬行路线长度% Tau 输出动态修正过的信息素%% --------------------变量初始化----------------------------------%loadD=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)MM=size(G,1);a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));%终止点纵坐标Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数%下面构造启发式信息矩阵for i=1:Nif ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));if i~=EEta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(1,i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:Kdisp(k);for m=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm=ones(1,N);%禁忌表初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%% 第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DWfor j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%% 第三步:转轮赌法选择下一步怎么走PP=zeros(1,Len_LJD);for i=1:Len_LJDPP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);endPP=PP/(sum(PP));%建立概率分布Pcum=cumsum(PP);Select=find(Pcum>=rand);%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点if TABUkm(kk)==0DD(W,kk)=inf;DD(kk,W)=inf;endendTABUkm(W)=0;%已访问过的节点从禁忌表中删除for j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);%可选节点的个数end%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度ROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;elsePL(k,m)=inf;endend%% 第六步:更新信息素Delta_Tau=zeros(N,N);%更新量初始化for m=1:Mif PL(k,m) ROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);for s=1:TSx=ROUT(s);Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图--------------------------------plotif=1;%是否绘图的控制参数if plotif==1%绘收敛曲线meanPL=zeros(1,K);minPL=zeros(1,K);for i=1:KNonzero=find(PLKPLKPLK=PLK(Nonzero);meanPL(i)=mean(PLKPLK);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold onplot(meanPL);grid ontitle('收敛曲线(平均路径长度和最小路径长度)'); xlabel('迭代次数');ylabel('路径长度');%绘爬行图figure(2)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendhold onLENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)endplotif2=1;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); hold onendendendfor k=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)hold onendend将上述算法应用于机器人路径规划,优化效果如下图所示。

相关文档
最新文档