《解三角形的综合应用》
相关定理在解三角形中的综合应用(高阶拓展、竞赛适用)(学生版) 备战2025年高考数学一轮复习学案

第11讲相关定理在解三角形中的综合应用(高阶拓展、竞赛适用)(8类核心考点精讲精练)命题规律及备考策略【命题规律】本节内容是新高考卷的常考内容,设题稳定,难度中等,分值为13-15分【备考策略】1.掌握正余弦定理在三角形中的应用、熟练掌握面积公式的应用2能熟练掌握解三角形中的相关定理公式进行综合应用【命题预测】本节内容是在新高考卷的命题考查为解答题,常考查相关定理公式综合,需备考综合复习1.海伦-秦九韶公式三角形的三边分别是a 、b 、c ,则三角形的面积为S =其中2a b cp ++=,这个公式就是海伦公式,为古希腊的几何学家海伦所发现并证明。
:S =2.三倍角公式3sin 33sin 4sin ααα=-, 2cos34cos 3cos ααα=-3.射影定理B cC b a cos cos +=,A c C a b cos cos +=,Ab B ac cos cos +=4.角平分线定理(1)在ABC ∆中,AD 为BAC ∠的角平分线,则有CDACBD AB =(2)2cos2BACb c AD b c∠⨯⨯=+(3)2AD AB AC BD CD =⨯-⨯(库斯顿定理)(4)ABDACDS AB AC S = 5.张角定理ADAC AB )sin(sin sin βααβ+=+6.倍角定理在ABC 中,三个内角A B C 、、的对边分别为、、a b c ,(1)如果2A B =,则有:22a b bc =+(2)如果2C A =,则有:22c a ab =+(3)如果2B C =,则有:22b c ac =+倍角定理的逆运用在ABC 中,三个内角A 、B 、C 的对边分别为、、a b c ,(1)如果22a b bc =+,则有:2A B =。
(2)如果22c a ab =+,则有:2C A =。
(3)如果22b c ac =+,则有:2B C =。
7.中线长定理AD 为BC 的中线,则中线定理:()22222AB AC AD DC +=+证明:在ABD 和ADC 中,用余弦定理有:()22222222220222AD BD AB AD DC AC AB AC AD DC AD BD AD DC BD DC +-+-+=⇒+=+⋅⋅⎧⎪⎨⎪⎩=8.三角恒等式在ABC ∆中,①sin sin sin 4coscos cos 222A B CA B C ++=;②cos cos cos 14sinsin sin 222A B CA B C ++=+;③222sin sin sin 22cos cos cos A B C A B C ++=+;④222cos cos cos 12cos cos cos A B C A B C ++=-;⑤222sin sin sin 12sin sin sin 222222A B C A B C++=-;⑥222cos cos cos 22sin sin sin 222222A B C A B C ++=+;⑦tan tan tan tan tan tan A B C A B C ++=⋅⋅;⑧cot cot cot cot cot cot 1A B A C B C ⋅+⋅+⋅=;⑨cot cot cot cot cot cot 222222A B C A B C ++=;⑩tantan tan tan tan tan 1222222A B B C C A++=。
三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
解三角形的综合运用

解三角形的综合运用三角形是高中数学中重要的一个概念,其在几何学和三角函数中都有广泛的应用。
解三角形的问题可以使我们更好地理解三角形的性质和运用相关知识解决实际问题。
本文将探讨解三角形的综合运用,通过几个实例来说明如何运用解三角形的方法解决实际问题。
1. 高度测量与三角形的解法假设在实际测量中,我们需要确定一个不可达到的地点的高度。
这个时候,我们可以利用三角形的性质来解决这个问题。
首先我们选择一个可以测量到的位置,并测量与地平线的夹角,然后移动到目标位置,再次测量与地平线的夹角。
根据三角形的性质,我们可以利用正切函数来计算出目标位置的高度。
具体的计算方法为:通过测量的两个夹角,求出两个夹角的正切值的差,再乘以已知位置到目标位置的水平距离,即可得到目标位置的高度。
2. 航行与三角形的应用在航行中,我们常常需要确定船只的位置以及前进方向。
这时候我们可以运用三角形的解法。
假设我们已知船只出发点和终点之间的直线距离,以及船只出发点与终点的夹角,我们可以利用正弦函数和余弦函数来求出船只的位置以及船只前进方向的相关信息。
具体的计算方法为:利用已知的信息,利用正弦函数和余弦函数求出船只的位置坐标,再结合出发点与终点的夹角,可以求出船只的前进方向。
3. 三角函数与角度测量在实际测量中,经常需要求解角度。
利用三角函数的定义和性质,我们可以通过已知的边长比例来求解角度。
例如,我们可以利用正弦函数、余弦函数和正切函数来求解角度。
具体的计算方法为:根据已知边长比例,利用反三角函数求解出角度。
通过这种方法,我们可以准确地求解出角度,为实际测量提供了有效的工具。
4. 三角形的面积计算解三角形的过程中,我们经常需要计算三角形的面积。
根据三角形的性质,我们可以通过已知的边长和角度来计算三角形的面积。
具体的计算方法为:利用正弦函数和余弦函数求解出三角形的高,然后利用边长和高的关系来计算三角形的面积。
通过这种方法,我们可以准确地计算出三角形的面积,为实际问题的解决提供了便利。
最新人教版高中数学必修5第一章《解三角形》

数学人教B 必修5第一章解三角形知识建构综合应用专题一判断三角形的形状正弦定理、余弦定理是反映三角形中边角关系的重要定理,是处理有关三角形问题的有力工具,要注意两定理的变形运用及实际应用.判断三角形的形状,其常用方法是:将已知式子都化为角的式子或边的式子再判断.通常利用正弦定理的变形如a =2R ·sin A 将边化角,b 2+c 2-a 2a 利用余弦定理的推论如cos A =把角的余弦化边,或利用sin A =把角的正弦化2bc 2R边,然后利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法进行转化、化简,从而得出结论.常见结论有:设a ,b ,c 是△ABC 的角∠A ,∠B ,∠C 的对边,①若a 2+b 2=c 2,则∠C =90°;②若a 2+b 2>c 2,则∠C <90°;③若a 2+b 2<c 2,则∠C >90°;π④若sin 2A =sin 2B ,则∠A =∠B 或∠A +∠B =.2应用1在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则该三角形是__________三角形.提示:考虑到已知条件是三个角正弦的比值,可用正弦定理得出三边的关系,再利用余弦定理判断最大角的大小即可.应用2在△ABC 中,若∠B =60°,2b =a +c ,试判断△ABC 的形状.提示:已知条件中等式只有边,故结合其特点,可选择利用正弦定理化边为角,再结合三角函数关系化简求解;本题也可利用∠B =60°这一条件,用余弦定理,找出边之间的关系来判断.专题二恒等式的证明证明有关三角形中边角关系的恒等式,若出现边角混合关系式,通常情况下,有两种方法:化边为角,将已知条件统一用角表示;化角为边,将已知条件用边表示,然后利用角的关系或边的关系进行求解,从而使问题得到解决.应用1在△ABC 中,求证:a 2+b 2sin 2A +sin 2B (1)2=;c sin 2C(2)a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).提示:本题(1)可从左边证到右边,利用正弦定理将边的关系转化为角的关系;本题(2)可从右边证到左边,利用余弦定理将角的关系转化为边的关系.应用2已知在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,△ABC 的面积为S .a 2+b 2+c 2求证:cot A +cot B +cot C =.4S提示:解本题的关键是化切为弦,再结合余弦定理变形.专题三三角形的面积问题求三角形面积与正弦定理、余弦定理、三角函数、函数的有关知识紧密地联系在一起,是高考中的常见题型.常用三角形面积公式:111(1)S △ABC =ah a =bh b =ch c .222111(2)S △ABC =ab sin C =bc sin A =ac sin B .222a +b +c (3)S =p (p -a )(p -b )(p -c )(其中p =).2应用在△ABC 中,sin A +cos A =2,AC =2,AB =3,求tan A 的值和△ABC 的面积.2提示:由已知可把角A 算出来,再求tan A ,并求出sin A ,直接代入面积公式即可求面积.专题四正、余弦定理的综合应用以三角形为载体,以正、余弦定理为工具,以三角恒等变换为手段来考查解三角形问题是近几年高考中一类热点题型.在具体解题中,除了熟练使用正弦、余弦定理这个工具外,也要根据条件,合理选用三角函数公式,达到简化解题的目的.cos C 2a -c 应用1在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且=.cos B b(1)求cos B 的值;(2)若b =7,a +c =4,求△ABC 的面积.提示:(1)先利用正弦定理化简,再用三角变换整理即得.(2)利用余弦定理及面积公式,再注意整体求ac 的技巧.应用2在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A .(1)确定角C 的大小;33(2)若c =7,且△ABC 的面积为,求a +b 的值.2提示:(1)利用正弦定理将边转化为角即可;(2)利用余弦定理和面积公式列出关于a ,b 的方程求解,注意整体技巧.专题五正、余弦定理在实际问题中的应用解决有关三角形的应用问题时,首先要认真分析题意,找出各量之间的关系,根据题意画出示意图,将要求的问题抽象为三角形模型,然后利用正弦定理、余弦定理求解,最后将结果还原为实际问题,这一程序可用框图表示为:实际问题――→解三角形问题――→三角形问题的解――→实际问题的解概括演算应用1如图所示,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧抽象推理还原远处一山顶D 在西偏北15°的方向上,行驶5 km 后到达B 处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD .提示:要测出高CD ,只要测出高所在的直角三角形的另一条直角边或斜边的长即可.根据已知条件,可以计算出BC 的长.应用2如图,某巡逻艇在A 处发现北偏东45°相距9海里的C 处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才能追赶上该走私船?提示:在求解三角形中,可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解.真题放送1.(2011·天津高考)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为().A .3366B .C .D .36362.(2011·福建高考)若△ABC 的面积为3,BC =2,∠C =60°,则边AB 的长度等于__________.→→3.(2011·上海高考)在正三角形ABC 中,D 是BC 上的点.若AB =3,BD =1,则AB ·AD=______.4.(2011·湖南高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;π(2)求3sin A -cos(B +)的最大值,并求取得最大值时角A ,B 的大小.45.(2011·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b1=2,cos C =.4(1)求△ABC 的周长;(2)求cos(A -C )的值.6.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .b (1)求;a(2)若c 2=b 2+3a 2,求∠B .7.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C1=p sin B (p ∈R ),且ac =b 2.45(1)当p =,b =1时,求a ,c 的值;4(2)若角B 为锐角,求p 的取值范围.答案:综合应用专题一应用1:钝角∵sin A ∶sin B ∶sin C =2∶3∶4,根据正弦定理,得a ∶b ∶c =2∶3∶4.设a =2m ,b =3m ,c =4m (m >0),∵c >b >a ,∴∠C >∠B >∠A .a 2+b 2-c 24m 2+9m 2-16m 21∴cos C ===-<0.2ab 42×2m ×3m∴∠C 是钝角.∴△ABC 是钝角三角形.应用2:解:解法一:由正弦定理,得2sin B =sin A +sin C .∵∠B =60°,∴∠A +∠C =120°.∴∠A =120°-∠C ,代入上式,得2sin 60°=sin (120°-C )+sin C ,31展开,整理得sin C +cos C =1.22∴sin(C +30°)=1.∴∠C +30°=90°.∴∠C =60°.故∠A =60°.∴△ABC 为等边三角形.解法二:由余弦定理,得b 2=a 2+c 2-2ac cos B .a +c ∵∠B =60°,b =,2a +c 2∴()=a 2+c 2-2ac cos 60°.2整理,得(a -c )2=0,∴a =c .从而a =b =c .∴△ABC 为等边三角形.专题二a b c 应用1:证明:(1)由正弦定理,设===k ,sin A sin B sin Ck 2sin 2A +k 2sin 2B sin 2A +sin 2B 显然k ≠0,所以,左边===右边,即原等式成立.k 2sin 2C sin 2Cb 2+c 2-a 2c 2+a 2-b 2a 2+b 2-c 2(2)根据余弦定理,右边=2(bc ·+ca ·+ab ·)=(b 2+c 2-a 2)2bc 2ca 2ab222222222+(c +a -b )+(a +b -c )=a +b +c =左边,即原等式成立.222b 2+c 2-a 2cos A b +c -a 应用2:证明:由余弦定理,得cos A =,所以cot A ===2bc sin A 2bc sin Ab 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2,同理可得cot B =,cot C =,所以cot A +cot B +cot C =4S 4S 4Sb 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2a 2+b 2+c 2++=.4S 4S 4S 4S专题三2应用:解:∵sin A +cos A =2cos (A -45°)=,21∴cos (A -45°)=.2又∵0°<∠A <180°,∴∠A =105°.tan 45°+tan 60°∴tan A =tan (45°+60°)==-2-3,1-tan 45°tan 60°2+6sin A =sin (45°+60°)=sin 45°cos 60°+cos 45°sin 60°=.4又∵AC =2,AB =3,2+6311∴S △ABC =AC ·AB ·sin A =×2×3×=(2+6).2244专题四cos C 2a -c 2sin A -sin C 应用1:解:(1)由==,得cos B b sin Bcos C ·sin B =2sin A ·cos B -cos B ·sin C .∴2sin A ·cos B =sin B ·cos C +cos B ·sin C=sin (B +C )=sin (π-A )=sin A .1∵sin A ≠0,∴cos B =.2(2)∵b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =7,又a +c =4,∴(a +c )2-3ac =7.∴ac =3.11333∴S △ABC =ac sin B =×3×=.2224应用2:解:(1)由3a =2c sin A 及正弦定理,得a 2sin A sin A ==.c sin C 33∵sin A ≠0,∴sin C =.2∵△ABC 是锐角三角形,π∴∠C =.3π(2)∵c =7,∠C =.由面积公式,得31π33ab sin =,∴ab =6.①232π由余弦定理,得c 2=a 2+b 2-2ab cos =7,即a 2+b 2-ab =7.②3由①②,得(a +b )2=25,故a +b =5.专题五应用1:解:在△ABC 中,∠BAC =15°,∠ACB =25°-15°=10°.根据正弦定理,AB sin ∠BAC 5sin 15°得BC ==≈7.452 4(km),sin 10°sin ∠ACBCD =BC tan ∠DBC =BC ×tan 8°≈1.047 (km).答:山的高度约为1.047 km.应用2:解:设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB =10x ,AB =14x ,AC =9,∠ACB =75°+45°=120°,222∴(14x )=9+(10x )-2×9×10x cos 120°,2化简,得32x -30x -27=0.39解得x =或x =-(舍去).216∴BC =10x =15,AB =14x =21.BC sin 120°15353又∵sin ∠BAC ==×=,AB 21214∴∠BAC =38°13′或∠BAC =141°47′(钝角不合题意,舍去).∴38°13′+45°=83°13′.答:巡逻艇应该沿北偏东83°13′方向去追,经过1.5小时才能追赶上该走私船.真题放送31.D 设BD =a ,则BC =2a ,AB =AD =a .2在△ABD 中,由余弦定理,得33(a )2+(a )2-a 222222AB +AD -BD 1cos A ===.2AB ·AD 3332×a ·a 2222又∵∠A 为△ABC 的内角,∴sin A =.3BC AB 在△ABC 中,由正弦定理,得=.sin A sin C3a 222AB 6∴sin C =·sin A =·=.BC 2a 361132.2在△ABC 中,由面积公式得S =BC ·CA ·sin C =×2·AC ·sin60°=AC =3,∴AC 2221=2.再由余弦定理,得AB 2=BC 2+AC 2-2·AC ·BC ·cos C =22+22-2×2×2×=4.∴AB =2.23.15如图,在△ABD 中,由余弦定理得2AD 2=AB 2+BD 2-2AB ·BD ·cos 60°=9+1-2×3×cos 60°=7,∴AD =7,AB 2+AD 2-BD 29+7-15∴cos ∠BAD ===.2AB ·AD 2×3×727515于是,AB ·AD =|AB ||AD |cos ∠BAD =3×7×=.2724.解:(1)因为c sin A =a cos C ,由正弦定理,得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0.从而sin C =cos C .π又cos C ≠0,所以tan C =1,则∠C =.43π(2)由(1)知,B =-A .于是4π3sin A -cos(B +)4=3sin A -cos(π-A )=3sin A +cos Aπ=2sin(A +).63πππ11π因为0<A <,所以<A +<.46612ππππ从而当A +=,即A =时,2sin(A +)取最大值2.6236ππ5π综上所述,3sin A -cos(B +)的最大值为2,此时∠A =,∠B =.431215.解:(1)∵c 2=a 2+b 2-2ab cos C =1+4-4×=4,4∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5.1(2)∵cos C =,4115∴sin C =1-cos 2C =1-()2=.44154a sin C 15∴sin A ===.c 28∵a <c ,∴∠A <∠C .故∠A 为锐角.1527)=.88∴cos(A -C )=cos A cos C +sin A sin C71151511=×+×=.8484166.解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .b 故sin B =2sin A ,所以= 2.a(2)由余弦定理和c 2=b 2+3a 2,(1+3)a 得cos B =.2c由(1)知b 2=2a 2,故c 2=(2+3)a 2.12可得cos 2B =,又cos B >0,故cos B =,22所以∠B =45°.5a +c =,47.解:(1)由题设和正弦定理,得1ac =,4∴cos A =1-sin 2A =1-(⎧⎨⎩1a =1,⎧⎧⎪⎪a =4,解得⎨1或⎨c =,⎪⎪⎩4⎩c =1.11(2)由余弦定理,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =p 2b 2-b 2-b 2cos B ,2231即p2=+cos B,223因为0<cos B<1,得p2∈(,2).2由题设知p>0,所以6<p< 2. 2。
高三数学复习《解三角形的综合应用》教案

例3如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的__________方向.
议
小组合作讨论自己疑惑地方,提炼出此种题型的解题思路与技巧
展
前三组各小组一题展示,能者为师。第四组质疑
评
实际生活中,很多很难到达的地方要测距离,高度,和角度,需要建立数学三角形模型,利用科测得的量来计算出所求量
A.50 m B.50 m C.25 m D. m
(第1题图)
测量高度
2、(2015·湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.
通过运用这两个定理解决实际问题,可以培养学生的应用意识和创新精神,使学生养成实事求是、扎实严谨的科学态度,学会用数学的思维方式去去解决问题,认识世界。
学情分析
学生基础薄弱,对于应用题的阅读与理解有一定的难度,对于知识的运用不够灵活。
教学目标
能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题
课题名称:解三角形的综合应用
考纲、大纲描述
解三角形的教学要重视正弦定理和余弦定理在探索三角形边角关系中的作用,引导学生认识它们是解决测量问题的一种方法,不必在恒等变形上进行过于繁琐的训练。
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
教材内容分析
正弦定理、余弦定理是解决有关斜三角形问题以及应用问题(如测量等)的两个重要定理,它将三角形的边和角有机地联系起来,实现了“边”与“角”的互化,从而使“三角”“几何”产生联系,为求与三角形有关的量,如面积、外接圆、内切圆半径等提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
八年级数学上册《三角形全等的判定和性质综合应用》教案、教学设计

(三)情感态度与价值观
1.积极主动:使学生树立积极主动的学习态度,养成良好的学习习惯,不断提高学习效率;
2.勇于探索:培养学生勇于探索、敢于创新的精神,使学生在面对困难和挑战时,能够保持积极向上的心态;
3.知识尊重:教育学生尊重知识、尊重科学,遵循客观规律,树立正确的价值观;
4.作业要求:
-学生在完成作业时,要注意书写规范,保持解答过程的简洁和清晰;
-对于提高作业和拓展作业,学生可以充分利用课余时间,进行小组合作、讨论交流,共同完成任务;
-教师将对学生的作业进行认真批改,并及时给予反馈,帮助学生发现和纠正错误。
5.作业评价:
-评价作业时,注重学生的思考过程和参与程度,鼓励创新思维和团队合作;
-提供丰富的习题和案例分析,帮助学生巩固知识,提高解题能力;
-建议学生使用几何画板等软件,进行自主探索和实验,加深对几何知识的理解。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-通过展示生活中全等三角形的实例,如建筑物的三角结构、拼图游戏等,引发学生对三角形全等的思考;
-提问:“同学们,你们在生活中遇到过全等三角形吗?它们有什么特点?”让学生分享自己的观察和发现。
4.部分学生对团队合作、交流分享的学习方式还不够熟悉,教师需在教学过程中加强引导和培养。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握三角形全等的判定方法(SSS、SAS、ASA、AAS、HL);
-能够运用三角形全等的判定方法解决实际问题;
-培养学生的空间想象能力和逻辑推理能力。
在教学过程中,教师应注重引导学生通过自主探究、合作交流、实践操作等学习方法,培养以下过程与方法:
《解三角形应用》教学反思

《解三角形应用》教学反思《解三角形应用》教学反思1随着“五严规定”的实施,给九年级数学教学带来了许多挑战。
例如教学时间缩短了,有限的教学时间里教师往往首先保证进度,往往学生的习惯的培养、能力的提升有所忽视;再如考试次数减少了,教师、学生双方对教与学的效果反馈难以得到及时准确的信息,学习内容的针对性、有效性难以保证;还有学生不全部在校晚自习了,学习方式的改变会带来一系列的问题。
针对以上情况,20xx年3月25日,在高港区教研室和初中数学名师工作室的安排下,举行了“初中数学一轮复习研讨会”活动,我有幸在高港中学上了一节“解直角三角形的应用”的复习研讨课,下面我就本节课谈谈自己的想法。
本节课的复习目标是:掌握直角三角形的边角关系并能灵活运用;会运用解直角三角形的知识,利用已知的边和角,求未知的边和角;能结合仰角、俯角、坡度等知识,综合运用勾股定理与直角三角形的.边角关系解决生活中的实际问题。
因为是中考一轮复习,所以我先将课前自主复习部分让学生课前独立完成教师批阅,这样在上课前授课老师能做到心中有数,再针对课前自主复习部分的题目有侧重性的讲,真正做到有惑必解,有疑必答。
本节课我共设计了3条例题,一是台风中心的运动问题,涉及到了仰角和俯角问题;第2题是一条20xx年的中考题,我将题目变式为3小题,将坡角、坡度、以及基本图形的渗透都融合在一题中,让学生学会分析、类比,并能独立归纳出此类题的解法,抓住题中的基本图形进行解题;第3题是一条设计方案题,目的让学生选择测量工具运用解直角三角形的知识测量出塔的高度,并适当变式,如果当塔的底部不能直接到达测量时,如何设计方案求出塔高。
课上完后,我认真总结了本节课的得与失,本节课的主要失误的地方有两点,一是例1的处理上,应将点与圆的位置关系和直线与圆的位置关系结合例1一起来处理,这样学生对于为什么作出AD这条辅助线就很明晰了,效果将会更好,;二是小结时较仓促,应该让学生总结归纳出此类题的一般解法,找出基本图形,这样才有助于让学生知识形成体系,进一步得以提高。
高中数学必修5《解三角形应用举例》教案(4)

《解三角形应用举例》教案(4)教学目标1.能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用;2.通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三.3.进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力4.让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验.教学重点难点1.重点:推导三角形的面积公式并解决简单的相关题目.2.难点:利用正弦定理、余弦定理来求证简单的证明题.教法与学法1.教法选择:教学形式采用自主探究与尝试指导相结合,引导学生通过分析实践、自主探究、合作交流得出转化问题方法.2.学法指导:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.教学过程一、设置情境,激发学生探索的兴趣三、思维拓展,课堂交流 3AB AC ⋅=.(II )若b c +=,253AB AC ⋅=cos 3,A =bc ∴1sin 2bc A ==)对于5bc =,又5,1b c∴==或1,5b c==,由余弦定理得2222cos20a b c bc A=+-=,25a∴=四、归纳小结,课堂延展教学环节教学过程设计意图师生活动归纳小结利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状.特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用.回顾解斜三角形的一般题型,便于学生在复习中更深入的思考,更广泛的研究解三角形.由学生谈体会,师生共同归纳总结.巩固创新课堂延展1 .△ABC中,a=2bcosC,则此三角形一定是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案:A2.某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心O与AB的距离为10 km,问把A、B分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)答案:当AB分别在OA、OB上离O点既能保证全体学生的巩固应用,又兼顾学有余力的学生,同时将探究的空间由课堂延伸到课外.学生课下通过练习,巩固正余弦定理的理解.1.教材地位分析解三角形应用举例(4)是在学习了正弦定理、余弦定理的基础上安排的一节应用举例课程,是在学习了测量距离、高度、角度问题后,有了解三角形方法的初步体验,本节主要介绍了正弦定理和余弦定理在计算三角形面积、判断三角形形状、证明恒等式中的应用.本节课是解三角形应用举例第四阶段,为前面学习测量距离、高度、角度问题做了总结,是前面问题的进一步深化.2.学生现实状况分析通过正弦定理、余弦定理的学习,学生对解斜三角形已经有了直观地认识,能够从图形中找到解三角形的方法.但学生对正弦定理和余弦定理应用范围、应注意的问题缺乏清晰的概念.因此,本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型.另外本节课的证明题体现了前面所学知识的生动运用,要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解.只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点.。