基于单片机的电量检测系统设计方案
多电量参数检测用单片机系统设计

( e at n f c a ia n lcr a E gn eig J igV ct n e h ooyC l g ,iig2 2 3 C ia D p r to h nc l dEe tc n ie r ,i n o ai a T n l ol e Jnn 7 0 7, hn ) me Me a il n n ol c g e
近年 来 , 布 计 算 技 术 , 分 网络 技 术 与 微 电子 技 术 的 长 足 进 步
测。
测 、 点巡回监测 、 点并行采集与控制等功能 。 多 多
ቤተ መጻሕፍቲ ባይዱ
2 二 级 分 布 式 智 能 监 测 系 统 的 总 体 结
构
无论 是在实验室还是生产现场 , 各实验台或设备分布较 广 , 却有可能需要同时并 行工作 , 此独立 。如果将 采集点 的传感 彼
器 用 导 线 连 接 到 监 测 室 的 测 量 仪 表 上 , 不 仅 容 易 受 电 磁 场 干 则 扰 引 起 测 量 误 差 , 且 由 于 连 线 较 多 , 统 结 构 复 杂 , 此 本 系 而 系 因 统 采 用 了分 布 式 结 构 。 即 由 多 台 智 能 仪 表 作 为 分 散 式 数 据 采 集 处 理 器 , 别 安 装 在 现 场 , 适 应 恶 劣 的 工 作 环 境 , 能 仪 表 中 分 以 智 的数 据 可 由 汇 总 处 理 计 算 机 ( 本 系 统 中 的 上 位 机 ) 过 通讯 接 即 通 口汇 总 , 下 位 机 通 过 总线 互 联 , 成 主从 式 总 线 型 多 微 机 S 上 构 I O 系 统 , 分布 式 计 算 机 系 统 地 实 现 创 造 了 良好 的硬 件 环 境 : 为 奉 系 统 的 下 位 机 为 自行 开 发 的 可 独 立 使 用 的智 能 仪 表 : 它
单片机指令的电源管理和电量检测

单片机指令的电源管理和电量检测在现代科技领域,单片机(MCU)已经广泛应用于各种电子设备和嵌入式系统中。
作为控制中心,单片机需要高效地管理电源和监测电量,以确保设备的正常运行和延长电池寿命。
本文将重点探讨单片机指令的电源管理和电量检测方法及相关技术。
一、电源管理电源管理在单片机系统设计中至关重要,它涉及到供电、电压稳定、功耗控制、电池管理等多个方面。
下面将介绍几种常见的电源管理技术:1. 供电方式选择单片机系统可以通过多种方式供电,如直流电源、蓄电池、太阳能电池等。
在选择供电方式时,需要根据应用需求权衡电池寿命、可靠性和成本等因素。
2. 电源切换当单片机系统同时使用多个电源时,需要合理进行电源切换。
例如,当主电源故障时,自动切换到备用电源以保持系统运行。
切换控制可以通过软件或硬件实现,具体方式根据应用需求而定。
3. 低功耗模式在实际应用中,为了延长电池寿命,单片机需要进入低功耗模式。
通过将未使用的模块关闭或切换到低功耗状态,可以有效降低功耗。
同时,单片机还可以通过外部中断唤醒来控制低功耗模式的进入和退出。
4. 供电电压监测为了防止电源电压过高或过低对单片机系统造成损害,需要在电源输入端添加电压监测电路。
该电路可以实时检测电源电压,并通过引脚中断或传感器反馈给单片机,从而采取相应的保护措施。
二、电量检测电量检测是指对电池或电源的剩余电量进行监测和估计的过程。
在单片机应用中,电量检测对于实现电池状态显示、电源百分比估算等功能至关重要。
下面介绍几种常见的电量检测技术:1. 电压比较法电压比较法是一种简单而常用的电量检测方法。
通过将电池电压与参考电压进行比较,可以估计出电池的电量。
该方法仅适用于在恒定负载下电池电压随电量变化较为线性的情况。
2. 电流积分法电流积分法是一种更为精确的电量检测方法。
通过对电池电流进行积分,可以实时监测电池的充放电情况,从而推算出电量。
该方法需要对电流进行精确的采样和积分计算,因此对于系统的实时性和功耗要求较高。
毕业设计(论文)-基于单片机的RLC检测仪

基于单片机的RLC检测仪摘要在应用中,我们常常要用到电阻、电感、电容等最基本的元器件,而对它们的测量就成为了我们经常要做的一件事。
因此,设计一个安全、便捷的RLC检测仪就很有必要了。
硬件方面,以51单片机为核心。
测量电阻和电容,以555芯片为核心,与少量的电阻、电容相连组成振荡电路,再根据电容的充放电过程,使测量电路输出高低电平矩形波。
测量电感,是以mc1648压控振荡器为核心,外接电感、电位器、变容二极管等,组成LC振荡电路,调节变容二极管,使电路发生谐振,输出矩形波。
这样,就把所得的波形送给单片机,通过51单片机的定时/计数功能计算矩形波的频率,再通过公式来算出电阻、电感、电容的参数值,并送显示器显示。
软件方面,通过Keil,用C语言来编程,利用软硬件的结合,制作出一个快速的、方便的、符合实际应用的RLC测量仪。
关键词:51单片机,555电路,1602LCD显示, mc1648压控振荡器ABSTRACTIn applications,we often use the resistance,the capacitance and the inductance etc.The measurement of these components is a thing that we often do.So,it is necessary to design a safe and convenient detector of RLC.In the aspect of hardware,I painting the circuit diagram by Proteus.With 51 SCM as the core and through the oscillating circuit of RC by the 555 timing,we can make themeasurement circuit output a high level rectangle wave by using the process of charging and discharging. With the mc1648 vco as the core,we can form the LC oscillating circuit by the external inductor,potentiometer and transfiguration diode in the measurement of inductance.We can make the circuit produce resonance by adjusting the transfiguration diode.And it can output a high level rectangle. We can calculate the frequency of the rectangle wave through the timing and counting functions of 51 SCM.So we can calculate the parameters of impedance through the formula and show it out through the display.In the aspect of software,I programming by using C language in Keil.With the combination of hardware and software,I will make a quick and actual detector.KEY WORDS: 51 SCM 555 Circuit 1602LCD displays Mc1648 VCO目录1、绪论 (5)1.1本课题的背景、意义及目的 (5)1.2简述本课题在国内外的发展概况及存在的问题 (5)1.3本课题主要研究方法、需要重点研究的问题及解决思路 (6)2、总体方案设计的说明 (7)2.1总体方案的选择 (7)2.2总体方案的分析 (8)3、硬件设计 (9)3.1单片机控制部分 (9)3.2显示部分 (13)3.3测量部分 (16)3.3.1 555定时器 (16)3.3.2 mc1648压控振荡器 (19)3.3.3测电阻的电路 (20)3.3.4测量电容的电路 (21)3.3.5测量电感的电路 (22)4、软件设计 (25)4.1液晶显示部分 (26)4.2定时/计数部分 (28)5、调试与仿真 (29)6、结论 (37)致谢 (38)参考文献 (39)附录 (40)附录一源程序 (40)1、绪论1.1本课题的背景、意义及目的测量是通过实验的方法获得定量信息的过程。
基于单片机的电流电压测量系统设计

基于单片机的电流电压测量系统设计目录1 前言 (2)1.1 电子测量概述 (2)1.2 数字电压表的特点 (2)1.3 单片机的概述 (3)2 系统方案的选择与论证 (4)2.1 功能要求 (4)2.2 系统的总体方案规划 (4)2.3 各模块方案选择与论证 (5)2.3.1 控制模块 (5)2.3.2 量程自动转换模块 (5)2.3.3 A/D转换模块 (5)2.3.4 显示模块 (6)2.3.5 通信模块 (6)3 系统的硬件电路设计与实现 (7)3.1 系统的硬件组成部分 (7)3.2 主要单元电路设计 (7)3.2.1 中央控制模块 (7)3.2.2 量程自动转换模块 (8)3.2.3 A/D模数转换模块 (13)3.2.4 显示模块 (14)3.2.5 通信模块 (15)3.2.6 电源部分 (16)4 系统的软件设计 (16)4.1 软件的总体设计原理 (16)4.1.1 A/D转换程序设计 (17)4.1.2 数字滤波程序设计 (18)4.1.3 量程自动转换的程序设计 (20)5 系统调试及性能分析 (22)5.1 调试与测试 (22)5.2 性能分析 (22)6 结束语 (23)6.1 设计总结 (23)6.2 设计的心得 (23)7 致谢词 (24)附录 (25)附录1 参考文献 (25)附录2 系统总电路图 (26)附录3 源程序 (27)1 前言1.1 电子测量概述从广义上讲,但凡利用电子技术来进行的测量都可以说是电子测量;从狭义上来说,电子测量是在电子学中测量有关电量的量值。
与其他一些测量相比,电子测量具有以下几个明显的特点:①测量频率范围极宽,这就使它的应用范围很广;②量程很广;③测量准确度高;④测量速度快;⑤易于实现遥测和长期不间断的测量,显示方式又可以做到清晰,直观;⑥易于利用电脑,形成电子测量与计算技术的紧密结合。
随着科学技术和生产的发展,测量任务越来越复杂,工作量加大,测量速度测量准确度要求越来越高,这些都对测量仪器和测试系统提出了更高的要求。
基于单片机的电池电压检测方案设计

基于单片机的电池电压检测方案设计电池电压检测是电池管理系统中的重要一环,可以用来监测电池的电量和健康状况。
本文将介绍一种基于单片机的电池电压检测方案设计。
电池电压检测方案的设计目标是实现对电池电压的精确检测,并能够将检测结果与预设的阈值进行比较,以判断电池的状态。
具体的设计步骤如下:1. 硬件设计:1.1 选择合适的电池电压检测模块:可以选择集成了AD转换器的电压检测模块,如常用的MAX17043芯片。
该芯片具有高精度的电池电压检测功能,并能通过I2C接口与单片机进行通信。
1.2 连接电池电压检测模块和单片机:将电池电压检测模块的输出引脚与单片机的AD输入引脚相连接,以实现模拟电压的转换和采集。
1.3 设计供电电路:为电池电压检测模块和单片机提供稳定的电源,可以使用电源管理芯片来实现。
2. 软件设计:2.1 单片机初始化:在程序开始时,需要对单片机的AD输入引脚进行初始化,以及对电池电压检测模块进行初始化,包括设置采样率、AD转换位数等。
2.2 读取电池电压:通过AD输入引脚采集电池电压的模拟信号,并将其转换为数字信号。
根据电压和AD转换系数的关系,可以得到电池的实际电压值。
2.3 比较电池电压:将当前检测到的电池电压与预设的最低电压阈值进行比较。
如果电池电压低于阈值,则表示电池电量不足或电池老化,需要进行相应的处理。
2.4 输出电池状态:根据电池电压的比较结果,可以通过显示屏、LED灯或蜂鸣器等输出设备来显示电池的状态。
还可以将电池状态信息通过串口或无线通信模块发送给外部设备。
3. 系统调试:在完成硬件和软件设计后,需要对系统进行调试和测试。
可以通过改变电池电压来模拟不同的电池状态,并观察系统的检测结果是否准确。
总结:基于单片机的电池电压检测方案设计涉及到硬件设计和软件设计两个方面。
通过选择合适的电池电压检测模块,实现对电池电压的精确检测,并可以通过单片机进行处理和输出。
该方案可以广泛应用于电池管理系统中,提高电池使用效率和安全性。
基于单片机的电量检测系统设计

基于单片机的电量检测系统设计基于单片机的电量检测系统设计I基于单片机的电量检测系统设计摘 要要随着电力系统电量的日益扩大和电压运行等级的不断提高,传统的电量检测系统暴露出越来越多的缺点,难以满足现代电网向自动化、数字化发展的需要。
暴露出越来越多的缺点,难以满足现代电网向自动化、数字化发展的需要。
本文首先概述了WB 系列交流电量传感器的工作原理和各项工作技术指标,并做了硬件系统的设计,包括控制电路、模块转换部分、键盘输入部分、LED 显示部分方面的设计。
然后介绍了ADC0809和74HC595中电子接口的各项特性,同时对单元的结构原理和功能划分进行了分析和研究,选择了合适的各种数据转换软件按。
通过分析和研究,提出了软件系统方面的设计方案,最关键的问题是A/D 转换程序的设计、主程序和子程序的流程方案计、主程序和子程序的流程方案关键词 A/D 转换器转换器 LED 显示器显示器 ADC0809 74HC595单片机单片机基于单片机的电量检测系统设计基于单片机的电量检测系统设计POWER DETECTIO SYSTEM BESEDON SINGLE CHIP DESIGNABSTRACTWith the growing power system capacity and the increasing level voltage operation, the traditional amount of power detection system weaknesses exposed more and more difficult to meet the modern power grid to the automation, digital development.This paper outlines the WB series AC power sensor working principle and the work of technical indicators, and made the hardware system design, including control circuits, modules conversion component, keyboard part, LED showed that some aspects of the design. Then introduced the ADC0809 and the 74HC595 in the electronic interface properties, while the structural principles and functions of cell division was analyzed and studied, the suitable range of data conversion software by. Through analysis and research, the design of software systems, the most critical issue is A / D conversion process of design, the main program and subroutine program flow.KEYWORDSA/D conversion chip 74HC595SCM ADC0809 LED display chip录目 录中文摘要 ............................................................................................................ 错误!未定义书签。
基于单片机的蓄电池电量检测系统设计开题报告

基于单片机的蓄电池电量检测系统设计开题报告随着科技的不断发展,电力能源的利用和管理越来越受到重视。
蓄电池是一种常见的储能设备,广泛应用于各种电力系统、通信设备、家用电器等领域。
然而,蓄电池的充放电状态是一个关键的参数,直接影响其性能和寿命。
对蓄电池电量进行检测和管理成为了一项重要的工作。
本设计拟采用单片机技术,设计一种基于单片机的蓄电池电量检测系统,以实现蓄电池电量的准确测量和状态监控。
1. 设计背景随着蓄电池的广泛应用,对电池电量的准确检测和管理愈发重要。
传统的蓄电池电量检测方法主要依靠电压测量,然而,由于电池内阻、温度等因素的影响,仅仅依靠电压测量的方法已经无法满足实际需求。
基于单片机的蓄电池电量检测系统的设计是必要的。
2. 设计目标本设计旨在设计一种基于单片机的蓄电池电量检测系统,能够准确测量蓄电池的电量,并实现对蓄电池充放电状态的实时监测。
具体目标如下:(1) 实现对蓄电池电压、电流、温度等参数的准确测量。
(2) 基于所测量的参数,计算出蓄电池的电量,并进行显示。
(3) 实现对蓄电池的充放电状态进行实时监测,并能够发出警报。
(4) 设计简单、成本低,易于实现和推广。
3. 设计原理本设计采用单片机作为核心控制器,通过采集蓄电池的电压、电流、温度等参数,利用数学模型进行计算,并结合LCD显示屏进行显示。
具体原理如下:(1) 采集电压和电流:通过传感器采集蓄电池的电压和电流信号,经过模数转换器(ADC)转换成数字量信号。
(2) 采集温度:通过温度传感器采集蓄电池的温度信号,同样经过ADC转换成数字量信号。
(3) 数据处理:通过单片机对所采集的数据进行处理,计算蓄电池的电量和温度,并进行显示。
(4) 实时监测:对计算得到的电量和温度进行实时监测,当电量过低或温度过高时,发出警报。
4. 设计方案本设计采用STC89C52单片机作为控制核心,驱动LCD1602液晶显示屏进行显示,通过MAXxxx传感器模块采集蓄电池的电压、电流和温度信号。
51单片机电池电量检测系统设计

51单片机电池电量检测系统设计1. 简介本文档描述了一种使用51单片机设计的电池电量检测系统。
该系统旨在监测电池的电量,并通过51单片机进行数据处理和显示。
该系统适用于需要监测电池电量的各种设备,如智能手表、无人机等。
2. 系统设计2.1 系统架构该电池电量检测系统由以下主要组件构成:•51单片机:作为系统的核心处理器,负责数据采集、处理和显示。
•电压测量模块:用于测量电池的电压。
•LCD显示模块:用于显示电池电量信息。
•按钮模块:用于系统操作和设置。
2.2 硬件设计2.2.1 电压测量模块电压测量模块主要由一个ADC转换器组成,用于将电池电压转换为数字量,以便51单片机进行处理。
2.2.2 LCD显示模块LCD显示模块用于显示电池电量信息。
可以使用基于液晶技术的LCD模块,通过51单片机控制显示电池电量的百分比或其他信息。
2.2.3 按钮模块按钮模块用于系统的操作和设置。
可以通过按钮模块实现电池电量的复位、设置电池类型等功能。
2.3 软件设计2.3.1 系统初始化系统初始化时,51单片机将初始化ADC转换器、LCD显示模块和按钮模块。
设置合适的ADC参考电压,配置LCD显示模块的参数,并对按钮模块进行初始化。
2.3.2 电池电量测量系统将定时读取ADC转换器的数值,转换为电池电压。
然后,根据电池的电压和电池类型进行电量计算,并将计算结果存储在内存中。
2.3.3 数据显示每次电池电量测量完成后,系统将更新LCD显示模块上的电量信息。
可以通过LCD显示百分比、图形等形式显示电池电量信息。
2.3.4 系统操作通过按钮模块,用户可以对系统进行操作,如复位电池电量计数、设置电池类型等。
3. 总结本文档描述了一种使用51单片机设计的电池电量检测系统。
通过ADC转换器测量电池电压,并使用LCD显示模块显示电池电量信息。
此系统可广泛应用于电池电量监测领域,提供方便和准确的电量监测功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的电量检测系统设计方案1绪论自第一个微处理器问世以来,以微处理器为核心构成的计算机以各种各样的形式,无孔不入的渗入到人们的生产、生活、科研等各个领域,为人类带来了渗透到各个领域的“智能”。
微处理器是整个智能仪器仪表的核心,检测电路时微处理器的外围设备,微机通过接口发出各种控制信息给检测电路,以规定功能、启动测量、改变工作方式等。
微机通过查询或检测电路向微机提出的中断请求,使微机及时了解检测电路的工作状态。
当检测电路完成一次测量后,微机读取测量数据,进行了解检测电路的工作状态。
当检测电路完成一次测量后,微机读取测量数据,进行必要的加工、计算、变换等处理,最后以各种方式输出,如送显示器、打印机打印,或送给系统的主控制器等等。
近二十年来,以计算机科学,信息学,生命科学为代表的各门新兴学科的迅猛发展,极大限度的刺激了全球经济的发展,在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,电能是人们日常生活和工业生产中的重要能源之一,在现代社会中起着越来越重要的作用,而电压、电流是其中最关键的两个因素,是否准确的测量电压、电流对我们的生活和生产有着至关重要的影响,特别是电工和电力系统等领域经常要对交流电量进行采样测试以了解工作电压或整个电网的工作情况。
2 WB系列交流电量传感器2.1 概述WB系列交流电量传感器采用电磁隔离技术和专用厚膜集成电路。
对电网或电路中的交流电流或交流电压进行实时测量,将其变换成跟踪电压暑促(Vg)、直流电压输出(Vz)、直流电压输出(Iz)、频率输出(Fk)。
传感器的输出可以与各型AD转换器配接构成数据采集系统,也可以与传统模式、数字式指示仪表配接,显示被测量之值。
体积小、重量轻、精度高、耗能低,输入电路、输出电路完全隔离,输出信号可以共地,输出形式多样,满足各种使用要求,在0~120%标称输入围,输出信号入输出信号之间保持正比例关系,通聘宽带,可以测量5kHz以的正弦交流电流或交流电压。
结构形式多样,提供直插式、DIN卡装式安装方式,方便各种场合使用等特点。
2.2 WB交流电量传感器的工作原理本系列传感器采用模块化电路结构,如图2-1主要由电流测头1(或电压侧头2)、采样电路3、定标放大器4、装用厚膜集成转化器5、6、7组成。
EVgVzIzFk+E图2-1 电路结构被测电流信号Ix﹝或被测电压信号Ux﹞经电流测头1﹝或电压测头2﹞隔离变换,在二次回路形成高精度毫安级跟踪电流,经采样电路3转换为跟踪电压信号,在经定标放大器4进行放大、定标,形成跟踪电压输出Vg;跟踪电压信号经AC/DC转换器5后,形成直流电压输出Vz。
Vz输出经V/I转换器6后形成直流输出Iz,Vz输出经V/F变换器7后形成频率输出Fk。
只有输出跟踪电压Vg的产品才使用正负电源﹝+E,-E﹞,其他产品才使用单一正电源。
图2-1中电流测头1和电压测头2是本系列产品的关键部件,属于精密互感器系列,承担隔离和线性变换的双重作用,改变电流测头规格或改变电压测头的输入电阻可以改变传感器的测量围。
定标放大器4是一个宽带交流放大器,它产生的电压输出Vg,在波形和相位上快速跟踪输入信号的变化,Vg输出型传感器适用于交流采样系统。
转换器5是配套研发的专用厚膜集成器件,它把交流电压信号变换为直流电压或直流电流输出。
转换原理分为平均值转换和真有效值转换,平均值转换器成本低,适用于标准正弦交流信号转换;真有效值转换器适用于含有多次谐波的交流信号(如三角波、矩形波、梯形波、可控硅调功波等),单成本较高。
转换器5(或转换器6)的“基准波”接地时,他输出0~5V(或0~20mA);为它们配加以个高稳定的偏置电路,就形成1V~5V(或4mA~20mA);为它们配加一个高稳定的偏置电路,就形成了1V~5V(4mA~20mA)输出。
2.3 传感器型号及技术指标采用WBV413AS3﹝交流电压传感器﹞和WB1414AS1﹝交流电流传感器﹞对电流和电压进行数据采集。
WBV141AS3技术指标:输入规格:10V~1000VAC输出规格:4mA~20mA响应时间: 250MS负载能力:6V静态功耗:50MW供电电源:+12或+24其他指标:(1)线性围:0~120%标称输入(2)输入频响:25~5K(3)环境条件:0℃~+50℃WB1414AS1技术指标:输入规格:5A~50A输出规格:4mA~20mA精度等级:0.5级响应时间:300ms负载能力:6V静态功耗:800mW供电电源:+12或+24其他指标:(1)线性围:0~120%标称输入(2)输入频响:25Hz~5kHz,特别适合工频至中频(3)环境条件:0℃~+50℃。
3 硬件系统的设计3.1 硬件框图图3-1 硬件框图本设计是AT89C51单片机控制的电量检测系统。
其工作原理是:先由电量传感器采集数据,启动A/D转换,后将数据读入单片机中进行运算并显示,即由数据采集,数据分析和数据处理三部分完成。
本设计中,控制系统的控制器有单片机AT89C51为核心,系统采用WB1414AS1(交流电流传感器)和WBV1414AS3﹝交流电压传感器﹞对电流和电压进行数据采集,并输出标准电流4mA~20mA,WB1414AS1、WBV1414AS3具有新型电磁隔离,高精度变送等优点。
AT89C51单片机控制AD0809进行模数转换,数据经过单片机的运算,输出结果,并把结果在4位8段数码管上显示。
3.2 控制电路的设计3.2.1单片机的选择20世纪80年代以来,单片机的发展非常迅速,就通用单片机而言,世界上一些著名的计算机厂家已经投放市场的产品就有50多个系列,数百个品种。
目前世界上较为著名的8位单片机的生产厂家和主要机型如下:美国Intel公司:MCS-51系列和其增强型系列美国Motorola公司:6801系列和6805系列美国Amtel公司:89C51等单片机美国Zilog公司:Z8系列和3870系列美国Fairchild公司:F8系列及SUPER8美国ROCKWELL公司:6500/1系列美国TI(德克萨斯仪器仪表)公司:TMS7000系列NS(美国国家半导体)公司:NS8070系列等等。
尽管单片机的品种很多,但是在我国使用最多还是Intel公司的MCS-51系列单片机和美国Amtel公司的89C51单片机。
MCS-51系列单片机包括三个基本型8031、8051、8751。
8031部包括一个8为CPU、128个字节RAM,21个特殊功能的寄存器(SFR)、4个8位并行I/O口、1个全双工穿行口、2个16位定时器/计数器,但片无程序存储器,需外扩EPROM芯片。
比较麻烦,不予采用。
8051是在8031的基础上,片集成有4KROM,作为程序存储器,是一个程序不超过4K字节的小系统。
ROM的程序是公司制作芯片时,代为用户烧纸的,出场的8051都是含有特殊用途的单片机。
所以8051适用用应用在程序已定且批量大的单片机产品中,所以也不采用。
8751是在8031基础上,增加了4K字节的EPROM,它构成了一个程序小于4KB 的小系统。
用户可以将程序固化在EPROM,可以反复修复程序。
但其价格相对8031较贵。
8031外扩一片4KB EPROM就相当于8751,它的最大优点是价格低。
随着大规模集成电路技术的不断发展,能装入片的外围接口。
虽然虽都在不断的改变制造工艺,但核却一样,也就是说这类单片机指令系统完全兼容,绝大多数管脚也兼容;在使用上基本可以直接互换。
所以不采用89C51单片机是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
89C 51是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89C2051是它的一种精简版本。
89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
所以采用此单片机较好。
AT89C51单片机简介主要特征:与MCS-51 兼容;4K字节可编程闪烁存储器;寿命:1000写/擦循环;数据保留时间:10年;全静态工作:0Hz-24MHz;三级程序存储器锁定;128*8位部RAM ;32可编程I/O线;两个16位定时器/计数器;5个中断源;可编程串行通道;低功耗的闲置和掉电模式;片振荡器和时钟电路;管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
除了作为一般的I /O口线外,更重要的用途是它的第二功能,如下表所示:表3-1 P3口的替代功能P3口还接受一些用于FLASH闪速存储器编程和程序校检的控制信号。
RST:复位输入。
当振荡器工作时,RST引脚出现两个机器周期以上高电平将单片机复位。
ALE/PROG:当访问外部程序存储器或说句存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。