DNA-蛋白质相互作用的研究方法
染色质免疫共沉淀(ChIP)实验具体方法及步骤

染色质免疫共沉淀(ChIP)实验具体方法及步骤在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。
目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。
一、细胞的甲醛交联与超声破碎(第一天)1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。
2. 37℃孵育10 min。
3. 终止交联:加甘氨酸至终浓度为0.125 M。
450 ul 2.5 M甘氨酸于平皿中。
混匀后,在室温下放置5 min即可。
4. 吸尽培养基,用冰冷的PBS清洗细胞2次。
5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。
预冷后2 000 rpm 5 min收集细胞。
6. 倒去上清。
按照细胞量,加入SDS Lysis Buffer。
使得细胞终浓度为每200ul含2x106个细胞。
这样每100 ul溶液含1x106个细胞。
再加入蛋白酶抑制剂复合物。
假设MCF7长满板为5x106个细胞。
本次细胞长得约为80%。
即为4x106个细胞。
因此每管加入400 ul SDS Lysis Buffer。
将2管混在一起,共800 ul。
7. 超声破碎:VCX750,25%功率,4.5 s冲击,9 s间隙。
共14次。
二、除杂及抗体哺育(第一天)1. 超声破碎结束后,10 000 g 4℃离心10 min。
去除不溶物质。
2. 留取300ul做实验,其余保存于-80℃。
3. 300 ul中,100 ul加抗体做为实验组;100 ul不加抗体做为对照组;100 ul加入4 ul 5 M NaCl(NaCl终浓度为0.2 M),65℃处理3 h解交联,跑电泳,检测超声破碎的效果。
DNA-蛋白质交联的研究进展

DNA-蛋白质交联的研究进展作者:黄康敏来源:《安徽农业科学》2019年第20期摘要;DNA-蛋白质交联(DNA;protein crosslinks,DPCs)是一种高毒性的DNA损伤,由紫外线、电离辐射以及甲醛等化合物诱导形成。
DPCs会阻碍DNA复制,造成DNA双链缺口,影响基因组的稳定性。
目前,研究发现酵母的蛋白酶Wss1和后生动物的蛋白酶SPRTN通过蛋白水解作用参与了DPCs的修复途径,为阐明DPCs的修复机制奠定了基础。
对DPCs 的影响因素及修复途径进行总结,为DPCs的深入研究提供了一些思路。
关键词;DNA-蛋白质交联;DNA修复;Wss1;SPRTN中图分类号;R114文献标识码;A文章编号;0517-6611(2019)20-0018-04doi:10.3969/j.issn.0517-6611.2019.20.005开放科学(资源服务)标识码(OSID):Research Progress of DNA;Protein CrosslinksHUANG Kang;min;(Guizhou Center for Disease Control and Prevention,Guiyang,Guizhou 550000)Abstract;DNA;protein crosslinks(DPCs) are highly toxic DNA lesions,DPCs arise by UV;light,ionizing irradiation,are particularly caused by reactive compounds such as formaldehyde.DPCs interfere with DNA replication and transcription,which could result in double strain break (DSB),and affect the stability of genome.It was found that the metalloproteinase Wss1 of yeast and the protease SPRTN of metazoan participated in the DPCs repair through proteolysis,laying a foundation for elucidation of the mechanism of DPCs repair.This review summarized the influencing factors and pathway of DPCs repair,and provided some ideas for further research on DPCs.Key words;DNA;protein crosslinks;DNA repair;Wss1;SPRTN在細胞的生命活动中,各种外源性和内源性因子(如紫外线、活性氧等)会造成DNA损伤,从而导致突变、癌变,甚至死亡[1]。
DNA与蛋白质的相互作用--试验方法

今天学习DNA与蛋白质的相互作用--试验方法1. DNaseI足迹试验(DNaseI Footprinting):是一类用于检测与特定蛋白质结合的DNA序列的部位及特性的专门的实验技术。
试验过程:首先是将待检测的双链DNA分子用32P作末端标记,并用限制酶去掉其中的一个末端,得到只一条链单末端标记的双链DNA分子,而后在体外同细胞蛋白质提取物混合。
待二者结合之后,再加入少量的DNaseI(它可沿着靶DNA作随机单链切割)消化DNA分子,并控制酶的用量使之达到平均每条DNA链只发生一次磷酸二酯键断裂。
如果蛋白质提取物中不存在与DNA结合的特异蛋白质,经DNaseI消化之后便会产生出距放射性标记末端1个核苷酸、2个核苷酸、3个核苷酸等等一系列前后长度均仅相差—个核苷酸的、不间断的、连续的DNA片段梯度群体。
从此混合物中除去蛋白质之后,将DNA片段群体加样在变性的DNA测序凝胶中进行电泳分离,经放射自显影,便可显现出相应于DNaseI切割产生的不同长度DNA片段组成的序列梯度条带。
但是,如果有一种蛋白质已经结合到DNA分子的某一特定区段上,那么它就将保护这一区段的DNA免受DNaseI的消化作用,因而也就不可能产生出相应长度的切割条带。
足迹试验的一个明显的优点是,可以形象地展示出一种特殊的蛋白质因子同特定DNA片段之间的结合区域。
如果使用较大的DNA片段,通过足迹试验便可确定其中不同的核苷酸序列与不同蛋白质因子之间的结合位点的分布状况。
如同凝胶阻滞试验一样,我们也可以加入非标记的竞争DNA序列,来消除特定的“足迹”,并据此测定其核苷酸序列的特异性。
所以在电泳凝胶的放射自显影图片上,相应于蛋白质结合的部位是没有放射性标记条带的,出现了一个空白的区域,人们形象地称之为“足迹”。
应用DNaseⅠ足迹试验确定转录因子Sp1在HBV表面抗原启动子的结合位点为-4 9~-29核苷酸序列之间。
2. 凝胶阻滞试验(gel retartion assay):又叫做DNA迁移率变动试验(DNA mo bility shtft assay),是在80年代初期出现的用于在体外研究DNA与蛋白质相互作用的一种特殊的凝放电泳技术。
蛋白质相互作用的主要研究方法

蛋白质相互作用的主要研究方法细胞承受外源或是源的信号,通过其特有的信号途径,调节其基因的表达,以保持其生物学特性。
在这个过程中,蛋白质占有很重要的地位,它可以调控, 介导细胞的许多生物学活性。
虽然有一些蛋白质可以以单体的形式发挥作用,但是大局部的蛋白质都是和伴侣分子一起作用或是与其他蛋白质形成复合物来发挥作用的。
因此,为了更好地理解细胞的生物学活性,必须很好地理解蛋白质单体和复合物的功能,这就会涉及到蛋白质相互作用的研究。
在现代分子生物学中,蛋白质相互作用的研究占有非常重要的地位。
研究蛋白质相互作用时要根据不同的实验目的及条件选择不同的实施策略。
研究蛋白间的相互作用人们关注的是蛋白间能否发生结合,实验本身更趋向于验证性,因此,应选择操作性强、可信度高、接近生理条件的技术方法,尽量减少实验本身带来的假阴性或假阳性。
蛋白质相互作用方面的研究方法主要有免疫共沉淀、Far Western blotting、生物信息学、酵母双杂交系统、噬菌体展示、外表等离子共振、荧光能量转移等几种。
1 免疫共沉淀免疫共沉淀〔Co-Immunoprecipitation〕是以抗体和抗原之间的专一性作用为根底的用于研究蛋白质相互作用的经典方法。
是确定两种蛋白质在完整细胞生理性相互作用的有效方法。
其根本原理是:细胞裂解液中参加抗体,与抗原形成特异免疫复合物,经过洗脱,收集免疫复合物,然后进展SDS-PAGE及Western blotting分析。
免疫共沉淀既可以用于检验的两个蛋白质在体的相互作用,也可以找出未知的蛋白质相互作用,不管是两者的哪个,其原那么都是一样的,都需要用特异性的抗体与其中的一种蛋白质结合,之后通过蛋白质A或蛋白质G琼脂糖微珠将复合物沉淀下来,然后用SDS-PAGE鉴定。
免疫共沉淀中设置正确的对照非常重要,因为该方法可能出现假阳性的概率比拟高,设置的对照包括:在对照组中使用对照抗体,以缺失目的蛋白的细胞系作为阴性对照等等。
研究dna和蛋白质相互作用的方法

研究dna和蛋白质相互作用的方法
DNA与蛋白质之间的相互作用可以采用以下几种研究方法:
1. DNA互补性杂交实验:该实验可以检测DNA片段和蛋白质之间的相互作用。
通过使用两个不同的DNA片段,彼此之间可互补作用,可以检测两个DNA之间的相互作用。
2.活性酶杂交:该实验通过将一个DNA 附着在特定的受体上,并添加相应的受体对激活一个特定酶(如磷酸酶),从而直接检测DNA 与蛋白质之间的相互作用。
3.免疫结合实验:该实验可以检测一种特定的抗体是否能够与一种特定的蛋白质结合,从而检测DNA 与蛋白质之间的相互作用。
4. PCR实验:该实验可以检测一种特定的DNA 序列是否与特定的蛋白质结合,从而反映DNA 与蛋白质之间的相互作用。
基因定点诱变技术与DNA与蛋白质互作及定点突变介绍

33
• EMSA • 还被
用于 研究 与蛋 白质 相结 合的 DNA • 序列 的特
异型。
34
四)DNaseI足迹试验 (DNase I foot printing)
• 主要步骤: ① 用32P标记DNA双链末端,并用RE切去一端; ② 加入细胞特定周期蛋白质提取物,温育; ③ 加入适量DNaseI或硫酸二甲酯-六氢吡啶,使 DNA链发生断裂。 这一反应中,DNaseI或硫酸二甲酯的用量非常关键, 要保证一条链只发生一次断裂! ④沉淀DNA(包括与DNA相结合的蛋白质); ⑤进行DNA凝胶分析。
23
24
酵母双杂交的基本原理示意图 25
二) 酵母单杂交系统
• 酵母单杂交系统是上世纪90年代中发展起来的研 究DNA-蛋白质之间相互作用的新技术,可识别稳 定结合于DNA上的蛋白质,在酵母细胞内研究真核 生物中DNA-
14
一)酵母双杂交系统 (yeast two-hybrid system)
1. 原理:
• 真核生物的转录因子大多是由两个结构上分开、 功能上独立的结构域组成的,即 DNA结合域(BD) 和转录激活域(AD)。
• 单独地BD能与特定基因地启动区结合,但不能激 活基因的转录,而由不同转录因子的BD和AD所形 成的杂合蛋白却能行使激活转录的功能。
20
4)一旦酵母细胞中表达的“诱饵”蛋白与“猎物” 载体中表达的某个蛋白质发生相互作用, 不同转录调控因子的AD和BD结构域就会 被牵引靠拢,激活报告基因表达。
5)分离有报告基因活性的酵母细胞,得到所 需要的“猎物”载体,获得与已知蛋白相互 作用的新基因。
21
22
AD:Activation domain DNA-BD:Binding domain
南开大学结构生物学第五讲-2-核酸-蛋白质的相互作用研究方法的新进展

2.2 核苷酸-氨基酸相互作用数据库
核苷酸-氨基酸相互作用数据库搜集核苷酸和氨基 酸间4 埃大小内的成对原子,能让使用者找到成对 的核苷酸和氨基酸。
使用者可以指定残基名称( 核苷酸或氨基酸)、原子 类型和侧链/ 骨干。
3 生物芯片技术
生物芯片技术是基于生物大分子间相互作用 的大规模并行分析方法,使得生命科学研究 中所涉及的样品反应、检测、分析等过程得 以连续化、集成化和微型化,现已成为当今 生命科学研究领域发展最快的技术之一。
目前的生物芯片主要有核酸芯片、蛋白质芯 片和糖体芯片等几大类。
蛋白质芯片是依靠手工、压印或喷墨的方 法将探针蛋白点样在化学膜、凝胶、微孔 板或玻片上形成阵列,经过与样品的杂交 捕获靶蛋白,再用原子力显微镜、磷光成 像仪、光密度仪或激光共聚焦扫描仪进行 检测,获得靶蛋白表达的种类、数量及关 联等信息。
研究蛋白质/ 核酸相互作用近期采用的新技 术有:1.核酸适体技术、2.生物信息学方法、 3.蛋白质芯片技术以及4.纳米技术等。
蛋白质和核酸是构成生命体最为重要的两类 生物大分子。
蛋白质与核酸的相互作用是分子生物学研究 的中心问题之一,它是许多生命活动的重要 组成部分。
随着人类基因组计划的完成,大量基因被发 现和定位,基因的功能问题将成为今后研究 的热点。大多数基因的最终产物是相应的蛋 白质,因此要认识基因的功能,必然要研究 基因所表达的蛋白质。
通过准确检测DNA分子穿孔过程中引起的 电流阻塞效应,可将DNA与组蛋白的相互 作用的一些性质反映出来。
蛋白质的功能往往体现在与其他蛋白质及 (或)核酸的相互作用之中。
细胞各种重要的生理过程,包括信号的转导、 细胞对外界环境及内环境变化的反应等,都 是以蛋白质与其他物质的相互作用为纽带。
蛋白互作技术

蛋白互作技术蛋白互作技术是一组用于研究蛋白质之间相互作用的实验和分析方法。
这些方法可以帮助科学家们了解蛋白质在细胞中的功能、信号传导、代谢途径等方面的机制。
以下是一些常见的蛋白互作技术:1. 酵母双杂交法(Yeast Two-Hybrid, Y2H):这是一种常用的高通量蛋白互作筛选方法。
该技术利用酵母细胞内的转录激活域(activation domain)和DNA结合域(DNA-binding domain)的相互作用来检测蛋白质蛋白质相互作用。
2. 免疫共沉淀法(Co-Immunoprecipitation, Co-IP):这种方法利用抗体将目标蛋白质与其相互作用的蛋白质一起沉淀下来,以研究它们之间的相互作用。
3. 质谱法(Mass Spectrometry, MS):MS技术可以用于鉴定蛋白质复合物中的成员。
典型的方法包括液相色谱串联质谱(LC-MS/MS)。
4. 表面等离子体共振法(Surface Plasmon Resonance, SPR):SPR技术可以实时监测生物分子之间的相互作用,包括蛋白质与蛋白质之间的相互作用。
5. 蛋白质片段互作法(Protein Fragment Complementation Assay, PCA):这种方法通过将蛋白质分割成两个片段,然后将这些片段连接到蛋白质感兴趣的两个互补位置上,观察是否形成功能性蛋白质复合物。
1/ 26. 拉曼光谱法(Raman Spectroscopy):这是一种基于散射光的技术,可用于研究蛋白质之间的相互作用以及蛋白质结构的变化。
这些技术的选择通常取决于研究者的具体研究问题、目标蛋白质的性质以及实验室可用的设备和资源。
多种方法的综合应用有助于全面理解蛋白质相互作用网络。
2/ 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA-蛋白质相互作用的研究方法2008-02-21 12:21一、凝胶阻滞试验1.试验原理又叫作DNA迁移率变动试验(DNA mobility shift assay),在凝胶电泳中,由于电场的作用,裸露的DNA朝正电极移动的距离与其分子量的对数成反比。
如果此时DNA分子与某种蛋白质结合,那么,由于分子量增大,它在凝胶中的迁移作用便会受到阻滞,在特定电压和时间内朝正电极移动的距离也就相应缩短了。
2.主要步骤及内容首先是用放射性同位素标记待检测的DNA片段(亦称探针DNA),然后同细胞蛋白质提取物一道温育,于是便有可能形成DNA-蛋白质复合物。
将它加样到非变性的聚丙烯酰胺凝胶中,在控制使蛋白质仍与DNA保持结合状态的条件下进行电泳分离。
应用放射自显影技术显现具放射性标记的DNA条带位置。
如果细胞蛋白质提取物中不存在可同放射性标记的探针DNA结合的蛋白质,那么所有放射性标记都将集中出现在凝胶的底部,反之,将会形成DNA-蛋白质复合物,由于凝胶阻滞的缘故,其特有的放射性标记的探针DNA条带就将滞后出现在较靠近凝胶顶部的位置。
凝胶阻滞试验不仅可以用来鉴定在特殊类型细胞的提取物中,是否存在着能够同某一特定DNA片段结合的蛋白质分子(比如特异的转录因子等),而且还可以用来研究发生此种结合作用之精确的DNA序列的特异性。
其办法是在DNA-蛋白质结合反应体系中,加入超量的非标记的竞争DNA(competitor DNA)。
如果它与同位素标记的探针DNA结合的是同一种蛋白质,那么由于竞争DNA与探针DNA 相比是极大超量的,这样绝大部分蛋白质都会被其竞争结合掉而使探针DNA仍处于自由的状态,所以在电泳凝胶的放射自显影图片上就不会出现阻滞的条带。
相反地,如果反应中加入的竞争DNA并不能够同探针DNA竞争结合同一种蛋白质,于是探针DNA便仍然与特定蛋白质结合形成复合物,结果在电泳凝胶的放射自显影图片上就会呈现阻滞的条带。
在凝胶阻滞试验中使用竞争DNA,可以间接地阐明在体内发生的DNA与蛋白质之间的相互作用。
例如,使用一种具有已知转录因子结合位点的竞争DNA,我们就可以判断通过特定的凝胶阻滞试验所检测到的蛋白质,是否就是属于此类转录因子,抑或是与之相关的其它因子。
同样地,假如我们在竞争DNA上已知的转录因子结合位点处,事先引入一个或少数几个碱基突变,通过凝胶阻滞试验亦可有效地评估出这些突变对竞争DNA的性能及其与转录因子结合作用的影响。
二、DNaseI足迹试验(DNaseI footFIrinting assay) DNaseI足迹试验是一种测定DNA结合蛋白在DNA上的准确结合位点的技术。
首先是对包含一定顺式作用元件的双链DNA进行单链标记,然后用DNaseI水解单链标记的双链DNA,产生不同长度的片断,DNA结合蛋白与其特异序列结合处由于空间位阻,DNaseI对这部分DNA不能切割,即被DNaseI保护。
DNaseI水解产物经尿素变性,PAGE 分离及放射性显影后,形成以相差一个核苷酸为梯度的一系列DNA条带,在此显影图中相应于DNA结合蛋白的位置上由于DNA结合蛋白的保护作用而形成了空白区域。
如果在电泳时结合DNA化学测序,则可准确判断出结合区的精确序列。
三、甲基化干扰试验根据DMS能使G残基甲基化,而六氢吡啶又能够特异切割甲基化的G残基这一原理而设计。
具体操作是,先用DMS处理DNA,并控制反应条件,使之达到平均每条DNA分子只有一个残基被甲基化;而后将这些局部甲基化的DNA群体同含有DNA结合蛋白的适当细胞提取物一道温育,并做凝胶阻滞试验。
经电泳分离后,从凝胶中切除具有结合蛋白的DNA 条带和没有结合蛋白的DNA条带,并用六氢吡啶处理之。
于是,甲基化的残基被切割,不具甲基化的残基不被切割。
显而易见,如果因一个G残基的甲基化作用阻止了蛋白质同DNA 的结合,那么六氢吡啶对这个甲基化G残基的切割作用,就只能在没有同蛋白质结合的DNA 分子中观察到。
相反地,如果一个特殊的G残基在DNA与蛋白质的结合中不起作用,那么六氢吡啶对这个G残基的切割作用,则在同蛋白质结合的DNA分子中及不同蛋白质结合的DNA分子中均可观察到。
四、酵母单杂交技术酵母单杂技术是1993 年由Li et al 从酵母双杂交技术发展而来的其基本原理为: 真核生物基因的转录起始需转录因子参与。
转录因子通常由一个DNA特异性结合功能域和一个或多个其他调控蛋白相互作用的激活功能域组成即DNA结合结构域(DNA-binding domain BD)和转录激活结构域(activationdomain AD). 用于酵母单杂交系统的酵母GAL4蛋白是一种典型的录因子。
GAL4的DNA结合结构域靠近羧基端含有几个锌指结构,可激活酵母半乳糖苷酶的上游激活位点(UAS),而转录激活结构域可与RNA聚合酶或转录因子TFIID 相互作用提高RNA聚合酶的活性。
在这一过程中DNA结合结构域和转录激活结构域可完全独立地发挥作用。
据此我们可将GAL4 的DNA结合结构域置换为文库蛋白编码基因,只要其表达的蛋白能与目的基因相互作用同样可通过转录激活结构域激活RNA聚合酶启动下游报告基因的转录。
其基本操作过程为:(1)设计含目的基因(称为诱饵)和下游报告基因的质粒并将其转入酵母中;(2)将文库蛋白的编码基因片段与GAL4转录激活域融合表达的cDNA文库质粒转化入同一酵母中;(3)若文库蛋白与目的基因相互作用可通过报告基因的表达将文库蛋白的编码基因筛选出来. 在这里作为诱饵的目的基因就是启动子DNA片段,文库基因所编码的蛋白就是启动子基因结合蛋白. 酵母单杂交技术广泛用DNA与蛋白相互作用的研究。
五、噬菌体展示技术噬菌体展示技术是一种基因表达产物和亲选择相结合的技术。
基本原理及操作过程为:以改构的噬菌体为载体把待选基因片段定向插入噬菌体外壳蛋白基因区,如在噬菌pIII 和p VIII 衣壳蛋白基因区的N 端插入外源基因,形成的融合蛋白,表达在噬菌的表面不影响噬菌体的生活周期及天然构型,且易被相应的抗体或受体分子识别。
外源蛋白或多肽表达于噬菌体的表面与固定或固相支持物结合通过适当的淘洗,洗去非特异性结合的噬菌体(即亲和富集法)选出目的噬菌体而编码基因作为病毒基因组的一部分可通过分泌型噬菌体的单链DNA 测序得知. 在这一过程中外源基因是编码启动子DNA结合蛋白的文库基因而固定或固相支持物分子则为启动子DNA片段. 噬菌体展示技术是一种经济高效的研究生物大分子相互作用的技术如构建噬菌体随机多肽文库可用来筛选包括抗体小分子细胞表面受体等多种分子。
Cicchini et al 用噬菌体展示技术筛选出肝富有的转录因子HNF1a 启动子结合蛋白.与蛋白相互作用的研究。
六、核酸适体技术核酸适体(aptamer)指的是经过一种新的体外筛选技术——指数富集配体系统进化(systematic evo lution of ligands by exponential enrichment,SELEX),从随机单链寡聚核苷酸文库中得到的能特异结合蛋白质或其他小分子物质的单链寡聚核苷酸,可以是RNA也可以是DNA,长度一般为25~60 个核苷酸。
SELEX的筛选流程首先是利用现有的分子生物学技术人工合成一个含有1014~1015 个单链寡核苷酸序列的随机文库,序列长度往往在25~35 个核苷酸之间,单链的随机寡核苷酸序列容易形成可与蛋白质等配体特异性共价结合的二级结构,在这一高亲和力特异性结合的基础之上配体蛋白质同随机文库相互作用,选择性分离出核酸适体后,然后通过PCR或RT-PCR 等技术进行扩增。
次一级文库再与配体蛋白质相互作用,反复多次循环,即可获得与配体蛋白质特异性高亲和力结合的核酸适体。
核酸适体与配体间的亲合力(解离常数在皮摩和纳摩之间)常要强于抗原抗体之间的亲合力。
核酸适体所结合的靶分子范围非常广泛,除蛋白质之外,还能作用于酶、生长因子、抗体、基因调节因子、细胞黏附分子、植物凝集素、完整的病毒颗粒、病原菌等。
适体从20 世纪90 年代初出现以后,就得到了科研工作者的广泛关注,适体的研究工作得到了快速的发展。
SELEX筛选技术和核酸适体的高亲和性在蛋白质/ 核酸相互作用的研究中发挥了重要的作用。
七、体内足迹实验:体内足迹试验原理与甲基化试验基本相同,其实质是体外甲基化试验的变种。
在体内足迹试验中,是用有限数量的DNS处理完整的游离细胞,并使其渗透到细胞内的浓度恰好导致天然染色体DNA中G残基发生甲基化。
而后从这些细胞中提取DNA,并加入六氢吡啶作体外消化。
结果情况就如同体外足迹试验一样,能与某中特殊蛋白质因子结合的DNA区段,其上的G残疾就不会被DNS甲基化,因而就不会被六氢吡啶所切割。
因此,同对照的体外裸露DNA所形成的序列梯度比较,就会发现由完整的活细胞染色质DNA形成的序列梯度中,缺少了G残基没有被切割的相应条带。
经体内足迹实验从染色体总DNA中获得的任何一种特异DNA的数量都是很少的。
因此,有必要通过PCR技术从染色质总DNA中扩增特异的靶DNA,以获得足够数量的DNA样品,供体内足迹试验使用。
八免疫沉淀技术(见下)八、染色体免疫沉淀技术它们都有一定的局限性,不足以充分反映生理条件下DNA与蛋白质相互作用的真实情况。
因为高等生物的基因组DNA和DNA上的结合蛋白共同组成染色质结构,用以上所提到的方法分析得到的某段DNA与蛋白质的相互作用的结果,在体内则很可能由于染色质高级结构的存在,而使DNA与蛋白质难以接近。
因此,在生理状态下,这段DNA很可能并不与其相对应的因子相结合,是没有功能的,反之亦然。
另外,染色质结构本身是动态的,DNA与非组蛋白在生理状态下的相互作用通常是瞬时的,以上方法难以捕捉到发生在染色质上的基因表达调控的瞬时事件。
而染色质免疫沉淀技术则可以找出在生理条件下某个DNA结合蛋白与DNA序列的结合位点,从而反映体内基因表达调控的真实情况。
1、技术介绍在生理状态下把细胞内的DNA与蛋白质交联在一起,超声波将染色质打碎后,用所要研究的目的蛋白特异性的抗体沉淀这种交联复合体。
只有与目的蛋白结合的DNA片段才能够被沉淀下来。
2、主要步骤及内容2.1 细胞的甲醛固定甲醛是一种高分辨率的可逆的交联剂,能有效的使蛋白质-蛋白质,蛋白质--DNA、蛋白质-RNA交联。
在甲醛的作用下DNA碱基上的氨基或亚氨基和蛋白质上的氨基及赖氨酸、精氨酸、组氨酸、色氨酸的侧链氨基与另外的DNA和蛋白质上的氨基或亚氨基交联在一起,在几分钟内形成生物复合体,防止细胞内组分的重新分布。
交联所用的甲醛终浓度约为1%,而交联时间需要预实验来确定。
可以加入甘氨酸来终止交联反应。