管路沿程阻力计算
谈管道沿程阻力系数的计算

项 目名称 : 棉花产后增值 关键技术装备研发与产业化示范
! ! 堡 墅 墅 垦 8 1 l ! 堕蔓 ! 塑
薰
●戳精弼
( 二) 过渡 区
速2 4 m / s , 绝对 粗糙度 0 . 2 mm, 则 = 5 7 l 4 2 9 , 显然
为过渡状态 , R e >4 0 0 0 为紊流状态 , R e >1 0 0 0 0 为 完全紊流状态 。 二、 雷诺 数 的计算 雷诺数计算公式
d: Re : pv
—
主要依据是 雷诺数 。 雷诺 实验
一
堕
、
雷诺通过实验发现液体在流动 中存在两种内部 结构完全不同的流态 : 层流和紊流。同时也发现 , 层 流 的沿程水头损失 肺与流速一次方成正 比, 紊 流的
粗糙表面全部暴露出来 , 沿程阻力系数与 R e 无关 ,
先 确定 流 态 。
动力黏度系数 , P a ・ S ,
2 0℃时 , :1 8 . 2 0 x 1 0 ~ P a ・ s ;
运动黏度系数 , m 2 / s ,
2 0℃时 , 9 = 1 5 . 1 2 x 1 0 m2 / s ;
d 一管道的断面特征尺寸 , I n 。 对于圆形管道来说 , 特征尺寸即为圆管直径 ; 非
( 四) 粗糙 管 区
6 4
===
( 二) 过渡 区
A = 0 . 0 0 2 5 ( 扎依琴柯公式 )
( 三) 光滑 管 区
当 8 0 罟 ≤ R ≤ 4 1 6 0 ( - 2  ̄ - ) 。 时, 随 着 R e 的 增 大,
层 流层 逐 渐 减 少 , 以至 于不 能 覆 盖 粗糙 不 平 的管 壁 式)
实验一 管路沿程阻力测定

实验一 管路沿程阻力测定一. 实验目的1. 掌握流体流经管道时沿程阻力损失的测定方法。
2. 测定流体流经直管时的摩擦阻力,确定摩擦系数λ与Re 的关系3. 测定流体流经管件时的局部阻力,并求出阻力系数ξ。
4. 学会压差计和流量计的使用。
二. 实验原理 1. 沿程阻力流体在水平均匀管道中稳定流动时,由截面1到截面2,阻阻力损失表现为压强降低:pp p h f 21-=湍流十分复杂需通过实验研究。
影响阻力损失因素:密度ρ,粘度μ,管径d ,管长l ,管壁粗糙度ε,流速u 。
变量关系式:△P=f (d ,l ,μ,ρ,u ,ε) 引入λ=φ(dR e ε,)则变为:22ud l ph f λρ=∆=上式中:λ称直管摩擦系数,滞流时,λ=64/e R ;湍流时:λ与e R 关系受管壁粗糙度影响。
由伯努利方程知沿程阻力损失由R 算出:ΔP=R (ρ指-ρ水)g2. 局部阻力当量长度法:2.2u d l l h e f ⎪⎪⎭⎫⎝⎛+=∑∑λ l 是管路长度,∑e l 是当量长度之和。
阻力系数法:2.2uh p ξ=ξ-局部阻力系数,无因次, u-在小截面管中流体的平均速度(m/s )p h 可由伯努利方程由读数R 求出,流速u 的计算:u=24/dV s π(m/s )三. 实验装置与流程1. 本实验装置及设备主要参数:被测元件:镀锌水管,管长20m ,管径(公称直径)0.0021m ,闸阀D=3/4 1) 测量仪表:U 形压差计(水银指示液);LW-15型涡轮流量计 2) 循环水泵。
3) 循环水箱。
4) DZ15-40型自动开关。
5)数显温度表2.流程四.实验操作步骤及注意事项1.打开压差计上平衡阀,关闭各放气阀。
2.启动循环水泵。
3.排气:(1)管路排气(2)测压管排气(3)关闭平衡阀,缓慢旋转压差计上放气阀排除压差计中的气泡,排气完毕,4.读取压差计零位读数。
5.开启调节阀至最大,确定流量范围,确定试验点,测量直管部分阻力和局部阻力。
管路沿程阻力计算

管路沿程阻力计算1.摩擦阻力:在流体流动中,由于流体与管道壁之间的摩擦力,使得流体流动速度逐渐减小,产生摩擦阻力。
根据代表性的达西-魏泽巴赫公式,可以计算流体在管道中的摩擦阻力。
ΔP=λ(L/D)(ρV^2/2)其中,ΔP为单位管长上的摩擦阻力损失,λ为摩擦系数,L为管道长度,D为管道直径,ρ为流体密度,V为流速。
2.沿程局部阻力:在管道流动中,由于管道内部存在一些特殊设计或结构,导致流体流动时发生局部阻力。
根据达西-魏泽巴赫公式,可以计算管道局部阻力。
ΔP=K(ρV^2/2)其中,ΔP为单位管长上的沿程局部阻力损失,K为局部阻力系数,ρ为流体密度,V为流速。
3.管道弯曲阻力:在管道中,当流体流过弯曲部分时,会受到弯曲的影响,产生较大的阻力。
根据经验公式,可以计算管道弯曲阻力。
ΔP=K(ρV^2/2)其中,ΔP为单位管长上的弯曲阻力损失,K为弯曲阻力系数,ρ为流体密度,V为流速。
这些阻力形式在实际管道中经常同时存在,因此需要综合考虑计算总阻力。
通常采用经验公式、实验数据或数值模拟等方法进行计算。
在实际工程中,一般可以通过试验或计算得到相应的阻力系数,并且根据阻力计算公式,结合流体参数,来计算管路沿程阻力。
在实际应用中,管路沿程阻力的计算是非常重要的,它影响到管道系统的工作效率和输送能力。
为了降低阻力损失,有效节约能源,可以采取以下措施:优化管道布局,减少管道弯曲和局部阻力;选择合适的管道材料和直径,减小摩擦阻力;采用流体增压、注入润滑剂等方法来减小摩擦阻力。
总之,管路沿程阻力的计算是管道工程中的一个重要环节,通过合理地计算和设计,可以提高管道系统的效率和安全性,降低能源消耗。
管路沿程阻力计算

管路沿程阻力计算管路沿程阻力是指液体在管道中流动时所受到的阻碍力,它是流体力学中的一个重要概念。
管路沿程阻力的计算对于工程设计和流体输送系统的优化具有重要意义。
本文将从理论和实际应用两个方面来介绍管路沿程阻力的计算方法。
一、理论计算方法1. 管路沿程阻力的基本概念在流体力学中,管路沿程阻力指的是液体在管道中流动时所受到的阻碍力。
它是由于粘性力、摩擦力和惯性力等作用所产生的。
管路沿程阻力可以通过计算管道中液体的流速、管道的长度和管道的粗糙度来估算。
2. 管路沿程阻力的计算公式根据流体力学理论,可以使用多种公式来计算管路沿程阻力。
其中最常用的是达西公式和海伦公式。
达西公式是最早提出的计算管路沿程阻力的公式,它基于经验和试验结果。
达西公式的一般形式如下:ΔP = f × (L/D) × (ρv²/2)其中,ΔP是管路沿程的压力损失,f是摩擦系数,L是管道的长度,D是管道的直径,ρ是液体的密度,v是液体的流速。
海伦公式是在达西公式的基础上进一步发展的。
它引入了雷诺数的概念,考虑了流体的流动状态。
海伦公式的一般形式如下:ΔP = f × (L/D) × (ρv²/2) × (1 + K)其中,K是与雷诺数有关的修正系数。
3. 管路沿程阻力的影响因素管路沿程阻力的大小受多个因素的影响。
主要包括管道的直径、管道的粗糙度、液体的流速和液体的密度等。
其中,管道的直径和管道的粗糙度是影响管路沿程阻力最为重要的因素。
较小的管道直径和较大的管道粗糙度会导致管路沿程阻力增大。
二、实际应用方法在实际工程中,为了准确计算管路沿程阻力,通常需要进行试验和实测。
下面介绍两种常用的实际应用方法。
1. 管路沿程阻力试验管路沿程阻力试验是通过在实际管道系统中进行流量测试和压力测量,来确定管路沿程阻力的大小。
试验时需要测量液体的流速、管道的长度和管道的直径等参数,并记录相应的压力损失。
水管系统各部件局部阻力系数

并联环路压力损失的最大允许差值双管同程:15%双管异程:25%附录C 当量长度表所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。
特别补充:当设计流量在设备的额定流量附近时,上面所提到的阻力可以套用,更多的是往往都大过设备的额定流量很多。
同样,水管的水流速建议计算后,查表取阻力值。
关于水泵扬程过大问题。
设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。
特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。
另外“水泵出口压力只有0.22兆帕”能说明什么呢?水泵进出口压差才是问题的关键。
例如将开式系统的水泵放在100米高的顶上,出口压力如果是0.22MPa,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是0.32MPa了!1、水泵扬程简易估算法暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。
按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O):Hmax=△P1+△P2+0.05L(1+K)△P1为冷水机组蒸发器的水压降。
△P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。
L为该最不利环路的管长K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.62、冷冻水泵扬程实用估算方法这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。
1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。
2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。
若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。
水管阻力计算简表+水管流量估算表

直 水流速 (m/s) 2.00 2.50 1.50 动压 (Pa) 20 1996 3119 1123 R1 R2 R1 R2 R1 R2 3621 4940 5617 7695 2061 2793 管 段 公称管径DN(mm) R1—闭式系统、R2—开式系统 (Pa/m) 25 2634 3545 4087 5522 1499 2004 32 1821 2415 2825 3761 1036 1365 40 1523 2006 2363 3124 867 1134 50 1092 1421 1694 2214 621 803 65 793 1021 1230 1590 451 577 80 634 811 984 1263 361 458 100 485 615 753 959 276 348 阻力 mH2O 2.5m/s 0.46 0.15 0.46 0.031 0.93 0.46 125 366 461 568 718 208 260 阻力 mH2O 2.0m/s 0.3 0.1 0.3 0.02 0.6 0.3
局部阻力(2.5m/s) 局部阻力(2.0m/s) 局部阻力(1.5m/s) 水泵入口 局部阻力(2.5m/s) 局部阻力(2.0m/s) 局部阻力(1.5m/s) 止回阀(升降式) 局部阻力(2.5m/s) 局部阻力(2.0m/s) 局部阻力(1.5m/s)
0.03 0.02
0.09 0.06
0.01
0.23
1.50 0.47 0.30
0.17
1.00 0.31 0.20
0.17
1.00 0.31 0.20
0.11
0.50 0.16 0.10
0.11
0.50 0.16 0.10
0.17
管路沿程阻力测定实验报告

实验一管路沿程阻力测定一实验目的1. 掌握流体流经管道时沿程阻力损失的测定方法。
2. 测定流体流过直管时的摩擦阻力,确定摩擦系数3. 测定流体流过管件时的局部阻力,并求出阻力系数4. 学会压差计和流量计的使用。
二实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压 强损耗。
这种损耗包括流体流经直管的沿程阻力以及流体流动方向的改变或因管 子大小、形状的改变所引起的局部阻力。
1. 沿程阻力称为直管摩擦系数,滞留时,;湍流时, 与R e 的关系受管壁粗糙度的影响, 需由实验测得。
64 R e根据伯努利方程可知,流体流过的沿程阻力损失,可直接得出所测得的液柱压 差计度数R (m )算出:p R 指-水g2)阻力系数法h pE -局部阻力系数,无因次;u-在小截面管中流体的平均流速(m/s )三实验装置与流程1.本实验装置及设备主要参数:被测元件:镀锌水管,管长2.0m ,管径(公称直径)0.021m ;闸阀D=3/4.1)测量仪表:U 型压差计(水银指示液);LW — 15型涡轮流量计(精度0.5级, 量程0.4~4.0m /h,仪器编号I 的仪表常数为 599.41 (次/升),仪器编号II 的仪表常数为605.30 (次/ 升), MM 智能流量仪)。
与Re 的关系2.局部阻力 1)当量长度法h fl e d2) 循环水泵。
3) 循环水箱。
4) DZ15-40型自动开关。
X- 2X 流体流动阻力损失实验流程图1) 水箱 6 )放空阀 11 )取压孔 2) 控制阀 7 )排液阀 12 )U 形压差计 3) 放空阀8 )数显温度表 13 )闸阀 4) 5) U 形压差计 平衡阀 9 )泵10)涡轮流量计14取压孔四实验操作步骤及注意事项1. 水箱充水至80%2. 仪表调整(涡轮流量计、MM 智能流量计仪按说明书调节)3. 打开压差计上平衡阀,关闭各放气阀。
4. 启动循环水泵(首先检查泵轴是否转动,开全阀 13,全关阀2,后启动)。
管路阻力的计算方法

管道长度越大,管路阻力越大。这是因为管道长度越大,流体在管路中流动时受到的惯性力也越大,导致压强损失也越大。
管路阻力计算公式
管路阻力的计算方法 管路阻力计算公式 1. 局部阻力系数法 局部阻力系数法是计算管路系统局部阻力的一种方法,它通过实验和理论分析得到不同类型和位置的局部阻力系数与流速的关系。然后根据已知的管路参数,如管道长度、管径、流体密度 和速度等,计算出管路系统的局部阻力。 长度损失法是计算管路系统长度损失的一种方法,它通过计算管路系统的沿程损失和局部损失之和来得到长度损失。其中,沿程损失可以通过计算流体在管路中流动时的雷诺数来确定。
03
流体速度
PART THREE
管路阻力计算,流体速度
管路阻力的计算方法
流体速度是指单位时间内流体的位移,可以用以下公 式计算
管路阻力是指流体在管路中流动时所受到的阻力,可 以用以下公式计算
管路阻力是流体在管路系统中流动时所受 到的阻力,其大小取决于流体的速度、管 路截面积、流体种类等因素。下面介绍管 路阻力的计算方法。
流体速度的影响因素
流体速度
流体速度是描述物质运动 的一个重要参数
流体性质
流体性质的研究是 物理学中一个重要 的领域,涵盖了流 动行为、粘度、热
传导等方面
物理特性
物理特性是描述物体属性, 包括密度、硬度、弹性和
热导率等
流体温度
流体温度是影响其流动特 性的重要因素之一
流动行为
流动行为是实现个人和社 会变革的关键
管路形状和尺寸
管路形状和尺寸决定了流 体流动和能量传递的性能
04
流体密度
PART FOUR
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.25E-02 2.17E-02 6.30E+05 1.25E-02 16.92
m
沿程阻力损失的计算
常温清水,温度 t = 其运动粘性系数γ = 管路总长度L= 管路直径d= 流量Q= 流速ν = 雷诺数Re= 20 1.011E-0E+05 °C, m2/s m mm m3/h m/s
Re≤105,流动为层流 105<Re≤106,流动为过渡状态 Re≥106,流动为紊流 查表1-1,不同管道的当量粗糙度△e值, 管道状态 管道材料 △e mm 新、洁净 0.014 无缝钢管 使用几年后 0.2 新、洁净 0.06 在净化后锈蚀不大 0.15 焊接钢管 中等程度锈蚀 0.5 陈旧、生锈 1 强烈生锈或大量积垢 3 新、洁净 0.015 镀锌铁管 使用几年后 0.5 新、涂沥青 1.12 新、无镀复层 0.3 铸铁管 早先使用过 1 ~3.0 很旧 新 0.03 胶木管 新混凝土制 0.03 水泥管 早先使用过 0.2 根据管路查表得△e= 0.3 mm 1、Re≤2320时,λ = 1.02E-04 3 5 2、3× 10 <Re<10 时,λ = 1.12E-02 3、105<Re<3× 106时,λ = 4、Re>3× 10 时,λ = 由于雷诺数Re= 故λ = 故沿程阻力损失hf=