多元Logistic回归分析
多元线性回归logistic回归

20
(四)自变量的筛选
基本思路:尽可能将回归效果显著的自变量选入方程 中,作用不显著的自变量排除在外。 (1)全局择优法(all possible subsets selection): (2)逐步选择法
前进法(Forward selection) 后退法(Backward elimination) 逐步法(Stepwise)
Sum of Square s
1
Re g re ssi o n
13 3.71 1
df Me an Square
4
33 .4 28
F
S i g.
8.278 .000a
Re si dua l
88 .8 41
22
4.03 8
To tal
22 2.55 2
26
a. P redict ors: (Const ant ), 总 胆 固醇 x1, 胰 岛 素x3, 糖 化 血红 蛋 白 x4, 甘 油 三脂 x2
β0为回归方程的常数项(constant),表示各自变量均为0时y的平 均值;
m为自变量的个数; β1、β2、βm为偏回归系数(Partial regression coefficient)
意义:如β1 表示在X2、X3 …… Xm固定条件下,X1 每增减 一个单位对Y 的效应(Y 增减β个单位)。 e为去除m个自变量对Y影响后的随机误差,称残差(residual)。
Sig. .047 .701 .099 .036 .016
将总胆固醇(X1) 剔除。 注意:通常每次只剔除关系最弱的一个因素。
对于同一资料,不同自变量的t值可以相互比较,t的绝对
值越大,或P越小,说明该自变量对Y所起的作用越大。
二元、多元logistic回归分析

二元logistic回归分析1.理论Logistic回归模型:设因变量为Y,自变量为x1,x2,...,xn。
事件发生与不发生的概率比Pi /(1-pi)被称为事件发生比。
后对事件发生比做对数变换,能得到logistic回归的线性模式:ln(pi /(1-pi))=β+β1x1+...βnxn采用最大似然比法或者迭代法对参数的估计,参数通过似然比检验和Wold 检验。
二元logistic回归是指因变量为二分类变量时的回归分析。
在建立回归模型时,目标的取值范围在0-1之间。
常因变量为二分类数据自变量可以是连续型随机变量和分类数据图1数据类型2.重新编码操作步骤首先将数据导入spss中,数据情况如下图所示,首先先对变量进行重新编码处理。
图2数据情况第一步、点击转换、重新编码为相同的变量。
图3数据编码第一步第二步:进入图中变量框后,将需要处理的变量放入变量放入框中,后点击旧值和新值,在旧值中输入原有值,后在新值中输入新值,点击添加、继续。
图4数据编码第二步3.二元logistic回归分析操作步骤第一步:点击分析、回归、二元logistic。
图5二元logistic回归分析第一步第二步:进入图中对话框后将因变量、自变量放入对应变量框中,点击分类、进入定义分类变量框后。
将协变量框中的分类变量放入分类协变量框中(一般情况除二分类或有序分类数据不需哑变量设置),并进行哑变量的设置,点击继续。
图6第二步第三步:点击选项,勾选霍斯默-莱梅肖拟合优度、Exp(B)的置信区间、迭代历史记录。
点击继续、确定。
图7选项勾选4.二元logistic回归分析结果二元logistic回归分析的个案摘要、因变量编码、分类变量编码结果。
图8分类变量编码迭代历史记录、分类表、方程中的变量、未包括在方程中的变量结果。
图9块0:起始块迭代历史记录、模型中的Omnibus检验、模型摘要、霍斯默-莱梅肖检验。
图10块1:方法=输入分类表、方差中的变量结果。
(整理)多项分类Logistic回归分析的功能与意义1.

多项分类Logistic回归分析的功能与意义我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。
SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。
例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。
试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。
并单击向右的箭头按钮使之进入“因变量”列表框,选择“性别”使之进入“因子”列表框,选择“年龄”使之进入“协变量”列表框。
还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1,sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为129,选定案例总和为489那么:y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216 则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 =7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看:0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。
多元线性回归logistic回归

X12
…
X1p
Y1
2
X21
X22
…
X2p
Y2
┆
┆
┆
…
┆
┆
n
Xn1
Xn2
…
Xnp
Yn
Y为定量变量——Linear Regression Y为二项分类变量——Binary Logistic Regression Y为多项分类变量——Multinomial Logistic Regression Y为有序分类变量——Ordinal Logistic Regression Y为生存时间与生存结局——Cox Regression
1
(Constant) 6.500 2.396
2.713 .012
甘 油 三 脂 x2 .402
.154
.354 2.612 .016
糖 化 血 红 蛋 白 .x6463
.230
.413 2.880 .008
胰 岛 素 x3
-.287
.112
-.360 -2.570 .017
a.Dep end ent Variable: 血 糖 y
将总胆固醇(X1) 剔除。 注意:通常每次只剔除关系最弱的一个因素。
对于同一资料,不同自变量的t值可以相互比较,t的绝对
值越大,或P越小,说明该自变量对Y所起的作用越大。
多元线性回归logistic回归
14
重新建立不包含提出因素的回归方程
C oe ffi ci e na ts
Un s tan dardiz eSdtan da rdi z e d C oe ffici e n ts C oe ffici e n ts
由上表得到如下多元线性回归方程:
多元logistics回归结果解读

多元logistic回归是一种用于研究多个自变量对因变量影响的统计方法。
通过多元logistic回归分析,我们可以了解自变量对因变量的贡献程度,并确定哪些自变量对因变量有显著影响。
在解读多元logistic回归结果时,需要注意以下几点:
系数解读:在多元logistic回归模型中,每个自变量的系数表示该变量对因变量的贡献程度。
系数的符号表示了影响的方向,正号表示正相关,负号表示负相关。
系数的绝对值表示影响的大小,绝对值越大,影响越大。
OR值解读:在多元logistic回归模型中,每个自变量的OR值表示该变量对因变量发生概率的影响程度。
OR值的范围在0到无穷大之间,值越大表示该自变量对因变量的影响越大。
显著性检验:在多元logistic回归模型中,每个自变量都需要进行显著性检验。
如果某个自变量的p值小于预设的显著性水平(如0.05),则认为该自变量对因变量有显著影响。
模型评估:在多元logistic回归分析结束后,需要对模型进行评估。
常用的评价指标包括模型的拟合优度、预测准确率等。
如果模型的评估结果良好,则认为模型可用于预测或解释实际问题。
总之,多元logistic回归结果解读需要综合考虑系数的符号、绝对值、OR值、显著性检验和模型评估等多个方面。
通过深入了解自变量对因变量的贡献程度和影响方式,可以帮助我们更好地理解数据,并进行科学决策。
7-多元Logistic-回归分析解析

什么是哑变量?
一个含有g个类的分类型变量可以构造g个哑变量。
29
如何用SAS程序构造哑变量? data d2; set d1; array a{3} student teacher worker; do i=1 to 3; a{i}=( x 1= i ) ; end; run;
data d2; set d1;
INTERCPT 1 3.7180 0.6387 33.8853
0.0001
.
.
BIRTHWT 1 -0.00397 0.000588 45.6092
0.0001 -0.702480 206.996
1、因变量bpd对自变量birthwt 的logistic回归模型是:
2、自变量birthwt 的回归系数在统计意义上不等于0 (p=0.0001),因此,OR=0.996在统计意义上不等于1。 OR=0.996 说明新生儿出生体重每增加一个单位(g),患 BPD病的机会就会减少大约0.4% 。即患bpd病的概率 随新生儿出生体重的增加而下降。
• 按因变量取值个数:
• 二值logistic回归分析
• 多值logistic回归分析
• 按自变量个数:
• 一元logistic回归分析
• 多元logistic回归分析
9
第二节 Logistic 回归分析的数学模型
(1) 二值一元logistic回归模型: 令y是1,0变量,x是任
意变量,p=p(y=1|x) ,那么,二值变量y关于 变量x的一元logistic 回归 模型是:
Analysis of Maximum Likelihood Estimates
Parameter Standard Wald
《多元Logistic回归》课件

交叉验证是一种评估模型泛化能力的手段,通过将数据集 分成训练集和验证集,反复训练和验证模型,以获得更可 靠的评估结果。常用的交叉验证方法有k-fold交叉验证、 留出交叉验证等。
03
多元Logistic回归的实现步 骤
数据预处理:特征选择、缺失值处理等
特征选择
选择与目标变量相关的特征,去除无关 或冗余特征,提高模型的预测性能。
多元Logistic回归与一元Logistic回归的区别
一元Logistic回归只涉及一个自变量,而多元 Logistic回归涉及多个自变量。
多元Logistic回归能够同时处理多个特征,更准确 地描述数据的复杂关系,提高预测精度。
多元Logistic回归需要更多的数据和计算资源,因 为需要迭代计算每个特征与因变量言 • 多元Logistic回归的原理 • 多元Logistic回归的实现步骤 • 多元Logistic回归的优缺点 • 多元Logistic回归的案例分析 • 总结与展望
01
引言
多元Logistic回归的定义
多元Logistic回归是一种用于处理分 类问题的统计方法,它通过将多个自 变量与因变量之间的关系转换为概率 形式,从而对因变量进行预测。
结果。
它能够提供每个类别的预测概率 ,这在某些情况下非常有用,例 如在医学诊断中确定疾病的风险
。
多元Logistic回归在处理分类问 题时具有较高的预测精度和稳定
性。
缺点
多元Logistic回归对数据的分布 假设较为严格,通常要求数据 呈正态分布或近似正态分布。
它还假设自变量与因变量之间 存在线性关系,这在某些情况 下可能不成立,导致模型的预
案例三:用户点击率预测
总结词
用户点击率预测是多元Logistic回归在互联 网广告领域的典型应用,通过分析用户行为 和广告特征,预测用户是否会点击广告。
Logistic回归分析

Logistic 回归分析Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。
适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。
一、Logistic 回归模型设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为:[]0112211exp (...)n n P X X X ββββ=+-++++它可以化成如下的线性形式:01122ln ...1n n P X X X P ββββ⎛⎫=++++ ⎪-⎝⎭通常用最大似然估计法估计模型中的参数。
二、Logistic 回归模型的检验与变量筛选根据R Square 的值评价模型的拟合效果。
变量筛选的原理与普通的回归分析方法是一样的,不再重复。
三、Logistic 回归的应用(1)可以进行危险因素分析计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。
(2)预测与判别Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。
当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。
四、SPSS操作方法1.选择菜单2.概率预测值和分类预测结果作为变量保存其它使用默认选项即可。
例:试对临床422名病人的资料进行分析,研究急性肾衰竭患者死亡的危险因素和统计规律。
Logistic回归分析.sav解:在SPSS中采用Logistic回归全变量方式分析得到:(1)模型的拟合优度为0.755。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
(2) 二值多元logistic回归模型: 令y是1,0变量,x1,x2,…,xk是任意k个变量; p=p(y=1|x1,x2,…,xk),那么,变量y关于变量x1,x2,…,xk 的k元logistic回归模型是:
• 按因变量取值个数:
o 二值logistic回归分析
o 多值logistic回归分析
• 按自变量个数:
o 一元logistic回归分析
o 多元logistic回归分析
8
第二节 Logistic 回归分析的数学模型
(1) 二值一元logistic回归模型: 令y是1,0变量,x是任
意变量,p=p(y=1|x) ,那么,二值变量y关于 变量x的一元logistic 回归 模型是:
15
The LOGISTIC Procedure Data Set: WORK.EG7_1A Response Variable: Y Response Levels: 2 Number of Observations: 4 Weight Variable: WT Sum of Weights: 295 Link Function: Logit
注意:对于二值Logistic回归模型,Y=0的模型是:
p = p(y=0|x1,…,xk ) = 1 - p(y=1|x1,…,xk)
10
Logistic 回归模型的另外一种形式 它给出变量z=logit(p)关于x 的线性函数。
11
(3) 多值logistic回归模型:
例如,当y取值1,2,3时,logistic回归模型是:
Response Profile
Ordered
Total
Value
Y Count
Weight
1
1
2
20.00000
2
0
2 275.00000
16
Model Fitting Information and Testing Global Null Hypothesis BETA=0
Intercept
Intercept
P1 = p(y=1) = P1 P1=
P2=
P2 = p(y=2) =P2-P1
P3= p(y≤3 | x) = 1 - P2 累积概率模型
P3 = p(y=3) =1-P2 独立概率模型
12
第三节 Logistic回归分析方法步骤
1、估计参数 ---- 最大似然法 2、检验参数的显著性
H0: βj=0 vs H1: βj≠0 3、检验模型的显著性
1、什么是Logistic 回归分析? 研究因变量y取某个值的概率变量p与 自变量x的依存关系。 p=p(y=1|x)=f(x)
7
2ogistic回归分析
o 非条件logistic回归分析(成组数据)
o 条件logistic回归分析(配对病例-对照数据)
效等不同的效果?
是回归分析问题: Y=f(x)
5
如何解决这样的问题?
不能直接分析 变量y与x的关系
y取某个值的概 率变量p与x 的 关系
Logistic回归模型
y=f(x) y=1,0 x任意
p=p(y=1|x)=f(x) 0≤p≤1, x任意
存在,且不唯一
6
第一节 Logistic 回归分析的概念
2
回忆:
回归分析的分类
一个 因变 量y
连续型因变量 (y) --- 线性回归分析 分类型因变量 (y) ---Logistic 回归分析 生存时间因变量 (t) ---生存风险回归分析 时间序列因变量 (t) ---时间序列分析
多个因变量 (y1,y2…yk)
路径分析 结构方程模型分析
3
医学研究中经常遇到分类型变量
H0: β1=…=βk=0 vs H1: βj≠0 4、解释参数的实际意义
13
例1、自变量是二值分类型变量 某医院为了研究导致手术切口感染的原因,收集了295例手术 者情况,其中,手术时间小于或等于5小时的有242例,感染者 13例;手术时间大于5小时的有53例,感染者7例。试建立手术 切口感染(y)关于手术时间(x)的logistic回归模型。
• 二分类变量: o 生存与死亡 o 有病与无病 o 有效与无效 o 感染与未感染
• 多分类有序变量: o 疾病程度(轻度、中度、重度) o 治愈效果(治愈、显效、好转、无效)
• 多分类无序变量: o 手术方法(A、B、C) o 就诊医院(甲、乙、丙、丁)
4
医学研究者经常关心的问题
• 哪些因素导致了人群中有的人患胃癌而有的人不患胃癌? • 哪些因素导致了手术后有的人感染,而有的人不感染? • 哪些因素导致了某种治疗方法出现治愈、显效、好转、无
and
Criterion
Only
Covariates Chi-Square for Covariates
AIC
148.262
146.686
.
SC
147.648
145.458
.
-2 LOG L
146.262
142.686
3.576 with 1 DF (p=0.0586)
Score
.
.
4.224 with 1 DF (p=0.0399)
第七章
多元Logistic 回归分析
Multiple Logistic Regression Analysis
1
主要内容
➢ Logistic 回归分析的基本概念 ➢ Logistic 回归分析的数学模型 ➢ Logistic 回归模型的建立和检验 ➢ Logistic 回归系数的解释 ➢ 配对病例-对照数据的logistic回归分析
>
0 (≤
7
4163
46
25239
53
242
14
data eg7_1a; input y x wt @@; cards;
11 7 1 0 13 0 1 46 0 0 229 ; run; proc logistic descending ;
model y=x ; weight wt; run;
SAS程序
Analysis of Maximum Likelihood Estimates
Parameter Standard Wald
Pr > Standardized
Variable DF Estimate Error Chi-Square Chi-Square Estimate