通风管道阻力的计算与公式

合集下载

矿井通风摩擦阻力计算公示

矿井通风摩擦阻力计算公示

矿井通风摩擦阻力计算公示
通风摩擦阻力的计算公式如下:
通风摩擦阻力=0.0136某K某L某V2/D2
其中,K为阻力系数;L为通风管道长度,单位为米;V为通风管道
内空气流速,单位为米/秒;D为管道直径,单位为米。

阻力系数K是通风系统管道的特性参数,与管道的壁面状态、管道直径、空气流速等因素有关。

通常情况下,K的取值范围为0.01~0.05,具
体取值需要根据通风系统管道的具体情况进行确定。

通风管道长度L是通风阻力中的一个重要参数,通风系统中管道长度
越长,阻力成分就越大,所以在设计通风系统时需要尽量减小管道长度,
从而降低摩擦阻力。

空气流速V是通风摩擦阻力公式中最重要的参数,通过控制空气流速
可以有效降低通风系统中的摩擦阻力。

因此,在设计和使用通风系统时,
需要根据通风管道的长度、直径等参数合理控制空气流速,以达到最佳的
通风效果和经济效益。

通风管道直径D的大小也会对通风摩擦阻力产生影响。

一般情况下,
管道直径越大,阻力越小;而管道直径越小,阻力就越大。

因此,设计通
风管道时也需要根据通风系统的实际情况来选择合适的管道直径。

综上所述,通风摩擦阻力计算公式是煤矿通风中非常重要的一个公式,用于计算通风系统中的摩擦损失。

设计和使用通风系统时,需要根据通风
管道的长度、直径等参数来合理选择空气流速,降低通风摩擦阻力,并达
到最佳的通风效果和经济效益。

通风管道阻力计算

通风管道阻力计算

通风管道阻力计算
通风管道阻力计算
空气在风管内流动时会产生两种阻力,一种是摩擦阻力,即空气本身的粘滞性和与管壁间的摩擦所产生的沿程能量损失;另一种是局部阻力,即空气流经管件和设备时由于流速和方向变化以及涡流所产生的比较集中的能量损失。

一、摩擦阻力
根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力可以按以下公式计算:
ΔPm=λν2ρl/8Rs
对于圆形风管,摩擦阻力计算公式可改写为:
ΔPm=λν2ρl/2D
圆形风管单位长度的摩擦阻力(比摩阻)为:
Rs=λν2ρ/2D
其中,λ为摩擦阻力系数,ν为风管内空气的平均流速,ρ为空气的密度,l为风管长度,Rs为风管的水力半径,f为管道中充满流体部分的横断面积,P为湿周(即风管的周长),D为圆形风管直径。

矩形风管的摩擦阻力计算需要先把矩形风管断面尺寸折算成相当的圆形风管直径(即当量直径),再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种。

二、局部阻力
当空气流动经过断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)和流量变化的管件(如三通、四通、风管的侧面送、排风口)时,会产生局部阻力。

局部阻力可以按以下公式计算:
Z=ξν2ρ/2
其中,ξ为局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应注意减小局部阻力。

为了达到这个目的,通常采用以下措施:尽量减少弯头,圆形风管弯头的曲率半径一般应大于(1~2)
倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;在矩形直角弯头中应设导流片。

风机计算_通风管道阻力计算

风机计算_通风管道阻力计算

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。

通风阻力计算公式汇总

通风阻力计算公式汇总

通风阻力计算公式汇总通风阻力是流体在通过管道或设备时所经受的阻力。

在工程中,通风阻力的计算对于设计和优化通风系统至关重要。

下面是一些常用的通风阻力计算公式的汇总:1.管道阻力公式:管道阻力是通风系统中一个重要的组成部分。

下面是几种常见的管道阻力计算公式:-法氏方程公式:ΔP=(η*L/D)*(V^2/2g)其中,ΔP是管道阻力,η是比例系数(通常为0.02-0.05),L是管道长度,D是管道直径,V是流速,g是重力加速度。

-白寇厄尔公式:ΔP=η*(ρ*L/D)*(V^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。

-弗里若克公式:ΔP=η1*(ρ1*L1/D1)*(V1^2/2)+η2*(ρ2*L2/D2)*(V2^2/2)+...+ηn*(ρn*Ln/Dn)*(Vn^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。

以上公式可以根据具体问题中的参数进行计算,得到通风系统的管道阻力。

2.设备阻力公式:在通风系统中,除了管道阻力,设备也会产生阻力。

以下是几种常见的设备阻力计算公式:-弯头阻力:ΔP=ξ1*ρ*(V^2/2)其中,ξ是弯头阻力系数,常用值为0.25-1.0,ρ是流体密度,V是流速。

-扩散器阻力:ΔP=ξ2*(ρ*V^2/2)其中,ξ是扩散器阻力系数,常用值为0.09-0.35,ρ是流体密度,V是流速。

-突变阻力:ΔP=ξ3*(ρ*V^2/2)其中,ξ是突变阻力系数,常用值为1.5-10,ρ是流体密度,V是流速。

这些设备阻力公式可以帮助工程师根据具体设备的参数计算其阻力,从而优化通风系统设计。

3.阻力总和公式:在实际通风系统中,不仅仅有管道和设备阻力,还有其他因素如弯曲、分支、阻尼等会产生阻力。

以下是阻力总和公式的一个例子:ΔP=ΣΔP管道+ΣΔP设备+ΣΔP其他其中,ΔP是总阻力,ΣΔP管道表示管道阻力之和,ΣΔP设备表示设备阻力之和,ΣΔP其他表示其他因素的阻力之和。

通风阻力 计算公式汇总

通风阻力 计算公式汇总

1、 巷道几何参数的测算(1)梯形:断面积 SL=H L *B L 周长 U L(2) 半圆拱:断面积 S L =(H L -0.1073B L )*B L 周长 U L=3.84*(3)三心拱:断面积 S L =(HL-0.0867B L )*B L 周长 U L(4)圆形:断面积 S L =π*R 2 周长 U L =2*π*R(5)矩形:断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2U L —巷道断面周长,m ;H L —巷道断面全高,m ;B L —巷道断面宽度或腰线宽度,m ;R —巷道断面圆半径,m ;π—圆周率,取3.14159。

以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。

2、 巷道内风量的计算(1)两测点之间巷道通过的风量按如下原则确定:Q=(Q i +Q i+1)/2 , m 3/min(2)井巷内风量、风速按以下公式计算:Q L =S L *V L , m 3/minV L =((S-0.4)/S )*(a X+ b ) , m 3/min式中: Q L --井巷内通过的风量,m 3/min ;S L (S )--井巷断面面积,m 2V L --井巷内平均风速,m/minX —表风速,m/mina 、b —风表校正系数3 井巷内空气密度的计算湿空气密度用下列公式计算:i b i=d0.0348(Pi 0.379P )273.15+t ϕ-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ϕ≠0), kg/ m 3Pi --测点i 处空气的绝对静压(大气压力),Pa ;d t --测点i 处空气的干温度,℃;i ϕ--测点i 处空气的相对湿度,%;P b —测点i 处d t 空气温度下的饱和水蒸气压力,Pa 。

4 井巷断面速压的计算井巷断面的速压由其空气密度和平均风速确定,即:v i L 2h =(V )/2ρ式中:v h --巷道断面的速压,Pa ;i ρ--巷道断面的空气密度,Kg/ m 3L V --巷道断面的平均风速,m/s ;5 井巷通风阻力计算井巷两端断面之间的通风阻力按式(1)计算,即:i-j s(i,j)z(i,j)v(i,j)h h h +h =+ Pa (1)式中:h i-j —井巷始末测点间的通风阻力,Pa ;s(i,j)h —始断面静压与末断面静压之差,Pa ;即:s(i,j)i j i j h 9.81[(B -B )-(B '-B ')]=i B 、B j —分别为始断面、末断面静压差读数,mmH 2O ;i B '、j B '—分别为读取i B 、B j 时基点气压计静压差读数,mmH 2O ;z(i,j)h --始断面位压与末断面位压之差,Pa ;即:z(i,j)i j i j h =9.81(Z -Z )(+)/2ρρi ρ、j ρ --分别为始断面、末断面空气密度,Kg/m 3; i Z 、Z j —分别为始、末测点标高,m ;v(i,j)h --始断面速压与末断面速压之差,Pa ;6 矿井通风总阻力计算从进风井口测点到通风机前风洞内测点之间的全井通风阻力h ,等于任意一条风路线上各分支通风阻力之和,即:i j h h -=∑ ,Pa7 井巷风阻R L 的计算任意一条井巷的风阻值R L 大小用下列公式计算:2L L L R =h /Q , Kg/m 7; 式中:R L ---任一条井巷的风阻,Kg/m 7;h L---该条井巷的通风阻力,Pa ;QL —该条井巷通过的风量,m 3/s 。

风机计算通风管道阻力计算

风机计算通风管道阻力计算

通风管道阻‎力计算风管内空气‎流动的阻力‎有两种,一种是由于‎空气本身的‎粘滞性及其‎与管壁间的‎摩擦而产生‎的沿程能量‎损失,称为摩擦阻‎力或沿程阻‎力;另一种是空‎气流经风管‎中的管件及‎设备时,由于流速的‎大小和方向‎变化以及产‎生涡流造成‎比较集中的‎能量损失,称为局部阻‎力。

一、摩擦阻力根据流体力‎学原理,空气在横断‎面形状不变‎的管道内流‎动时的摩擦‎阻力按下式‎计算:ΔPm=λν2ρl‎/8Rs对于圆形风‎管,摩擦阻力计‎算公式可改‎写为:ΔPm=λν2ρl‎/2D圆形风管单‎位长度的摩‎擦阻力(比摩阻)为:Rs=λν2ρ/2D‎以上各式中‎λ————摩擦阻力系‎数ν————风管内空气‎的平均流速‎,m/s;ρ————空气的密度‎,Kg/m3;l ————风管长度,mRs————风管的水力‎半径,m;Rs=f/Pf————管道中充满‎流体部分的‎横断面积,m2;P————湿周,在通风、空调系统中‎既为风管的‎周长,m;D————圆形风管直‎径,m。

矩形风管的‎摩擦阻力计‎算我们日常用‎的风阻线图‎是根据圆形‎风管得出的‎,为利用该图‎进行矩形风‎管计算,需先把矩形‎风管断面尺‎寸折算成相‎当的圆形风‎管直径,即折算成当‎量直径。

再由此求得‎矩形风管的‎单位长度摩‎擦阻力。

当量直径有‎流速当量直‎径和流量当‎量直径两种‎;流速当量直‎径:Dv=2ab/(a+b)流量当量直‎径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻‎线图计算是‎,应注意其对‎应关系:采用流速当‎量直径时,必须用矩形‎中的空气流‎速去查出阻‎力;采用流量当‎量直径时,必须用矩形‎风管中的空‎气流量去查‎出阻力。

二、局部阻力当空气流动‎断面变化的‎管件(如各种变径‎管、风管进出口‎、阀门)、流向变化的‎管件(弯头)流量变化的‎管件(如三通、四通、风管的侧面‎送、排风口)都会产生局‎部阻力。

局部阻力按‎下式计算:Z=ξν2ρ/2‎ξ————局部阻力系‎数。

通风管道沿程摩擦风阻及局部阻力系数计算方法

通风管道沿程摩擦风阻及局部阻力系数计算方法

通风管道沿程摩擦风阻及局部阻力系数计算方法B.1 通风管道沿程摩擦风阻通风管道沿程摩擦风阻可按公式(B.1)~(B.2)计算:55.6d L R f α=.....................................(B.1) =8λρα.......................................(B.2) 式中:α——通风管道摩擦阻力系数(kg/m 3);λ——通风管道达西系数,对柔性通风管进行计算时可取0.019~0.021;ρ——空气密度(kg/m 3);d ——通风管道当量直径(m )。

B.2 通风管道的局部阻力系数通风管道的局部阻力系数取值应根据局部损失的具体形式确定,并可按照以下规定进行取值: a) 突然扩大的异径管接头,其局部阻力系数可按公式(B.3)计算:()212=1/A A ξ-...................................(B.3)式中:A 1——进风处接头的管道截面面积(m 2);A 2——出风处接头的管道截面面积(m 2)。

b) 突然缩小的异径管接头,其局部阻力系数可按公式(B.4)计算: ()221=0.51/A A ξ-..................................(B.4)式中:A 1——进风处接头的管道截面面积(m 2);A 2——出风处接头的管道截面面积(m 2)。

c) 通风管道转弯时,其局部阻力系数可按公式(B.5)~(B.6)计算:0.750.8=0.008/n ξθ...................................(B.5) /n R d =......................................(B.6)式中:θ——转弯角度;R ——转弯处的曲率半径(m );d ——管道直径(m )。

d)管道入口处的局部阻力系数ξ可取为0.6;e)管道出口处的局部阻力系数ξ可取为1.0;f)管道分岔处的局部阻力系数ξ可取为1.0。

通风工程管道阻力计算

通风工程管道阻力计算

通风工程管道阻力计算通风工程中的管道阻力计算是重要的一项工作,它直接关系到系统的通风效果和节能效果。

本文将详细介绍通风工程中的管道阻力计算方法及其影响因素。

一、管道阻力计算方法:通风系统中的管道阻力是指空气在管道中流动时所遇到的阻力。

通常采用以下公式计算:ΔP=K×L×ρ×(V/3600)^2(1)其中,ΔP为管道阻力(Pa),K为阻力系数(Pa/m),L为管道长度(m),ρ为空气密度(kg/m³),V为风量(m³/h)。

阻力系数K是根据流量速度(m/s)和管道直径(m)来计算的。

对于圆形截面的管道,可以使用以下公式计算:K=(0.51+0.002D)×(V/D)^2(2)其中,D为管道直径(m),V为流量速度(m/s)。

二、影响因素:1.管道材质:不同材质的管道具有不同的内表面粗糙度,粗糙度越大,摩擦阻力越大,导致管道阻力增加。

2.管道长度:管道长度越长,空气流动经过的阻力表面越多,阻力增加。

3.管道直径:管道直径越大,流通面积越大,阻力减小。

4.管道弯头和弯管:弯头和弯管的存在会增加管道的阻力,尤其是对空气流动有较大影响的90度弯头。

5.风量:风量越大,管道阻力越大。

三、实际计算:1.根据风量和设计条件选择管道直径。

2.根据管道直径计算阻力系数K。

3.根据管道直径和长度计算总阻力。

4.根据管道阻力和所需风压,判断所选管道是否满足要求。

5.根据需要,可以进行多次迭代计算,直到找到满足要求的管道尺寸。

四、优化策略:1.尽量选择材质光滑、粗糙度低的管道,以减小阻力。

2.在管道设计中尽量减少弯头和弯管的使用,或者采取流线型弯头,以减小阻力。

3.如果风量较大,可以考虑分段设计,通过增加出风口数量来减小单个风口的风量,从而减小管道阻力。

4.在实际计算中可根据实验数据进行修正,以提高计算精度。

总结:通风工程中的管道阻力计算是一个复杂的过程,需要综合考虑管道材质、直径、长度、弯头等因素,并进行科学合理的计算和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力
根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:
ΔPm=λν2ρl/8Rs
对于圆形风管,摩擦阻力计算公式可改写为:
ΔPm=λν2ρl/2D
圆形风管单位长度的摩擦阻力(比摩阻)为:
Rs=λν2ρ/2D
以上各式中
λ————摩擦阻力系数
ν————风管内空气的平均流速,m/s;
ρ————空气的密度,Kg/m3;
l ————风管长度,m
Rs————风管的水力半径,m;
Rs=f/P
f————管道中充满流体部分的横断面积,m2;
P————湿周,在通风、空调系统中既为风管的周长,m;
D————圆形风管直径,m。

矩形风管的摩擦阻力计算
我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;
流速当量直径:Dv=2ab/(a+b)
流量当量直径:DL=1.3(ab)0.625/(a+b)0.25
在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力
当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:
Z=ξν2ρ/2
ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:
1. 弯头
布置管道时,应尽量取直线,减少弯头。

圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。

2. 三通
三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部
阻力的原因。

为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。

.
在管道设计时应注意以下几点:
1. 渐扩管和渐缩管中心角最好是在8~15o。

2. 三通的直管阻力与支管阻力要分别计算。

3. 尽量降低出风口的流速。

以下为常见管段的比摩阻
规格(mm*mm) 流速(m/s) 当量直径(流速)(mm) 比摩阻(Pa/m)
1600*400 15 640 3.4
1400*300 13 495 4.5
1200*300 12 480 4.8
1000*300 10 460 2.5
800*300 9 436 2
600*300 8 400 1.8
500*300 6 375 1.2
400*300 5 342 0.8
300*300 4 200 1.3
600*250 6 350 1.3
400*250 4 307 0.6
常见弯头的局部阻力:
分流三通:9~24 Pa
矩形送出三通:6~16Pa
渐缩管:6~12Pa
乙字弯:50~198Pa
例:有一表面光滑的砖砌风管(粗糙度K=3mm),断面尺寸为500*400mm,流量L=1m3 /s(3600m3/h),求单位长度摩擦阻力。

解:矩形风管内空气流速:v=1/(0.5*0.4)=5m/s
矩形风管的流速当量直径:Dv=2ab/(a+b)=2*500*400/(500+400)=444mm
根据v=5m/s、Dv=444mm由附录6(通风管单位长度摩擦阻力线算图)查得Rmo=0.62Pa /m
粗糙度修正系数Kr=(Kv)^0.25=(3*5)^0.25=1.96
则该风管单位长度摩擦阻力Rm=1.96*0.62=1.22Pa/m
问:静水压和动水压的定义具体是什么?它们是如何量化计算的(特别是动水压)?
答:静水压是指管道内水处于静止状态时的压力,而动压力是指某处水流在外泄时该处的压力。

动压力=静压力-该处的总水头损失。

问:技术措施里说对于比例式减压阀,其阀后的动水压宜按静水压的80%~90%计,那动水压岂不是很大?
答:在伯努力方程里边,某一位置,相对于某一基准的z称为位置压头,u2/2g是动压头,p/2g是静压头。

全压=动压+静压。

计算按公式算,动水压增大是因为静水压的转化,正常。

水头损失是通过这个位置的压力损失/能量损失,也可以计算,他表示的是通过前后位置(断面)的损失,应该等于两个位置(断面)的位置压头+动压头+静压头之差值。

当然,位置压头,动压头,静压头一可以实测。

总压=动压头+静压头+位置压头
问:对你的公式不理解:如果有一个水箱高100米,在高10米处有一个消火栓,你能说以下它的动压和静压是多少吗?
答:根据伯努利方程:Z1+P1/γ+α1V12/2g= Z2+P2/γ+α2V22/2g+H
Z:位置水头
P/γ:静压水头
V2/2g:动压水头
H:损失水头
问:伯努利方程不错,但规范要求动压大于50米时,要设减压装备,计算以下此时的流速要多大。

看来规范要求动压大于50米不对了吗?
答:水箱高100m,10m高处静压是0.9MPa.>0.8应该分区.动压大于50m不好控制水枪,要减压没错啊.15m左右的水头就可以保证10m的充实水柱了. 水箱高100m ,10m高喷口处流量Q=0.82*3.14*0.019*0.019/4*√2*9.8*90=9.76L/s,流速34.4m/s.动压60.5m,静压29.5 m。

相关文档
最新文档