风机计算_通风管道阻力计算
风机管道送风阻力计算公式

风机管道送风阻力计算公式在工业生产中,风机管道送风是一种常见的工艺,它可以为生产线提供必要的空气流动,以保证生产的正常进行。
然而,风机管道送风过程中会产生一定的阻力,影响送风效果和能耗。
因此,了解风机管道送风阻力的计算公式对于优化送风系统设计和节能降耗具有重要意义。
风机管道送风阻力的计算公式可以通过流体力学的基本原理以及管道流体阻力的公式推导得出。
一般来说,风机管道送风阻力可以分为两部分,管道本身的阻力和管道内流体的阻力。
下面将分别介绍这两部分的计算公式。
1. 管道本身的阻力计算公式。
管道本身的阻力是由管道的长度、直径、粗糙度以及流体的流速等因素决定的。
根据流体力学的基本原理,可以得出管道本身的阻力计算公式如下:f = 0.079 / Re^0.25。
其中,f为管道摩阻系数,Re为雷诺数。
雷诺数的计算公式为:Re = ρ v d / μ。
其中,ρ为流体密度,v为流体速度,d为管道直径,μ为流体的动力粘度。
通过这两个公式,可以计算出管道本身的阻力。
2. 管道内流体的阻力计算公式。
管道内流体的阻力是由流体的黏性和管道内流速等因素决定的。
根据流体力学的基本原理,可以得出管道内流体的阻力计算公式如下:ΔP = 0.5 ρ v^2 f L / d。
其中,ΔP为管道内流体的压降,ρ为流体密度,v为流体速度,f为管道摩阻系数,L为管道长度,d为管道直径。
通过这个公式,可以计算出管道内流体的阻力。
综合以上两部分的阻力计算公式,可以得出风机管道送风阻力的总体计算公式如下:ΔP = ΔP1 + ΔP2。
其中,ΔP1为管道本身的阻力,ΔP2为管道内流体的阻力。
通过这个总体计算公式,可以计算出风机管道送风的总阻力。
在实际应用中,可以根据具体的送风系统参数,利用上述计算公式进行阻力的计算。
通过合理的送风系统设计和优化,可以降低送风系统的阻力,提高送风效果,降低能耗,从而达到节能降耗的目的。
除了上述的基本阻力计算公式外,还有一些特殊情况下的阻力计算公式,比如在风机管道弯头、分支、收缩等部位的阻力计算。
风管阻力计算

通风管道阻力计算对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。
对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。
可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。
否则别的就更不用考虑了。
管道内风量主要是由风管内阻力影响的。
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。
一:摩擦阻力(沿程阻力)计算摩擦阻力(沿程阻力)计算一:(公式推导法)根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D以上各式中:ΔPm———摩擦阻力(沿程阻力),Pa。
λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式:其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】莫台曲线图表1-1 一般通风管道中K、Re、λ的经验取值ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s)ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】L ———风管长度,m 【横断面形状不变的管道长度】D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直径:;圆形风管D为风管直径】摩擦阻力(沿程阻力)计算二:(比摩阻法)由以上计算看出计算V和D较容易而计算λ难度很大,所以我们选择查表更合适快捷。
风机计算通风管道阻力计算

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
四管制风机盘管管径计算

四管制风机盘管管径计算一、引言四管制风机盘管是一种常见的空调系统形式,它由冷却水管和热水管组成,用于实现空调系统的供冷和供热功能。
在设计和选择四管制风机盘管时,管径的计算是关键步骤之一,它直接影响到系统的运行效果和能耗。
二、管径计算原理四管制风机盘管的管径计算涉及到水流量、水压损失和管道阻力等多个因素。
一般来说,管径的选择应保证水流量满足需要,并且管道阻力较小,以减少能耗和提高系统效率。
三、水流量计算水流量是管径计算的基础,它通常根据所需的冷却或加热负荷来确定。
在实际工程中,可通过以下公式计算水流量:流量 = 负荷 / (水温差× 热容)其中,负荷是指所需的冷却或加热负荷,水温差是冷却水或热水的进出口温差,热容是水的热容量。
四、管道阻力计算管道阻力是指水流通过管道时所受到的摩擦阻力和局部阻力。
在四管制风机盘管系统中,主要包括直管段的阻力和管件、弯头等局部阻力。
一般可以通过以下公式计算管道阻力:ΔP = λ × (L/D) × (ρV^2/2)其中,ΔP是管道阻力,λ是摩阻系数,L是管道长度,D是管道直径,ρ是水的密度,V是水的流速。
五、管径选择根据水流量和管道阻力的计算结果,可以确定四管制风机盘管的管径。
一般来说,为了保证系统的运行效果和能耗,应选择满足以下条件的管径:1. 水流量大于等于所需负荷;2. 管道阻力小于等于规定的数值,以减小能耗和提高系统效率。
六、注意事项1. 在进行四管制风机盘管管径计算时,应根据具体的工程需求和设计要求来确定负荷和水温差等参数。
2. 管径的选择还应考虑到实际施工条件和材料成本等因素,以确保设计方案的可行性和经济性。
七、总结通过以上的介绍,我们了解了四管制风机盘管管径的计算方法和相关知识。
合理选择管径是确保系统运行效果和能耗的重要因素,设计者应根据实际需求和设计要求,结合水流量和管道阻力等因素进行计算,以获得最佳的设计方案。
同时,在实际施工中还需注意施工条件和材料成本等因素,以确保设计方案的可行性和经济性。
矿井通风阻力及风机静压负压全压及矿井主扇风机选型计算

矿井通风阻力及风机静压负压全压及矿井主扇风机选型计算矿井通风是矿山安全生产的重要任务之一,而矿井通风阻力及风机选型是矿井通风系统设计的核心内容。
本文将从通风阻力、风机静压、负压和全压以及矿井主扇风机选型计算等方面进行详细介绍。
1.通风阻力计算通风阻力是指矿井通风过程中空气流动所受到的阻碍力,其大小直接影响风机的工作情况和通风系统的运行效果。
通风阻力的计算依据是矿井通风管道的布置、风速、管道长度、管道截面积、矿井皮摩阻、局部阻力等因素。
通风阻力的计算公式为:ΣPi=Σρi*Li/ηi+ΣK其中,ΣPi表示总阻力,Σρi表示各段通风管道的阻力,Li表示各段管道长度,ηi表示各段电气动力的效率,ΣK表示其他的局部阻力等。
2.风机静压、负压和全压计算风机静压、负压和全压是矿井通风过程中的重要参数,用来衡量风机的出风压力和系统的阻力。
风机静压是指风机入口处的压力,其公式为:Ps=Pd+ΔPm其中,Ps表示风机静压,Pd表示大气压力,ΔPm表示气流动能损失压力。
负压是指矿井中低气压的情况,其公式为:Pn=Pd-ΔPm全压是指通风系统中的总压力,其公式为:Pt=Ps-Pn矿井主扇风机是矿井通风系统中的核心设备,其选型计算包括风机功率、扬程、风量等参数的确定。
风机功率的计算公式为:P=Q*Pt/102*η其中,P表示风机功率,Q表示风机的风量,Pt表示通风系统的全压,η表示风机的效率。
扬程的计算公式为:H=Pt/ρg其中,H表示风机的扬程,ρ表示空气的密度,g表示重力加速度。
风量的计算公式为:Q=n*V其中,Q表示风机的风量,n表示风机的转速,V表示风机的容积。
综上所述,通风阻力及风机静压、负压、全压以及矿井主扇风机选型计算是矿井通风系统设计的重要内容。
通过合理计算和选型,可以确保矿井通风系统的稳定运行和高效工作,保障矿山的安全生产。
风管阻力计算方法

PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风% 90 80 70 60 50回风% 10 20 30 40 50☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0 空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8 加热排管 2.3 2.5 2.5 3.0 3.0 3.5 冷却排管 2.3 2.3 2.5 2.5 3.0 3.0 风机出口 6.0 8.5 9.0 11.0 10.0 14.0 主风管 4.0 6.0 6.0 8.0 9.0 11.0 支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0 支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0 ☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间 5.0 7.5 6.5 6.0 5.0 办公室、图书馆 6.0 10.0 7.5 8.0 6.1 大礼堂、戏院 4.0 6.5 5.5 5.0 4.0 银行、高级餐厅7.5 10.0 7.5 8.0 6.0 百货店、自助餐厅9.0 12.0 7.5 8.0 6.0 工厂12.5(上限) 15.0 9.0 11.0 7.5一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ———摩擦阻力系数ν———风管内空气的平均流速,m/s;ρ———空气的密度,Kg/m3;l———风管长度,mRs———风管的水力半径,m;Rs=f/Pf———管道中充满流体部分的横断面积,m2;P———湿周,在通风、空调系统中既为风管的周长,m;D———圆形风管直径,m。
风机管道阻力计算

管道的阻力计算标签:管道阻力计算时间:2010-03-16 23:17:19 点击:23 回帖:0上一篇:婴儿矫正平板足的必要性(图)下一篇:富士变频器一级代理|富士温控表管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。
图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。
摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。
在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。
通常,高速风管的流动状态也处于过渡区。
只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。
计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。
只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通风管道阻力计算
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力
根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:
ΔPm=λν2ρl/8Rs
对于圆形风管,摩擦阻力计算公式可改写为:
ΔPm=λν2ρl/2D
圆形风管单位长度的摩擦阻力(比摩阻)为:
Rs=λν2ρ/2D
以上各式中
λ————摩擦阻力系数
ν————风管内空气的平均流速,m/s;
ρ————空气的密度,Kg/m3;
l ————风管长度,m
Rs————风管的水力半径,m;
Rs=f/P
f————管道中充满流体部分的横断面积,m2;
P————湿周,在通风、空调系统中既为风管的周长,m;
D————圆形风管直径,m。
矩形风管的摩擦阻力计算
我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;
流速当量直径:Dv=2ab/(a+b)
流量当量直径:DL=1.3(ab)0.625/(a+b)0.25
在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力
当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:
Z=ξν2ρ/2
ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:
1. 弯头
布置管道时,应尽量取直线,减少弯头。
圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。
2. 三通
三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部
阻力的原因。
为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。
.
在管道设计时应注意以下几点:
1. 渐扩管和渐缩管中心角最好是在8~15o。
2. 三通的直管阻力与支管阻力要分别计算。
3. 尽量降低出风口的流速。
以下为常见管段的比摩阻
规格(mm*mm) 流速(m/s) 当量直径(流速)(mm) 比摩阻(Pa/m)
1600*400 15 640 3.4
1400*300 13 495 4.5
1200*300 12 480 4.8
1000*300 10 460 2.5
800*300 9 436 2
600*300 8 400 1.8
500*300 6 375 1.2
400*300 5 342 0.8
300*300 4 200 1.3
600*250 6 350 1.3
400*250 4 307 0.6
常见弯头的局部阻力:
分流三通:9~24 Pa
矩形送出三通:6~16Pa
渐缩管:6~12Pa
乙字弯:50~198Pa
例:有一表面光滑的砖砌风管(粗糙度K=3mm),断面尺寸为500*400mm,流量L=1m3/s(3600m3/h),求单位长度摩擦阻力。
解:矩形风管内空气流速:v=1/(0.5*0.4)=5m/s
矩形风管的流速当量直径:Dv=2ab/(a+b)=2*500*400/(500+400)=444mm
根据v=5m/s、Dv=444mm由附录6(通风管单位长度摩擦阻力线算图)查得Rmo=0.62Pa/m
粗糙度修正系数Kr=(Kv)^0.25=(3*5)^0.25=1.96
则该风管单位长度摩擦阻力Rm=1.96*0.62=1.22Pa/m
问:静水压和动水压的定义具体是什么?它们是如何量化计算的(特别是动水压)?
答:静水压是指管道内水处于静止状态时的压力,而动压力是指某处水流在外泄时该处的压力。
动压力=静压力-该处的总水头损失。
问:技术措施里说对于比例式减压阀,其阀后的动水压宜按静水压的80%~90%计,那动水压岂不是很大?
答:在伯努力方程里边,某一位置,相对于某一基准的z称为位置压头,u2/2g是动压头,p/2g是静压头。
全压=动压+静压。
计算按公式算,动水压增大是因为静水压的转化,正常。
水头损失是通过这个位置的压力损失/能量损失,也可以计算,他表示的是通过前后位置(断面)的损失,应该等于两个位置(断面)的位置压头+动压头+静压头之差值。
当然,位置压头,动压头,静压头一可以实测。
总压=动压头+静压头+位置压头
问:对你的公式不理解:如果有一个水箱高100米,在高10米处有一个消火栓,你能说以下它的动压和静压是多少吗?
答:根据伯努利方程:Z1+P1/γ+α1V12/2g= Z2+P2/γ+α2V22/2g+H
Z:位置水头
P/γ:静压水头
V2/2g:动压水头
H:损失水头
问:伯努利方程不错,但规范要求动压大于50米时,要设减压装备,计算以下此时的流速要多大。
看来规范要求动压大于50米不对了吗?
答:水箱高100m,10m高处静压是0.9MPa.>0.8应该分区.动压大于50m不好控制水枪,要减压没错啊.15m 左右的水头就可以保证10m的充实水柱了. 水箱高100m ,10m高喷口处流量Q=0.82*3.14*0.019*0.019/4 *√2*9.8*90=9.76L/s,流速34.4m/s.动压60.5m,静压29.5m.
风管阻力计算方法
送风机静压Ps(Pa)按下式计算
PS = PD + PA
式中:PD——风管阻力(Pa),PD = RL(1 + K)
说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。
推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)
PD = R(L + Le)
式中Le为所有局部阻力的当量长度。
PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)
☆低速风管系统的推荐和最大流速m/s
☆低速风管系统的最大允许流速m/s
☆推荐的送风口流速m/s
☆以噪声标准控制的允许送风流速m/s
☆回风格栅的推荐流速m/s
通风管的规格一般采用假定流速法设计,主风管保持在8-10m/s,支风管6-8m/s,最末端风管保持4-6m/s。
所设计的风管总体上要求既经济又能达到最低的风阻和噪声,使节能环保空调的送风量尽量达到最大值,风管弯曲半径一般不小于风管直径的两倍,以减少弯管通风阻力;送风管道的长度应根据不同型号的环保空调风压不同的特点进行设计;所设计的管道应尽量取直,避免不必要的拐弯和分支管,以减少管道
局部阻力;从平面布置和经济角度上考虑,能不用风管的地方就不用风管,必须使用风管的地方,尽量把风管设计短些;
较长管道根据风量设计成多段不同规格的风管,采用变径管连接,变径管的设置不宜过多,一般整根不超过四个,变径管长由“>2(D-d)”来确定;送风管道与环保空调主机出风口连接处应密封好;室外管道过长宜设计保温,室内管道一般不须保温;若在设计中存在支风管,则须在分支管上装设阀门或分风挡板以调节风量,使支管风量达到设计值。