18春季同步全品学练考选修4-4

合集下载

高中数学选修4-4解答题

高中数学选修4-4解答题

选修4-4一、解答题1.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin (θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.2.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.3.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.4.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径.5.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.6.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρ2cos2θ=1.(1)求曲线C的直角坐标方程.(2)求直线l被曲线C截得的弦长.7.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.8.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.9.在直角坐标系xOy中,曲线C1:(t为参数,t≠ 0),其中0 ≤ α < π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:,C3:。

全品学练考选修2-3

全品学练考选修2-3

全品学练考测评卷高中数学选修2—3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第一课时加法原理与乘法原理(一)基础检验:1.某班有男生26名,女生23名,现在要从中派选1人参加演讲比赛,则有不同的选派方法有()种 A.26 B.23 C.49 D.512.从甲地到乙地,可以乘火车,可以乘汽车,也可以乘轮船,还可以乘飞机。

一天中,火车有4班,汽车有2班,轮船有3班,飞机有1班,那么一天中乘这些交通工具从甲地到乙地的不同走法有() A.10 B.12 C.4 D.73.小王家的书柜里有8本不一样的语文书,10本不一样的数学书,先从中取出一本语文书和一本数学书,则不同的取法有()A.2 B .18 C.40 D.804.由三个数码组成的号码锁,每个数码可取0,1,2,……,9中的任意一个数字,不同的开锁号码设计共有________个。

5. 4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法有____种。

6.人们习惯把最后一位是6的多位数叫做“吉祥数”,则无重复数字的4位吉祥数(首位不能是0)共有____个。

能力提升7.[2013⋅济南模拟]如图1-1-1所示,使电路接通,开关不同的开闭方式有()种A.11B.20C.21D.128.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系内位于第一、二象限的不同点的个数是()A.18B.16C.14D.109.某公司员工义务献血,在体检合格的人中,O型血的人有10人,A型血的人有5人,B型血的人有8人,AB 型血的人有3人。

从四种血型的人中各选一人去献血,不同的选法种数为() A.1200 B.600 C.300 D.2610.四位同学参加某种形式的竞赛,竞赛规则:每位同学必须从甲、乙两道题中任选一题作答,答对甲题得100分,答错得-100分,答对乙题得90分,答错得-90分。

【步步高】2021届高考数学总温习 第二讲 参数方程配套文档 理 新人教A版选修4-4(1)

【步步高】2021届高考数学总温习 第二讲 参数方程配套文档 理 新人教A版选修4-4(1)

第二讲 参数方程1.参数方程的概念一样地,在平面直角坐标系中,若是曲线上__________的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f t ,y =g t ,而且关于t 的每一个许诺值,由方程组所确信的点M (x ,y )都在____________,那么方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称______.相关于参数方程而言,直接给出点的坐标间关系的方程叫做__________.2.几种常见曲线的参数方程(1)直线:通过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是____________(t 为参数). (2)圆:以O ′(a ,b )为圆心,r 为半径的圆的参数方程是____________,其中α是参数.当圆心在(0,0)时,方程⎩⎪⎨⎪⎧x =r cos α,y =r sin α.(3)椭圆:中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情形: 椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是____________,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是____________,其中φ是参数.(4)抛物线:抛物线y 2=2px (p >0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt .(t 为参数).1.(讲义习题改编)假设直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t(t 为参数),那么直线的斜率为________.2.椭圆⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ(θ为参数)的离心率为________.3.已知点P (3,m )在以点F 为核心的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t(t 为参数)上,那么|PF |=________.4.(讲义习题改编)直线⎩⎪⎨⎪⎧x =-1+t sin 40°,y =3+t co s 40°(t 为参数)的倾斜角为________.5.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).那么点M 1(0,1),M 2(5,4)在曲线C 上的是________.题型一 参数方程与一般方程的互化例1 已知两曲线参数方程别离为⎩⎪⎨⎪⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.思维升华 (1)参数方程化为一般方程经常使用的消参技术有代入消元、加减消元、平方后再加减消元等.关于与角θ有关的参数方程,常经常使用到的公式有sin 2θ+cos 2θ=1,1+tan 2θ=1cos 2θ等.(2)在将曲线的参数方程化为一般方程时,还要注意其中的x ,y 的取值范围,即在消去参数的进程中必然要注意一般方程与参数方程的等价性.(2021·广东)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos ty =2sin t(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴成立极坐标系,那么l 的极坐标方程为________. 题型二 参数方程的应用例2 在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),直线l 通过点P (2,2),倾斜角α=π3.(1)写出圆的标准方程和直线l 的参数方程;(2)设l 与圆C 相交于A 、B 两点,求|PA |·|PB |的值.思维升华 依照直线的参数方程的标准式中t 的几何意义,有如下经常使用结论: (1)直线与圆锥曲线相交,交点对应的参数别离为t 1,t 2,那么弦长l =|t 1-t 2|; (2)定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;(3)设弦M 1M 2中点为M ,那么点M 对应的参数值t M =t 1+t 22(由此可求|M 2M |及中点坐标).已知直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =2+32t(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)将曲线C 的参数方程化为一般方程;(2)假设直线l 与曲线C 交于A 、B 两点,求线段AB 的长. 题型三 极坐标、参数方程的综合应用例3 在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,成立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎪⎨⎪⎧x =-3+32t ,y =12t(t 为参数),M ,N 别离为曲线C 、直线l 上的动点,那么|MN |的最小值为________.思维升华 涉及参数方程和极坐标方程的综合题,求解的一样方式是别离化为一般方程和直角坐标方程后求解.转化后可使问题变得加倍直观,它表现了化归思想的具体运用.(2021·湖北)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程别离为ρsin(θ+π4)=22m (m 为非零常数)与ρ=b .假设直线l 通过椭圆C 的核心,且与圆O 相切,那么椭圆C 的离心率为________. 参数的几何意义不明致误典例:(10分)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =22+32t (t 为参数),假设以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位成立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).(1)求直线l 的倾斜角;(2)假设直线l 与曲线C 交于A ,B 两点,求|AB |.易错分析 不明确直线的参数方程中的几何意义致使错误. 标准解答解(1)直线的参数方程能够化为⎩⎪⎨⎪⎧x =t cos 60°,y =22+t sin 60°,[2分]依照直线参数方程的意义,直线l 通过点(0,22),倾斜角为60°.[4分](2)直线l 的直角坐标方程为y =3x +22,[6分]ρ=2cos(θ-π4)的直角坐标方程为(x -22)2+(y -22)2=1,[8分]因此圆心(22,22)到直线l 的距离d =64.因此|AB |=102.[10分]温馨提示 关于直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)来讲,要注意t 是参数,而α那么是直线的倾斜角.与此类似,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的参数φ有专门的几何意义,它表示离心角.方式与技术1.参数方程化一般方程经常使用的消参技术:代入消元、加减消元、平方后加减消元等,常经常使用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.2.利用曲线的参数方程来求解两曲线间的最值问题超级简捷方便,是咱们解决这种问题的好方式.3.通过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数).假设A ,B 为直线l 上两点,其对应的参数别离为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,那么以下结论在解题中常经常使用到:①t 0=t 1+t 22;②|PM |=|t 0|=⎪⎪⎪⎪⎪⎪t 1+t 22;③|AB |=|t 2-t 1|;④|PA |·|PB |=|t 1·t 2|. 失误与防范在将曲线的参数方程化为一般方程时,不单单要把其中的参数消去,还要注意其中的x ,y 的取值范围.也即在消去参数的进程中必然要注意一般方程与参数方程的等价性. A 组 专项基础训练1.假设直线的参数方程为⎩⎪⎨⎪⎧x =1+3t ,y =2-3t(t 为参数),那么直线的倾斜角为________.2.将参数方程⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(0≤t ≤5)化为一般方程为________________.3.(2021·湖南)在平面直角坐标系xOy 中,假设直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右极点,那么常数a 的值为________.4.(2021·陕西)如图,以过原点的直线的倾斜角θ为参数,那么圆x 2+y 2-x =0的参数方程为______________.5.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )通过点(m ,12),那么m =________.6.(2021·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴成立极坐标系.假设极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,那么|AB |=________.7.(2021·天津)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,核心为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.8.已知曲线C :⎩⎪⎨⎪⎧ x =2cos θ,y =2sin θ(θ为参数)和直线l :⎩⎪⎨⎪⎧x =t ,y =t +b(t 为参数,b 为实数),假设曲线C 上恰有3个点到直线l 的距离等于1,那么b =________.9.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧ x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,那么a =________. 10.假设直线l 的极坐标方程为ρcos(θ-π4)=32,圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的点到直线l 的距离为d ,那么d 的最大值为________.B 组 专项能力提升1.已知抛物线C 1的参数方程为⎩⎪⎨⎪⎧x =8t 2y =8t (t 为参数),圆C 2的极坐标方程为ρ=r (r >0),假设斜率为1的直线通过抛物线C 1的核心,且与圆C 2相切,那么r =________.2.直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.3.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程别离为⎩⎪⎨⎪⎧x =t ,y =t(t 为参数)和⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴成立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =t -12(t 为参数)相交于A ,B 两点,那么线段AB 的中点的直角坐标为________.5.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2=1上的任意一点,那么点P 到直线l 的距离的最大值为________.6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴成立极坐标系,直线l 的极坐标方程为ρsin θ=1,那么直线l 与圆C 的交点的直角坐标为________________.7.(2021·辽宁改编)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴成立极坐标系.圆C 1,直线C 2的极坐标方程别离为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)C 1与C 2交点的极坐标为________;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b2t 3+1(t ∈R 为参数),那么a ,b 的值别离为________.答案基础知识自主学习 要点梳理1.任意一点 这条曲线上 参数 一般方程2.(1)⎩⎪⎨⎪⎧ x =x 0+t cos α,y =y 0+t sin α (2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(3)⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ ⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ夯基释疑1.-32 2.215 3.4 4.50° 5.M 1题型分类深度剖析例1 ⎝ ⎛⎭⎪⎪⎫1,255解析 将两曲线的参数方程化为一般方程别离为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝ ⎛⎭⎪⎪⎫1,255. 跟踪训练1 ρcos θ+ρsin θ-2=0解析 由⎩⎪⎨⎪⎧x =2cos t y =2sin t(t 为参数),得曲线C 的一般方程为x 2+y 2=2.那么在点(1,1)处的切线l 的方程为y -1=-(x -1),即x +y -2=0.又x =ρcos θ,y =ρsin θ,∴l 的极坐标方程为ρcos θ+ρsin θ-2=0. 例2 解 (1)由圆C 的参数方程可得其标准方程为x 2+y 2=16.因为直线l 过点P (2,2),倾斜角α=π3,因此直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos π3,y =2+t sin π3,即⎩⎪⎨⎪⎧x =2+12t ,y =2+32t(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =2+12t ,y =2+32t代入圆C :x 2+y 2=16中,得(2+12t )2+(2+32t )2=16, t 2+2(3+1)t -8=0,设A 、B 两点对应的参数别离为t 1、t 2,那么t 1t 2=-8,即|PA |·|PB |=8.跟踪训练2 解 (1)x 2+y 2=16.(2)将⎩⎪⎨⎪⎧x =3+12t ,y =2+32t代入x 2+y 2=16,并整理得t 2+33t -9=0.设A 、B 对应的参数为t 1、t 2,那么t 1+t 2=-33,t 1t 2=-9.|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=37.例3 12解析 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0,因此曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎪⎨⎪⎧x =-3+32t ,y =12t(t 为参数)为一般方程x -3y +3=0.圆心到直线l 的距离d =|2+3|1+3=52,现在,直线与圆相离,因此|MN |的最小值为52-2=12.跟踪训练363解析 椭圆C 的标准方程为x 2a2+y 2b 2=1,直线l 的标准方程为x +y =m ,圆O 的方程为x 2+y 2=b 2,由题意知⎩⎪⎨⎪⎧|m |2=ba 2-b 2=|m |,∴a 2-b 2=2b 2,a 2=3b 2,∴e =c 2a 2=3b 2-b 23b 2=23=63. 练出高分 A 组 1.150°解析 由直线的参数方程知,斜率k =y -2x -1=-3t 3t=-33=tan θ,θ为直线的倾斜角,因此该直线的倾斜角为150°.2.x -3y -5=0,x ∈[2,77]解析 化为一般方程为x =3(y +1)+2,即x -3y -5=0,由于x =3t 2+2∈[2,77],故曲线为线段. 3.3解析 椭圆C 的右极点坐标为(3,0),假设直线l 过(3,0),那么0=3-a ,∴a =3.4.⎩⎪⎨⎪⎧ x =12+12cos 2θ,y =12sin 2θ0≤θ<π解析 由题意得圆的标准方程为⎝ ⎛⎭⎪⎫x -122+y 2=⎝ ⎛⎭⎪⎫122,设圆与x 轴的另一交点为Q ,那么Q (1,0),设点P 的坐标为(x ,y ),那么OP =OQ cos θ=cos θ.∴⎩⎪⎨⎪⎧ x =OP cos θ=cos 2θ=12+12cos 2θ,y =OP sin θ=cos θ·sin θ=12sin 2θ0≤θ<π.5.±154 解析 将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )化为一般方程为x 2+y 24=1,将点(m ,12)代入该椭圆方程,得m 2+144=1,即m 2=1516,因此m =±154. 6.16 解析 将极坐标方程ρcos θ=4化为直角坐标方程得x =4,将x =4代入⎩⎪⎨⎪⎧x =t 2,y =t 3得t =±2,从而y =±8. 因此A (4,8),B (4,-8).因此|AB |=|8-(-8)|=16.7.2解析 依照抛物线的参数方程可知抛物线的标准方程是y 2=2px , 因此y 2M =6p ,因此E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,因此p 2+3=p 2+6p ,因此p 2+4p -12=0,解得p =2(负值舍去).8.±2解析 将曲线C 和直线l 的参数方程别离化为一般方程为x 2+y 2=4和y =x +b ,依题意,假设要使圆上有3个点到直线l 的距离为1,只要知足圆心到直线的距离为1即可,取得|b |2=1,解得b =± 2.9.32解析 将曲线C 1与C 2的方程化为一般方程求解. ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0. 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1. 方程2x +y -3=0中,令y =0得x =32, 将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a =32. 10.32+1解析 ρcos(θ-π4)=32,∴ρcos θ+ρsin θ=6, ∴直线l 的直角坐标方程为x +y =6.由圆C 的参数方程知圆C 的圆心为C (0,0),半径r =1.圆心C (0,0)到直线l 的距离为62=32.∴d min =32+1.B 组1.2 解析 抛物线C 1的一般方程为y 2=8x ,其核心坐标是(2,0),过该点且斜率为1的直线方程是y =x -2,即x -y-2=0.圆ρ=r 的圆心是极点、半径为r ,直线x -y -2=0与该圆相切,那么r =|0-0-2|2= 2.2.2解析 将参数方程化为一般方程求解. 将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0; 将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.3.(1,1)解析 化参数方程为一般方程然后解方程组求解. C 1的一般方程为y 2=x (x ≥0,y ≥0),C 2的一般方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,x ≥0,y ≥0,x 2+y 2=2得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1). 4.⎝ ⎛⎭⎪⎫52,52 解析 化射线的极坐标方程为一般方程,代入曲线方程求t 值.射线θ=π4的一般方程为y =x (x ≥0),代入⎩⎪⎨⎪⎧ x =t +1,y =t -12,得t 2-3t =0,解得t =0或t =3.当t =0时,x =1,y =1,即A (1,1);当t =3时,x =4,y =4,即B (4,4).因此AB 的中点坐标为⎝ ⎛⎭⎪⎫52,52. 5.2105解析 由于直线l 的参数方程为⎩⎪⎨⎪⎧ x =4-2t ,y =t -2(t 为参数), 故直线l 的一般方程为x +2y =0.因为P 为椭圆x 24+y 2=1上的任意一点, 故可设P (2cos θ,sin θ),其中θ∈R .因此点P 到直线l 的距离是d =|2cos θ+2sin θ|12+22 =22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45.因此当θ=k π+π4,k ∈Z 时,d 取得最大值2105. 6.(-1,1)和(1,1)解析 ∵y =ρsin θ,∴直线l 的直角坐标方程为y =1. 由⎩⎪⎨⎪⎧x =cos α,y =1+sin α得x 2+(y -1)2=1. 由⎩⎪⎨⎪⎧ y =1,x 2+y -12=1得⎩⎪⎨⎪⎧ x =-1,y =1或⎩⎪⎨⎪⎧ x =1,y =1. ∴直线l 与圆C 的交点的直角坐标为(-1,1)和(1,1).7.(1)⎝ ⎛⎭⎪⎫4,π2,⎝⎛⎭⎪⎫22,π4 (2)-1,2 解析 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+y -22=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 因此C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标别离为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1,因此⎩⎪⎨⎪⎧ b 2=1,-ab 2+1=2,解得a =-1,b =2.。

全品学练考语文选修下答案

全品学练考语文选修下答案

全品学练考语文选修下答案一、解释下列句子中括号前面的字词:(每空1分,共46分)1、太行之阳()有盘谷 [填空题] *_________________________________(答案:南面|南边)2、名声昭()于时 [填空题] *_________________________________(答案:显扬|彰显)3、昌黎韩愈闻其言而壮()之 [填空题] *_________________________________(答案:推崇|赞美)4、恒()惴栗 [填空题] *_________________________________(答案:经常|常常)5、穷()回溪 [填空题] *_________________________________(答案:穷尽)6、意()有所极 [填空题] *_________________________________(答案:旨趣|想法)7、因()坐法华西亭 [填空题] *_________________________________(答案:由于)8、游于是()乎始 [填空题] *_________________________________(答案:从这里)9、无()远不到 [填空题] *_________________________________(答案:无论)10、缘()染溪 [填空题] *_________________________________(答案:沿着)11、被()于来世者何如哉 [填空题] *_________________________________(答案:施及| 影响)12、外与天际() [填空题] *_________________________________(答案:连接)13、攒()蹙()累积 [填空题] *_________________________________(答案:聚集,收缩|聚集收缩) 14、颓然就()醉 [填空题] *_________________________________(答案:接近|靠近)15、必有过人之节() [填空题] *_________________________________(答案:节操|操守)16、使之忍小忿而就()大谋 [填空题] *_________________________________(答案:成就|完成)17、其锋不可犯( ),而其势未可乘() [填空题] *_________________________________(答案:对抗,利用)18、非有平生之素() [填空题] *_________________________________(答案:早有的交情)19、非子房其谁全()之 [填空题] *_________________________________(答案:保全)20、夫人之有一能,而使后人尚()之如此 [填空题] *_________________________________(答案:尊重|推崇)21、辙生()好为文 [填空题] *_________________________________(答案:生性|生来)22、气可以养而致() [填空题] *_________________________________(答案:得到)23、以为文者气之所形() [填空题] *_________________________________(答案:显现)24、虽()无所不读 [填空题] *_________________________________(答案:虽然)25、虽()多而何为 [填空题] *_________________________________(答案:即使)26、故决然()舍去 [填空题] *_________________________________(答案:的样子 |......的样子)27、太尉以()才略冠天下 [填空题] *_________________________________(答案:凭借)28、闻一言以自壮( ) [填空题] *_________________________________(答案:使得到提高 |使......得到提高) 29、临()池学书 [填空题] *_________________________________(答案:靠近)30、方羲之之不可强()以仕() [填空题] *_________________________________(答案:勉强, 做官)31、而尝极()东方 [填空题] *_________________________________(答案:穷尽)32、岂有徜徉肆恣() [填空题] *_________________________________(答案:放纵|纵情|任意放纵)33、羲之之书晚乃()善 [填空题] *_________________________________(答案:才)34、则其所能(),盖亦以精力自致()者 [填空题] *_________________________________(答案:能做的事|这里指写字,取得|达到) 35、书()‘晋王右军墨池’之六字于楹间以揭()之 [填空题] *_________________________________(答案:写,标识)36、推()王君之心 [填空题] *_________________________________(答案:推究|考察)37、岂爱人之善(),虽()一能不以废() [填空题] *_________________________________(答案:长处,即使,埋没)二、指出下列句子中括号前面字的活用现象并解释:(每空1分,共12分)1、则树()旗旄 [填空题] *_________________________________(答案:名词作动词,树起)2、武夫前()呵 [填空题] *_________________________________(答案:名词作状语,在前面)3、飘()轻裾,翳长袖 [填空题] *_________________________________(答案:动词的使动用法 ,使飘动)4、日()与其徒上高山 [填空题] *_________________________________(答案:名词作状语,每日|每天)6、望西山,始指异()之 [填空题] *_________________________________(答案:形容词的意动用法,以为奇异) 7、目()为党人 [填空题] *_________________________________(答案:名词作动词,视|名词作动词,看) 8、臣妾()于吴者 [填空题] *_________________________________(答案:名词作动词,做奴仆)9、池水尽黑() [填空题] *_________________________________(答案:名词作动词,变成黑色) 10、又下()石焉者 [填空题] *_________________________________(答案:名词用作动词,扔下)11、以娱()其意于山水之间 [填空题] *_________________________________(答案:形容词的使动用法,使快乐) 12、岂爱人之善(),虽一能不以废 [填空题] *_________________________________(答案:形容词作名词,长处)三、指出下列句子中的通假字并解释:(每空1分,共8分)1.意有所及,梦亦同趣() [填空题] *_________________________________(答案:通趋,到)2.教授王君盛恐其不章()也 [填空题] *_________________________________(答案:通彰,显明|通彰,显著)3.才畯()满前 [填空题] *_________________________________(答案:通俊,出众)4.秀外而惠()中 [填空题] *_________________________________(答案:通慧,聪慧)5.卒()然相遇于朝野之间 [填空题] *_________________________________(答案:通猝,突然)6.自余为僇()人 [填空题] *_________________________________(答案:通戮,刑罚)7.郑伯肉袒牵羊以逆() [填空题] *_________________________________(答案:通迎,欢迎)8.养其全锋而待其弊() [填空题] *_________________________________(答案:通敝,疲敝)四、判断下列句式(每空2分,共24分)1、大丈夫之遇知于天子() [填空题] *_________________________________(答案:被动句)2、以为凡是州之山水有异态者() [填空题] *_________________________________(答案:定语后置 |定语后置句) 3、理乱不知,黜陟不闻() [填空题] *_________________________________(答案:宾语前置|宾语前置句) 4、无不足兮奚所望() [填空题] *_________________________________(答案:宾语前置|宾语前置句) 5、书“晋王右军墨池”之六字于楹间以揭之。

统考版2022届高考数学一轮复习选修4_4.2参数方程课时作业理含解析

统考版2022届高考数学一轮复习选修4_4.2参数方程课时作业理含解析

课时作业72 参数方程[基础达标]1.[2021·某某省示X 高中名校高三联考]在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心的极坐标为⎝⎛⎭⎪⎫7,π2且经过极点的圆.(1)求曲线C 1的极坐标方程和C 2的直角坐标方程;(2)已知射线θ=π3(ρ≥0)分别与曲线C 1,C 2交于点A ,B (点B 异于坐标原点O ),求线段AB 的长.2.[2021·黄冈中学,华师附中等八校第一次联考]在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =3+t sin α(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ2=2ρcos θ+8.(1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A ,B 两点,且|AB |=42,求直线l 的倾斜角.3.[2021·某某省七校联合体高三第一次联考试题]在平面直角坐标系xOy 中,已知曲线C 1:x +y =1与曲线C 2:⎩⎪⎨⎪⎧x =2+2cos φy =2sin φ(φ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)写出曲线C 1,C 2的极坐标方程;(2)在极坐标系中,已知l :θ=α(ρ>0)与C 1,C 2的公共点分别为A ,B ,α∈⎝ ⎛⎭⎪⎫0,π2,当|OB ||OA |=4时,求α的值.4.[2021·某某市高三年级摸底考试]在极坐标系中,圆C:ρ=4cosθ.以极点O为原点,极轴为x轴的正半轴建立直角坐标系xOy,直线l经过点M(-1,-33)且倾斜角为α.(1)求圆C的直角坐标方程和直线l的参数方程;(2)已知直线l与圆C交于A,B两点,满足A为MB的中点,求α.5.[2020·全国卷Ⅱ]已知曲线C 1,C 2的参数方程分别为C 1:⎩⎪⎨⎪⎧x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:⎩⎪⎨⎪⎧x =t +1t,y =t -1t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.6.[2021·某某市高三年级摸底测试卷]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2sin α(α∈[0,2π),α为参数),在同一平面直角坐标系中,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=y得到曲线C 1,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(ρ为极径,θ为极角).(1)求曲线C 的普通方程和曲线C 1的极坐标方程;(2)若射线OA :θ=β(ρ>0)与曲线C 1交于点A ,射线OB :θ=β+π2(ρ>0)与曲线C 1交于点B ,求1|OA |2+1|OB |2的值.[能力挑战]7.[2021·某某省豫北名校高三质量考评]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos φy =y 0+t sin φ(t 为参数,φ∈[0,π)).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝ ⎛⎭⎪⎫π3-θ.(1)求圆C 的直角坐标标准方程;(2)设点P (x 0,y 0),圆心C (2x 0,2y 0),若直线l 与圆C 交于M ,N 两点,求|PM ||PN |+|PN ||PM |的最大值.课时作业721.解析:(1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(φ为参数),消去参数φ得x 24+y 2=1,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入x 24+y 2=1得曲线C 1的极坐标方程为ρ2=4cos 2θ+4sin 2θ=41+3sin 2θ.由曲线C 2是圆心的极坐标为⎝⎛⎭⎪⎫7,π2且经过极点的圆,可得其极坐标方程为ρ=27sin θ,从而得C 2的直角坐标方程为x 2+y 2-27y =0.(2)将θ=π3(ρ≥0)代入ρ=27sin θ得ρB =27sin π3=21,将θ=π3(ρ≥0)代入ρ2=4cos 2θ+4sin 2θ得ρA =4cos 2π3+4sin 2π3=41313, 故|AB |=ρB -ρA =1321-41313.2.解析:(1)因为直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =3+t sin α(t 为参数),所以当α=π2时,直线l 的普通方程为x =2,当α≠π2时,直线l 的普通方程为y -3=tan α(x -2),即y =x tan α+3-2tan α.因为ρ2=x 2+y 2,ρcos θ=x ,ρ2=2ρcos θ+8,所以x 2+y 2=2x +8. 所以曲线C 的直角坐标方程为x 2+y 2-2x -8=0.(2)解法一 曲线C 的直角坐标方程为x 2+y 2-2x -8=0, 将直线l 的参数方程代入曲线C 的直角坐标方程整理,得t 2+(23sin α+2cos α)t -5=0.因为Δ=(23sin α+2cos α)2+20>0,所以可设该方程的两个根分别为t 1,t 2,则t 1+t 2=-(23sin α+2cos α),所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=[-(23sin α+2cos α)]2+20=42.整理得(3sin α+2cos α)2=3,故2sin ⎝ ⎛⎭⎪⎫α+π6=± 3.因为0≤α<π,所以α+π6=π3或α+π6=2π3,解得α=π6或α=π2,综上所述,直线l 的倾斜角为π6或π2.解法二 直线l 与曲线C 交于A ,B 两点,且|AB |=42,曲线C 为圆:(x -1)2+y 2=9,故圆心C (1,0)到直线l 的距离d =9-(22)2=1.①当α=π2时,直线l 的普通方程为x =2,符合题意.②当α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π时,直线l 的方程为x tan α-y +3-2tan α=0,所以d =|tan α-0+3-2tan α|1+tan 2α=1,整理得|3-tan α|=1+tan 2α,解得α=π6. 综上所述,直线l 的倾斜角为π6或π2.3.解析:(1)由x =ρcos θ,y =ρsin θ,可得曲线C 1的极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.曲线C 2的普通方程为(x -2)2+y 2=4,即x 2+y 2-4x =0, 又x =ρcos θ,y =ρsin θ,所以曲线C 2的极坐标方程为ρ=4cos θ. (2)由(1)知|OA |=ρA =1cos α+sin α,|OB |=ρB =4cos α,∴|OB ||OA |=4cos α(cos α+sin α)=2(1+cos2α+sin2α)=2+22sin ⎝ ⎛⎭⎪⎫2α+π4.∵|OB ||OA |=4,∴2+22sin ⎝ ⎛⎭⎪⎫2α+π4=4,sin ⎝ ⎛⎭⎪⎫2α+π4=22.由0<α<π2,知π4<2α+π4<5π4,∴2α+π4=3π4,∴α=π4.4.解析:(1)由圆C :ρ=4cos θ可得ρ2=4ρcos θ, 因为ρ2=x 2+y 2,x =ρcos θ,所以x 2+y 2=4x ,即(x -2)2+y 2=4,故圆C 的直角坐标方程为(x -2)2+y 2=4. 直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos αy =-33+t sin α(t 为参数,0≤α<π).(2)设A ,B 对应的参数分别为t A ,t B ,将直线l 的参数方程代入C 的直角坐标方程并整理,得t 2-6t (3sin α+cos α)+32=0,Δ=36(3sin α+cos α)2-4×32>0 ①,所以t A +t B =6(3sin α+cos α),t A ·t B =32.又A 为MB 的中点,所以t B =2t A ,因此t A =2(3sin α+cos α)=4sin ⎝ ⎛⎭⎪⎫α+π6,t B =8sin ⎝⎛⎭⎪⎫α+π6,所以t A ·t B=32sin 2⎝ ⎛⎭⎪⎫α+π6=32,即sin 2⎝ ⎛⎭⎪⎫α+π6=1.因为0≤α<π,所以π6≤α+π6<7π6,从而α+π6=π2,即α=π3,又α=π3满足①式,所以所求α=π3.5.解析:(1)C 1的普通方程为x +y =4(0≤x ≤4).由C 2的参数方程得x 2=t 2+1t 2+2,y 2=t 2+1t 2-2,所以x 2-y 2=4.故C 2的普通方程为x 2-y 2=4.(2)由⎩⎪⎨⎪⎧x +y =4,x 2-y 2=4得⎩⎪⎨⎪⎧x =52,y =32,所以P 的直角坐标为⎝ ⎛⎭⎪⎫52,32.设所求圆的圆心的直角坐标为(x 0,0),由题意得x 20=⎝⎛⎭⎪⎫x 0-522+94,解得x 0=1710.因此,所求圆的极坐标方程为ρ=175cos θ.6.解析:(1)将曲线C 的参数方程⎩⎪⎨⎪⎧x =2cos αy =2sin α(α∈[0,2π),α为参数)消去参数,得x 2+y 2=4,所以曲线C 的普通方程为x 2+y 2=4.曲线C 经过伸缩变换得到曲线C 1,则曲线C 1的参数方程为⎩⎪⎨⎪⎧x ′=4cos αy ′=2sin α,得x ′2+4y ′2=16,将x ′=ρcos θ,y ′=ρsin θ,代入上式得曲线C 1的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=16. (2)将θ=β(ρ>0)代入ρ2cos 2θ+4ρ2sin 2θ=16,得1ρ2=cos 2β16+sin 2β4,即1|OA |2=cos 2β16+sin 2β4,同理1|OB |2=cos 2⎝ ⎛⎭⎪⎫β+π216+sin 2⎝ ⎛⎭⎪⎫β+π24=sin 2β16+cos 2β4,所以1|OA |2+1|OB |2=116+14=516.7.解析:(1)圆C 的极坐标方程为ρ=8cos ⎝ ⎛⎭⎪⎫π3-θ=4cos θ+43sin θ,所以ρ2=43ρsin θ+4ρcos θ.因为ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y , 所以x 2+y 2-4x -43y =0,所以圆C 的直角坐标标准方程为(x -2)2+(y -23)2=16.(2)由(1)知圆C 的圆心的直角坐标为(2,23),则⎩⎪⎨⎪⎧2x 0=22y 0=23,所以⎩⎪⎨⎪⎧x 0=1y 0=3,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos φy =3+t sin φ(t 为参数,φ∈[0,π)).将直线l 的参数方程代入(x -2)2+(y -23)2=16,得t 2-(23sin φ+2cos φ)t -12=0.设点M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=23sin φ+2cos φ,t 1t 2=-12.故|PM ||PN |+|PN ||PM |=|PM |2+|PN |2|PM |·|PN |=|t 1|2+|t 2|2|t 1||t 2|=(t 1+t 2)2-2t 1t 2|t 1t 2|=112[23sin φ+2cos φ)2+24]=112⎣⎢⎡⎦⎥⎤4sin ⎝⎛⎭⎪⎫φ+π62+2,因此,当φ=π3时,|PM ||PN |+|PN ||PM |取得最大值,最大值为103.。

全品学练考选修

全品学练考选修

全品学练考测评卷高中数学选修2—3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第一课时加法原理与乘法原理(一)基础检验:1.某班有男生26名,女生23名,现在要从中派选1人参加演讲比赛,则有不同的选派方法有()种 A.26 B.23 C.49 D.512.从甲地到乙地,可以乘火车,可以乘汽车,也可以乘轮船,还可以乘飞机。

一天中,火车有4班,汽车有2班,轮船有3班,飞机有1班,那么一天中乘这些交通工具从甲地到乙地的不同走法有() A.10 B.12 C.4 D.73.小王家的书柜里有8本不一样的语文书,10本不一样的数学书,先从中取出一本语文书和一本数学书,则不同的取法有()A.2 B .18 C.40 D.804.由三个数码组成的号码锁,每个数码可取0,1,2,……,9中的任意一个数字,不同的开锁号码设计共有________个。

5. 4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法有____种。

6.人们习惯把最后一位是6的多位数叫做“吉祥数”,则无重复数字的4位吉祥数(首位不能是0)共有____个。

能力提升7.[2013⋅济南模拟]如图1-1-1所示,使电路接通,开关不同的开闭方式有()种A.11B.20C.21D.128.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系内位于第一、二象限的不同点的个数是()A.18B.16C.14D.109.某公司员工义务献血,在体检合格的人中,O型血的人有10人,A型血的人有5人,B型血的人有8人,AB 型血的人有3人。

从四种血型的人中各选一人去献血,不同的选法种数为() A.1200 B.600 C.300 D.2610.四位同学参加某种形式的竞赛,竞赛规则:每位同学必须从甲、乙两道题中任选一题作答,答对甲题得100分,答错得-100分,答对乙题得90分,答错得-90分。

全品学练考政治必修四测评卷电子版

全品学练考政治必修四测评卷电子版

全品学练考政治必修四测评卷电子版1、改革开放的历程中,共产党开辟了中国特色社会主义道路,形成了中国特色社会主义理论体系,包括(? ?)①科学发展观②毛泽东思想③习近平是在中国特色社会主义思想④“三个代表”重要思想,[单选题] *A.①③④(正确答案)B.①②③C.②③④D.①②③④2、4. 过去,我国以“引进来”为主,随着对外开放的扩大,“()”日益成为对外开放的重要渠道。

* [单选题] *A、再引进来B、招商引资C、走出去(正确答案)D、全方位开放3、人类社会存在和发展的基础是()。

??【十五章开始】[单选题] *A.工作B.生产活动(正确答案)C.社会实践D.科学研究4、毛泽东指出:中国共产党在中国革命中战胜敌人有三大法宝,以下不属于三个法宝的是(? ?)[单选题] *A.统一战线B.实事求是C.党的建设D.武装斗争(正确答案)5、21. 现阶段,我国的个人收入分配制度是()。

* [单选题] *A、按生产要素分配为主体,多种分配方式并存B、按劳分配为主题,其他分配方式为补充C、按劳分配为和多种分配方式相结合D、按劳分配为主体,多种分配方式并存(正确答案)6、在生产方式中,起决定作用的是()。

[单选题] *A.生产关系B.生产力(正确答案)C.科学技术D.人口因素7、认识的基础是()。

[单选题] *A.经验B.科学理论C.实践(正确答案)D.学习书本知识8、“听其言必责其用,观其行必求其功。

”这种观点()[单选题] *A.强调认识对实践的作用B.强调实践对认识的检验作用(正确答案)C.认为认识可以脱离实践D.认为实践可以脱离认识9、在封建社会普遍存在地主对农民的剥削,地主剥削农民的基础是(? )[单选题] *A.封建土地所有制(正确答案)B.劳动成果归地主C.土地公有制D.劳动成果平均制10、揭示人类社会发展一般规律,揭示人民群众的历史主体作用,揭示阶级斗争是在阶级社会中巨大作用的是(? ?)[单选题] *A.唯物史观(正确答案)B.辩证法C.德国古典哲学D.空想社会主义11、关于新时代历史机遇期,下列说法正确的是(? ?)[单选题] *A.重新确立马克思主义指导地位和的机遇B.实现攻坚脱贫一个也不能少的关键期C.发展大国关系共建人类命运共同体时期D.中华民族强起来、实现伟大复兴的机遇(正确答案)12、深刻认识和回答了新形势下实现什么样的发展,怎样发展等重大问题,成功在新的历史起点上坚持和发展中国特色社会主义的是()[单选题] *A.科学发展观(正确答案)B.“五位一体”总体布局C.“四个全面”战略布局D.加强生态文明建设13、14. 在经济全球化进程中,要提高风险意识,居安思危、防微杜渐,增强自我保护和抵御风险的能力。

人教版高中数学选修4-4 模块综合评价

人教版高中数学选修4-4 模块综合评价

模块综合评价(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M 的直角坐标是(-1,3),则点M 的极坐标为( )A.⎝ ⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z) 解析:点M 的极径是2,点M 在第二象限,故点M 的极坐标是⎝⎛⎭⎪⎫2,2π3.答案:C2.极坐标方程cos θ=32(ρ∈R)表示的曲线是( )A .两条相交直线B .两条射线C .一条直线D .一条射线解析:由cos θ=32,解得θ=π6或θ=116π,又ρ∈R ,故为两条过极点的直线.答案:A3.曲线ρcos θ+1=0关于直线θ=π4对称的曲线的方程是( )A .ρsin θ+1=0B .ρcos θ+1=0C .ρsin θ=2D .ρcos θ=2解析:因为M (ρ,θ)关于直线θ=π4的对称点是N ⎝ ⎛⎭⎪⎫ρ,π2-θ,从而所求曲线方程为ρcos ⎝ ⎛⎭⎪⎫π2-θ+1=0,即ρsin θ+1=0. 答案:A4.直线⎩⎨⎧x =1+12t ,y =-33+32t (t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)解析:将x =1+t2,y =-33+32t 代入圆方程,得⎝ ⎛⎭⎪⎫1+t 22+⎝ ⎛⎭⎪⎫-33+32t 2=16, 所以t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4,所以x =1+12×4=3,y =-33+32×4=-3,故AB 中点M 的坐标为(3,-3). 答案:D5.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1解析:ρ(ρcos θ-1)=0,ρ=x 2+y 2=0或ρcos θ=x =1. 答案:C6.极坐标方程分别是ρ=2cos θ和ρ=4sin θ的两个圆的圆心距是( )A .2 B.2 C .5 D. 5解析:ρ=2cos θ是圆心为(1,0),半径为1的圆;ρ=4sin θ是圆心为()0,2,半径为2的圆,所以两圆的圆心距是 5.答案:D7.已知圆M :x 2+y 2-2x -4y =10,则圆心M 到直线⎩⎪⎨⎪⎧x =4t +3,y =3t +1(t 为参数)的距离为( )A .1B .2C .3D .4解析:由题意易知圆的圆心M (1,2),由直线的参数方程化为一般方程为3x -4y -5=0,所以圆心到直线的距离为d =|3×1-4×2-5|32+42=2.答案:B8.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R)的对称点的极坐标为( ) A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3 C.⎝⎛⎭⎪⎫1,π3D.⎝⎛⎭⎪⎫1,-7π6解析:点M ⎝ ⎛⎭⎪⎫1,7π6的直角坐标为⎝⎛⎭⎪⎫cos 7π6,sin 7π6=⎝ ⎛⎭⎪⎫-32,-12,直线θ=π4(ρ∈R),即直线y =x ,点⎝ ⎛⎭⎪⎫-32,-12关于直线y =x 的对称点为⎝ ⎛⎭⎪⎫-12,-32,再化为极坐标为⎝⎛⎭⎪⎫1,4π3. 答案:A9.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)和参数方程⎩⎨⎧x =tan θ,y =2cos θ(θ为参数)所表示的图形分别是( )A .直线、射线和圆B .圆、射线和双曲线C .两直线和椭圆D .圆和抛物线解析:因为(ρ-1)(θ-π)=0,所以ρ=1或θ=π(ρ≥0),ρ=1表示圆,θ=π(ρ≥0)表示一条射线,参数方程⎩⎨⎧x =tan θ,y =2cos θ(θ为参数)化为普通方程为y 24-x 2=1,表示双曲线.答案:B10.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =at ,y =a 2t -1(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =2sin θ(θ为参数),且它们总有公共点.则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32,0∪(0,+∞) B .(1,+∞)C.⎣⎢⎡⎭⎪⎫-32,+∞D.⎣⎢⎡⎭⎪⎫-32,4 解析:由已知得⎩⎪⎨⎪⎧at =1+cos θ,a 2t -1=2sin θ,则4(at -1)2+(a 2t -1)2=4, 即a 2(a 2+4)t 2-2a (a +4)t +1=0,Δ=4a 2(a +4)2-4a 2(a 2+4)=16a 2(2a +3). 直线l 与椭圆总有公共点的充要条件是Δ≥0, 即a ≥-32.答案:C11.已知圆锥曲线⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1、F 2是圆锥曲线的左、右焦点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线AF 2的极坐标方程为( )A .ρcos θ+3ρsin θ= 3B .ρcos θ-3ρsin θ= 3 C.3ρcos θ+ρsin θ= 3 D.3ρcos θ-ρsin θ= 3解析:圆锥曲线为椭圆,c =1,故F 2的坐标为(1,0),直线AF 2的直角坐标方程是x +y3=1,即3x +y =3,化为极坐标方程就是3ρcos θ+ρsin θ= 3.答案:C12.已知曲线C 的极坐标方程为ρ=6sin θ,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,直线l 的参数方程为⎩⎨⎧x =2t -1,y =22t(t 为参数),则直线l 与曲线C 相交所得弦长为( )A .1B .2C .3D .4解析:曲线C 的直角坐标方程为x 2+y 2-6y =0, 即x 2+(y -3)2=9,直线⎩⎨⎧x =2t -1,y =22t的直角坐标方程为x -2y +1=0, 因为圆心C 到直线l 的距离d =|0-2×3+1|12+(-2)2=5,所以直线l 与圆C 相交所得弦长为2r 2-d 2= 29-5=4. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.在极坐标系中,点⎝⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为________.解析:结合图形不难知道点⎝ ⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为⎝⎛⎭⎪⎫22,π4. 答案:⎝⎛⎭⎪⎫22,π414.已知圆的渐开线的参数方程⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ(φ为参数),当φ=π4时,对应的曲线上的点的坐标为________.解析:当φ=π4时,代入渐开线的参数方程,得⎩⎪⎨⎪⎧x =3cos π4+3·π4·sin π4,y =3sin π4-3·π4·cos π4,x =322+32π8,y =322-32π8,所以当φ=π4时,对应的曲线上的点的坐标为⎝ ⎛⎭⎪⎫322+32π8,322-32π8. 答案:⎝ ⎛⎭⎪⎫322+32π8,322-32π8 15.若直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=32,曲线C :ρ=1上的点到直线l 的距离为d ,则d 的最大值为________.解析:直线的直角坐标方程为x +y -6=0,曲线C 的方程为x 2+y 2=1,为圆;d 的最大值为圆心到直线的距离加半径,即为d max =|0+0-6|2+1=32+1. 答案:32+116.在直角坐标系Oxy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,a >b >0).在极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=32,若直线l 与x 轴、y 轴的交点分别是椭圆C 的右焦点、短轴端点,则a =________.解析:椭圆C 的普通方程为x 2a 2+y 2b 2=1(a >b >0),直线l 的直角坐标方程为x -3y -3=0,令x =0,则y =-1,令y =0,则x =3,所以c =3,b =1,所以a 2=3+1=4,所以a =2. 答案:2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1. 18.(本小题满分12分)在极坐标系下,已知圆O :ρ=cos θ+sinθ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)由ρ=cos θ+sin θ,可得ρ2=ρcos θ+ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y ,代入得⊙O :x 2+y 2-x -y =0, 由l :ρsin ⎝⎛⎭⎪⎫θ-π4=22,得:22ρsin θ-22ρcos θ=22,ρsin θ-ρcos θ=1,又⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y ,代入得:x -y +1=0.(2)由⎩⎪⎨⎪⎧x -y +1=0,x 2+y 2-x -y =0,解得⎩⎪⎨⎪⎧x =0,y =1,又⎩⎨⎧ρ2=x 2+y 2,tan θ=y x ,得ρ=1,tan θ不存在, 又因为θ∈(0,π),则θ=π2,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎪⎫1,π2.19.(本小题满分12分)已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =32t +m ,y =12t (t 为参数).(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)当m =2时,直线l 与曲线C 交于A 、B 两点,求|AB |的值. 解:(1)由ρ=2cos θ,得:ρ2=2ρcos θ,所以x 2+y 2=2x ,即(x -1)2+y 2=1, 所以曲线C 的直角坐标方程为(x -1)2+y 2=1. 由⎩⎨⎧x =32t +m ,y =12t 得x =3y +m ,即x -3y -m =0,所以直线l 的普通方程为x -3y -m =0. (2)设圆心到直线l 的距离为d , 由(1)可知直线l :x -3y -2=0, 曲线C :(x -1)2+y 2=1,圆C 的圆心坐标为(1,0),半径1, 则圆心到直线l 的距离为d =|1-3×0-2|1+(3)2=12. 所以|AB |=21-⎝ ⎛⎭⎪⎫122= 3.因此|AB |的值为 3.20.(本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝⎛⎭⎪⎫θ-π4=a 上,可得a =2,所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1. 因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.21.(本小题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =-1+22t (t 为参数),直线l 与圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(1)求圆心的极坐标;(2)求△PAB 面积的最大值.解:(1)圆C 的直角坐标方程为x 2+y 2-2x +2y =0, 即(x -1)2+(y +1)2=2.所以圆心坐标为(1,-1),圆心极坐标为⎝ ⎛⎭⎪⎫2,7π4. (2)直线l 的普通方程为22x -y -1=0,圆心到直线l 的距离d =|22+1-1|3=223, 所以|AB |=22-89=2103, 点P 到直线AB 距离的最大值为2+223=523,故最大面积S max =12×2103×523=1059. 22.(本小题满分12分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点、x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 坐标系
一 平面直角坐标系
1.平面直角坐标系
考点类析
考点一:
例1.(1)如图1-1-1,在矩形ABCD 中,AB=2,BC=2,点E 为BC 的中点,点F 在边CD 上,若→AB ²→AF=2,则→AE ²→BF 的值是 .
图1-1-1 答案: 2 【解析】如图,以AB 为x 轴,AD 为y 轴建立直角坐标系,
则A (0,0),B (2,0),E (2,1),F (x ,2),
∴→AB ²→AF=(2,0)²(x ,2)=2x=2,解得x=1,
∴→AE ²→BF=(2,1)²(1-2,2)= 2.
(2)见原考点一例1
练习册
1.如图1-1-2所示是永州市几个主要景点示意图的一部分,如果用(0,1)表示九巍山的中心位置点C ,用(-2,0)表示盘王殿的中心位置点A ,则千家峒的中心位置点B 表示为( )
图1-1-2
A.(-3,1)
B.(-1,-3)
C.(1,-3)
D.(-3,-1)
答案:A 【解析】根据题意建立平面直角坐标系,如图:
由坐标系可知千家峒的中心位置点B 表示为(-3,1).故选A.
2~6题不变
7.更换为原基础检验9题
8. 已知,是单位向量,•=0.若向量满足|﹣﹣|=1,则||的最大值为 . 答案:2+1 【解析】∵|→a |=|→b |=1,且→a ²→b =0,如图,建立直角坐标系,
∴可设→a (1,0),→b =(0,1),→c =(x ,y ).
∴→c -→a -→b =(x-1,y-1).
∵|→c -→a -→b |=1, ∴(x-1)2+(y-1)2=1,即(x ﹣1)2+(y ﹣1)2
=1.
∴|→c |的最大值=12+12+1=2+1.
故选C .
9. 如图1-1-3,矩形ABCD 中,AB=3,AD=4,M ,N 分别为线段BC ,CD 上的点,且满足1CM 2+1CN 2=1,若→AC=x →AM+y →AN ,则x+y 的最小值为 .
图1-1-3
答案:54 【解析】由题意建立平面直角坐标系,如图所示;
设点M (3,a ),N (b ,4),且0<a <4,0<b <3;
∵→AC=(3,4),→AM=(3,a ),→AN=(b ,4);
又∵→AC=x →AM+y →AN ,(x+y ≥1)
∴(3,4)=x (3,a )+y (b ,4),
即⎩⎨⎧3x+yb=3xa+4y=4,
∴b=3-3x y ,a=4-4y x ,
∴1CM +1CN =1(4-a)+1(3-b)=116•x 2(x+y-1)+19•y
2
(x+y-1)=1,
即x 216+y 29=(x+y ﹣1)2

设x+y=m ,则x=m ﹣y ;
则(m-y)216+y
29=(m ﹣1)2,
即25y 2﹣18my+9m 2﹣144(m ﹣1)2=0,
故△=(18m )2﹣4³25³(9m 2﹣144(m ﹣1)2)≥0,
即24m 2﹣50m+25≥0,
解得,m ≥54或m ≤56(不合题意,舍去);
又→AC 在→AN 与→AM 的夹角之内,所以x ≥0,y ≥0,对应方程有正根;
又m ≥54,∴y 1+y 2=18m 5>0,满足题意,
∴x+y 的最小值54.
12. 用坐标法证明:平行四边形对角线的平方和等于四条边的平方和.
答案:如图,以顶点A 为坐标原点,以AB 所在直线为x 轴建立直角坐标系,则A (0,0). 设B (a ,0),D (b ,c ),由平行四边形的性质得点C 的坐标为(a+b ,c ),
因为|AB|2=a 2,|CD|2=a 2,|AD|2=b 2+c 2,|BC|2=b 2+c 2,|AC|2=(a+b )2+c 2,|BD|2=(b ﹣a )2+c 2, 所以|AB|2+|CD|2+|AD|2+|BC|2=2(a 2+b 2+c 2),
|AC|2+|BD|2=2(a 2+b 2+c 2).
所以|AB|2+|CD|2+|AD|2+|BC|2=|AC|2+|BD|2.
因此,平行四边形四条边的平方和等于两条对角线的平方和.
13. 如图1-1-4,在以点O 为圆心,AB 为直径的半圆ADB 中,OD ⊥AB ,AB=4,P 是半圆弧上一点,∠POB=30°,曲线C 是满足||MA|﹣|MB||为定值的动点M 的轨迹,且曲线C 过点P . (Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程;
(Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F .若△OEF 的面积等于22,求直线l 的方程.
图1-1-4
答案:(I )以O 为原点,AB ,OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系, 则A (﹣2,0),B (2,0),D (0,2),P (3,1),
依题意得|MA|﹣|MB|=|PA|﹣|PB|=(2+3)2+12-(2-3)2+12
=22<|AB|=4,
∴曲线C 是以原点为中心,A ,B 为焦点的双曲线.
设实半轴长为a ,虚半轴长为b ,半焦距为c ,
则c=2,2a=22⇒a 2=2,b 2=c 2﹣a 2=2,
∴曲线C 的方程为x 22-y 22
=1. (II )依题意,可设直线l 的方程为y=kx+2,代入双曲线C 的方程并整理,
得(1﹣k 2)x 2
﹣4kx ﹣6=0…①.
∵直线l 与双曲线C 相交于不同的两点E ,F , ∴⎩⎨⎧1-k 2
≠0
△=(-4k)2+4³6(1-k 2)>0⇔⎩
⎨⎧k ≠±1- 3<k<3 ∴k ∈(-3,-1)∪(-1,1)∪(1,3).
设E (x 1,y 1),F (x 2,y 2),则由①式得x 1+x 2=4k 1-k 2,x 1x 2=-61-k 2, 于是|EF|=(x 1-x 2)2-(y 1-y 2)2=(1+k 2)( x 1-x 2)2=1+k 2²(x 1+x 2)2-4 x 1x 2=1+k 2²223-k 2|1-k 2|
, 而原点O 到直线l 的距离d=2 1+k 2, ∴S △OEF =12d ²|EF|=12²2 1+k 2²1+k 2²223-k 2|1-k 2|=223-k 2|1-k 2|
. 若S △OEF =22,即223-k 2|1-k 2|
=22⇔k 4-k 2-2=0, 解得k=±2,
故直线l 的方程为y=±2x+2.。

相关文档
最新文档