第五章微生物的代谢
第五章 微生物的代谢

为混合酸发酵。
EMP
葡萄糖
乳酸、乙酸、甲酸 丙酮酸 乙醇 、CO2 、H2 琥珀酸
五 丙酮-丁醇发酵
——严格厌氧菌进行的唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1)
——丙酮丁醇梭菌(Clostridium acetobutyricum
2丙酮酸 2乙酰-CoA
缩合
乙酰-乙酰 CoA
• 为细胞生命活动提供ATP 和 NADH • 是连接其它几个重要代谢途径的桥梁 • 为生物合成提供多种中间代谢物
2. HM途径(磷酸戊糖支路, 单磷酸己糖途径)
ATP 12NADPH+H+ 36ATP 35ATP
6C6
6C5
经过系列反应后合成己糖 6CO2
5C6
C6为己糖或己糖磷酸;C5为核酮糖-5-磷酸;打方框的为终产物; NADPH+H+必须先由转氢酶将其上的氢转到NAD+上并变成 NADPH+H+后,才能进入呼吸链产ATP;
NADH + H+ NAD+
•异型乳酸发酵途径:肠膜明串珠菌,短乳杆菌
PK/ HK
葡萄糖
乳酸 + 乙醇 + CO2 + 1ATP
•双岐发酵途径:双岐杆菌
PK/ HK 葡萄糖 乳酸 + 乙酸 + CO2 + 2.5ATP
三 丙酸发酵(丙酸细菌,厌氧菌)
葡萄糖
EMP
丙酮酸
丙酸
乳酸
四 混合酸发酵
由于代谢产物中含有多种有机酸,故将其称
生活在盐湖及海边的岩池等盐浓度很高环境
胞内积累高浓度的甘油从而使细胞的渗透压保持平衡
微生物学第五章微生物的代谢

通过改变细胞膜的通透性,控制代谢底物和产物的进出,从而调 节代谢过程。
微生物代谢的基因调控
01
原核生物的基因调 控
通过操纵子模型实现基因表达的 调控,包括正调控和负调控两种 方式。
02
真核生物的基因调 控
通过转录因子和顺式作用元件的 相互作用,实现基因表达的精确 调控。
03
基因表达的诱导和 阻遏
03 氮的转化代谢
微生物还可以通过氮的转化代谢将一种含氮化合 物转化成另一种含氮化合物,如硝酸盐还原成氨 的过程。
04Βιβλιοθήκη 微生物代谢的调节与控制代谢调节的方式与机制
酶活性的调节
通过改变酶的构象或修饰酶活性中心,从而调节代谢途径中关键 酶的活性。
代谢物浓度的调节
代谢物浓度的变化可以影响酶的活性,从而调节代谢速率。
用、液相色谱-质谱联用等。
核磁共振法
利用核磁共振技术对微生物代 谢产物进行结构和构象分析, 可以获得代谢产物的详细化学
信息。
生物信息学分析
利用生物信息学方法对微生物 代谢组学数据进行处理和分析, 包括代谢途径分析、代谢网络 构建、代谢物鉴定和代谢调控 研究等。
THANKS
感谢观看
微生物代谢产物的生物活性与应用
抗生素
由微生物代谢产生的具有抗菌活 性的化合物,用于治疗细菌感染。
酶
微生物代谢产生的生物催化剂,广 泛应用于食品、医药、化工等领域。
激素
某些微生物代谢产物具有激素活性, 可用于调节动植物生长发育。
微生物代谢在环境保护和能源领域的应用
污水处理
利用微生物代谢降解污水中的有机污染物,净化水质。
02
微生物的能量代谢
能量代谢的基本过程
第五章 微生物的代谢

(三)半纤维素的分解 半纤维素也是植物细胞壁的重要组成成分,在植
物体内的含量很高,仅次于纤维素,半纤维素是由戊 糖(主要是木糖和阿拉伯糖)和己糖(主要是半乳糖 和甘露糖)缩合而成的聚合物,有些种类植物在组成 半纤维素的亚基中,还有糖醛酸(主要是半乳糖醛酸 和葡萄糖醛酸)。
半纤维素比纤维素容易分解,能够分解它的微生 物种类也比较多,例如细菌中的噬纤维菌,梭菌中的 某些种类,真菌中的曲霉、青霉、木霉等的某些种类。 半纤维素在相应酶的作用下,分解为相应的单糖。
•反应步骤简单,产能效率低.
• 此途径可与EMP途径、HMP途径和TCA循环相连 接,可互相协调以满足微生物对能量、还原力和不 同中间代谢物的需要。好氧时与TCA循环相连,厌 氧时进行乙醇发酵.
ED途径的总反应
•
• •
ATP
• • •
ATP
C6H12O6
ADP
KDPG
2ATP NADH2 NADPH2 2丙酮酸
HMP途径的重要意义
•为核苷酸和核酸的生物合成提供戊糖-磷酸。
•产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成提 供还原力,另一方面可通在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可 以调剂戊糖供需关系。
•途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、 碱基合成、及多糖合成。
醛再氧化成有机酸,最后按脂肪酸β-氧化的方
式分解,为机体生长提供必要的能量与小分子 化合物。
(二)脱氨作用 脱氨基主要有氧化脱氨基(大肠杆菌等参与)、水解
脱氨基(酵母菌等参与)和还原脱氨基(大肠杆菌等参 与)三种方式。 1.氧化脱氨基 CH3CHNH2COOH+1/2O2→CH3COCOOH+NH3 2.水解脱氨基 RCHNH2COOH+H2O→RCH2OH+CO2+NH3 3.还原脱氨基 HOOCCH2CHNH2COOH→HOOCCH=CHCOOH+ NH3
第五章 微生物工程的代谢调节和代谢工程

二、酶活性的调节
代谢调节是指在代谢途径水平上酶活性 和酶合成的调节。 酶活性调节: 激活剂→酶激活作用; 抑制剂→酶抑制作用; 可以是外源物,也可是自身代谢物。
1、酶激活作用与抑制作用
微生物代谢中,普遍存在酶既有激活作 用又有抑制作用的现象。 如:天门冬氨酸转氨甲酰酶受ATP激活, 受CTP抑制(终产物)。 大肠杆菌糖代谢过程中,许多酶都有 激活剂和抑制剂(表5-1)。共同控制糖 代谢。
酶的共价修饰。
生产目的:高浓度地积累人们所期望的产物。 办法:①育种,得到根本改变代谢的基因突变株;
②控制微生物培养条件,影响其代谢过程。 代谢工程:利用基因工程技术,扩展和构建、连接,形 成新的代谢流。(也称途径工程)
一、微生物的代谢类型和自我调节
1.代谢类型:分解代谢和合成代谢。 相互关联,相互制约。 细胞优先合成异化可维持更快生长的化合物 的酶。利用完后,再合成下一个酶。 2.微生物自我调节部位: ①细胞膜的屏障作用(多数亲水分子)和通道; ②控制通量,调节酶量和改变酶分子活性; ③限制基质的有形接近,可存在于不同细胞 器各个代谢库中,其酶量差别大。
价连接物(腺苷酰基)。
五、能荷调节
细胞的能荷计算式:
[ATP]+1/2[ADP] 能荷=—————————— [ATP]+ [ADP]+[AMP]
能荷高时,ATP的酶合成系统受抑制, ATP消耗酶系统被活化。 呈抑制与活化的中间状态的能荷大约是 0.85,此时两种酶系统达到平衡。
六、代谢调控
根据代谢调节理论,通过改变发酵工艺条 件(温度、PH、风量、培养基组成)和菌 种遗传特性,达到改变菌体内的代谢平 衡,过量产生所需产物的目的。 1.发酵条件的控制 2.改变细胞透性 3.菌种遗传特性的改变
10-12 第五章 微生物的代谢

1、生物氧化的形式:
包括脱氢或脱电子
①失电子:
Fe2+ → Fe3+ + e CH3-CHO
②化合物脱氢、递氢: CH3-CH2-OH
NAD NADH2
2、生物氧化的过程: 脱氢(或电子)、递氢(或电子)和受氢(或电子)三 个阶段
3、生物氧化的功能: 产能(ATP)、产还原力[H]和产小分子中间代谢物
德国: (Carl Neuberg)
目前甘油生产中使用的微生物 Dunaliella aslina(一种嗜盐藻类) 生活在盐湖及海边的岩池等盐浓度很高环境
胞内积累高浓度的甘油使细胞的渗透压保持平衡
由EMP途径中丙酮酸出发的发酵
②同型乳酸发酵:发酵产物只有乳酸
丙酮酸
NADH2
乳酸
同型乳酸发酵菌株有: 德氏乳杆菌(L.delbruckii)、嗜酸乳杆菌(L.acidophilus)、植物乳杆菌 (L.plantarum)、干酪乳杆菌(L.casei)、粪链球菌(Streptococcus faecalis)
(5)Stickland反应
氨基酸同时为碳源、氮源和能源 以一种氨基酸为H供体,而另一种氨基酸为H受体来实现 生物氧化产能的发酵类型。
3乙酸
丙氨酸
+
2甘氨酸
3NH3
CO2 ATP
Stickland反应特点:
部分氨基酸的氧化与另一些氨基酸的还原相偶联; 产能效率低,1ATP/1G。
各途经的相互关系
H2O
2-酮-3-脱氧-6-磷酸-葡萄糖酸
丙酮酸
~~醛缩酶
(KDPG)
有氧时与TCA循环连接 无氧时进行细菌乙醇发酵
葡萄糖只经过4步反应即可快速获得由EMP途径须经10步 才能获得的丙酮酸。
第五章微生物的代谢与发酵

3)进行细菌酒精发酵
●酒精发酵途径:
酵母菌:葡萄糖→1,6-二磷酸果糖→3-磷酸甘油
醛、磷酸二羟丙酮→ →丙酮酸→乙醛
→2乙醇
细菌:葡萄糖→ 6-磷酸葡糖酸→KDPG →丙酮酸(3-磷
酸甘油醛→丙酮酸)→乙醛→2乙醇
●细菌酒精发酵
代谢速率高、转化率高、副产物少、发 酵温度较高;但pH较高、较易染菌、耐乙 醇能力较低。
Chap 5 微生物的新陈代谢
主要内容:
●微生物独特的能量代谢
●微生物独特的合成途径
●发酵与代谢调节
§1.微生物能量代谢
一、化能异养微生物的生物氧化和产能
●生物氧化的主要途径和类型 途径:脱氢、递氢和受氢 类型(受氢体不同):
----(好氧)呼吸
----无氧呼吸 ----发酵
(一)底物脱氢的生物学意义
1)TCA循环中4C化合物的补偿 2)乙酸为唯一C源微生物 的重要代谢途径
3)高效的琥珀酸形成途径
§3 微生物独特合成途径
一.自养微生物的CO2固定
●Calvin 循环 ●厌氧乙酰—COA途径 ●逆向TCA循环 ●羟基丙酸途径
●Calvin 循环(略)
1) 6CO2通过Calvin
---对卫生、环保、农业(肥力)的影响与利用
●反硝化作用: 微生物在厌氧呼吸中把硝酸盐或亚硝酸 还原为气态氮(氮气)的过程。
(注意:不同于硝酸盐异化还原)
●硝酸盐同化还原 硝酸盐为微生物吸收还原为氨态氮的过程。
Dentrification
The formation of gaseous nitrogen or gaseous nitrogen oxides from nitrate or nitrite by microorganisms.
微生物的新陈代谢

典型的呼吸链
呼吸的过程
葡萄糖经过糖酵解(EMP途径)作用形成的丙酮酸, 丙酮酸进入三羧酸循环(简称TCA循环),被彻底氧化生 成CO2和水,同时释放大量能量。
2. 无氧呼吸
某些厌氧菌和兼性厌氧菌在无氧条件下进行的、呼吸链末 端的氢受体为外源无机氧化物(少数为有机氧化物)的生 物氧化。产能效率较低。 特点: 1) 底物按常规脱下的氢经部分呼吸链传递; 2) 最终由氧化态的无机物或有机物受氢; 3) 氧化磷酸化产能。 与有氧呼吸的异同: 无氧呼吸和有氧呼吸一样需要细胞色素等电子传递体,在 能量分级释放过程中伴随着磷酸化作用,也能产生很多能 量,但只有部分能量随电子(或H)传递给氧化物,使得 生成的能量不如有氧呼吸产生得多。
注:沼气的产生并不只是产甲烷菌参与,还有一些发酵 性细菌、产氢产乙酸细菌的参与,并且具有阶段性。
②产乙酸细菌产生乙酸。
3. 发 酵
广义发酵: 任何利用微生物来生产大量菌体或有用代谢产物或食品饮料的 一类生产方式。 狭义发酵: 在无氧等外源受氢体(外源最终电子受体)条件下,底物脱氢 以后产生的还原力[H]未经过呼吸链传递而直接交给某一内源 中间代谢产物接受,以实现底物水平磷酸化产能的生物氧化反 应。
具有ED途径的微生物
革兰氏阴性菌中分布较广 Pseudomonas saccharophila (嗜糖假单胞杆菌) Ps.aeruginosa (铜绿假单胞杆菌) Ps.fluorescens (荧光假单胞杆菌) Ps.lindneri (林氏假单胞菌) Z.Mobilis (运动发酵单胞菌) Alcaligens eutrophus (真氧产碱菌)
附:白酒的制作
附:红葡萄酒与白葡萄酒的区别
a) 原料不同。根据所用葡萄品种的颜色不同:葡萄分为白色品 种(白皮白肉)、红色品种(红皮白肉)和染色品种(红皮 红肉)三大类;
第五章微生物的代谢一、名词解释:01.新陈代谢(metabolism):简称...

第五章微生物的代谢一、名词解释:01.新陈代谢(metabolism):简称代谢,泛指发生在活细胞中的各种化学反应的总和,也是生物细胞与外界环境不断进行物质交换的过程。
包括合成代谢和分解代谢,它是推动生物一切生命活动的动力源。
02.合成代谢(anabolism):又称同化作用。
微生物从环境吸收营养物质,在细胞内合成新的细胞物质和贮藏物质,并储存能量,建立生长、发育的物质基础的过程。
03.分解代谢(catabolism):又称异化作用。
微生物分解营养物质,释放能量,供给同化作用、机体运动、生长和繁殖等生命活动所用,产生中间代谢产物,并排泄代谢废物和部分能量的过程。
04.生物氧化(biological oxidation):分解代谢实际上是物质在生物体内经过一系列的氧化还原反应,逐步分解并释放能量的过程,这个过程也称为生物氧化。
05.呼吸作用(respiration):微生物在降解底物的过程中,将释放的电子交给电子载体,再经过电子传递系统传给外源电子受体,从而生成水或其他还原型产物并释放出能量的过程。
06.有氧呼吸(aerobic respiration):以分子氧作为氢和电子的最终受体的生物氧化过程,称为好氧呼吸或有氧呼吸。
07.无氧呼吸(anaerobic respiration):又称为厌氧呼吸,在无氧的条件下,微生物以无机氧化物作为最终氢和电子受体的生物氧化过程。
08.发酵(fermentation):狭义发酵:在无外源氢受体的条件下,细胞有机物氧化释放的[H]或电子交给某一内源性的中间代谢物,以实现底物水平磷酸化产能的一类生物氧化反应。
即电子供体是有机物,而最终电子受体也是有机物的生物氧化过程。
广义发酵:泛指任何利用微生物来生产有用代谢产物或食品、饮料的一类生产方式。
09.底物水平磷酸化(substrate level phosphorylation):物质在生物氧化过程中,常生成一些有高能键的化合物,这些化合物可直接偶联A TP或GTP的合成,这种产生ATP等高能键的方式称为底物水平磷酸化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章微生物的代谢
一、名词解释:
01.新陈代谢(metabolism):
02.合成代谢(anabolism):
03.分解代谢(catabolism):
04.生物氧化(biological oxidation):
05.呼吸作用(respiration):
06.有氧呼吸(aerobic respiration):
07.无氧呼吸(anaerobic respiration):
08.发酵(fermentation):
09.底物水平磷酸化(substrate level phosphorylation):
10.氧化磷酸化(oxidative phosphorylation):
11.光合磷酸化(photophosphorylation):
12.呼吸链(respiratory chain, RC):
13.糖酵解(glycolysis):
14.CO2的固定:
15.生物固氮:
16.Stickland反应:
17.初级代谢:
18.次级代谢:
二、填空题:
01.生物体内葡萄糖被降解为丙酮酸的过程称为(),主要分为四种途径:
()、()、()和()。
02.EMP途径中,第一阶段是一分子葡萄糖被裂解成2个三碳化合物,即
()和(),并消耗掉2分子ATP。
03.EMP途径中,第二阶段甘油醛-3-磷酸转化为1, 3-二磷酸甘油酸是()
反应,辅酶()接受氢原子,形成()。
04.分子的葡萄糖通过EMP途径可产生()分子丙酮酸,()分子
ATP和()个NADH。
05.一分子葡萄糖经有氧呼吸彻底氧化可产生()个ATP;每一分子葡萄
糖通过酵母菌进行乙醇发酵产生()个ATP;通过德氏乳酸杆菌进行正型乳酸发酵可产生()个ATP。
06.HMP途径的一个循环的最终结果是1分子葡萄糖-6-磷酸转变成()
分子甘油醛-3-磷酸、()分子CO2和()分子NADH。
07.HMP途径可为合成代谢提供()和()。
08.ED途径是在研究嗜糖假单胞菌时发现的。
通过该途径1分子葡萄糖最后生
成()分子丙酮酸、()分子ATP、()分子NADPH和NADH。
09.ED途径中关键性酶是();HMP途径中的关键性酶是();EMP
途径中关键性酶是()。
10.ED途径产生的物质有:()、()、()和小分子碳架
()、()、()、()等。
11.磷酸解酮酶途径是明串珠菌在进行异型乳酸发酵过程中分()和
()途径。
该途径的特征性酶是磷酸解酮酶。
根据该酶的不同,把具
有磷酸戊糖解酮酶的称为()途径;把具磷酸己糖解酮酶的叫()途径。
12.微生物的次生代谢产物括:()、()、()、()和
()。
13.乳酸发酵一般要在厌氧条件下进行,它可分为()和()乳酸
发酵。
14.有氧呼吸是以氧为电子受体,还原产物是()。
无氧呼吸中的外源电
子受体是()。
15.有氧呼吸过程中,葡萄糖经EMP途径产生丙酮酸,丙酮酸进入()
被彻底氧化成()和(),一分子丙酮酸在TCA循环中可产生()个ATP。
16.在乙醇发酵过程中,酵母菌利用()途径将葡萄糖分解成(),
然后在脱氢酶作用下,生成(),再在()酶的作用下,被还原成乙醇。
17.TCA循环为合成代谢可提供:()、()、()、()
和小分子碳架()、()、()、()等。
18.呼吸作用与发酵作用的根本区别是:电子载体不是将电子直接传递给底物降
解的中间产物,而是交给(),逐步释放能量后再交给()。
19.TCA循环中,共释放出3个分子CO2,一个是在()形成过程中;一
个是在()的脱羧时产生;一个是在()的脱羧过程中。
20.在TCA循环中,丙酮酸完全氧化为()个CO2,同时生成()
分子的NADH和()分子的FADH2。
其中还包含一次底物水平的磷
酸化,即()氧化成延胡索酸时,产生1分子的(),随后可转化为ATP。
21.电子传递系统是一系列氢和电子传递体组成的多酶氧化还原体系。
这些系统
具两种基本功能:一是();二是()。
22.电子传递系统中的氧化还原酶包括:()、()、()、
()、()。
23.光合色素是将光能转化为化学能的关键物质,共有三类:()、
()、()。
24.细菌叶绿素具有和高等植物叶绿素相似的化学结构,区别是()不同,
以及因此而导致的()的差异。
25.光合色素分布于两个系统,分别称为()和(),每个系统即
为()。
这两个系统中的光合色素的成分和比例不同。
26.一个光合单位由一个()和一个()组成。
27.自养微生物同化CO2所需的能量来自光能或无机物氧化所得的化学能,固定
CO2的途径有四条:()、()、()、()。
28.微生物能在常温下固氮,关键是靠()的催化作用,它是由()
和()两个部分组成。
固氮作用是一个耗能反应,每固定1mol氮约消耗()molATP。
在体内固氮时,还需要些特殊的电子传递体,其中主要是()和含有FMN作为辅基的()。
29.微生物的代谢回补途径主要有()和()。
30.氨基酸的合成主要有()、()、()等三种方式。
三、选择题:
01.自然界中的大多数微生物是靠___产能。
()
A.发酵
B.呼吸
C.光合磷酸化
D.Stickland反应
02.在微生物细胞中单糖主要靠_____途径降解生成丙酮酸。
()
A.EMP
B.HMP
C.ED
D. Stickland反应
03.在下列微生物中___能进行产氧的光合作用。
()
A.链霉菌
B.蓝细菌
C.紫硫细菌
D.酵母菌
04.反硝化细菌进行无氧呼吸产能时,电子最后交给:()
A.无机化合物中的氧
B.O2
C.中间产物
D.氨
05. 参与肽聚糖生物合成的高能磷酸化合物是()
A.ATP
B.GTP
C.UTP
D.DAP
06. 下列光合微生物中,通过光合磷酸化产生NADPH2的微生物是()
A.大肠杆菌
B.念珠藻
C.酵母菌
D.黑曲霉
四、判断题:
01.所有光合生物都有类胡萝卜素。
()
02.EMP途径主要存在于厌氧生活的细菌中。
()
03.乳酸发酵和乙酸发酵都是在厌氧条件下进行的。
()
04.一分子葡萄糖经同型乳酸发酵可产2个ATP,经异型乳酸发酵可产1个ATP。
()
05.一分子葡萄糖经同型乳酸发酵可产1个ATP,经异型乳酸发酵产2个ATP。
()
06.葡萄糖彻底氧化产生38个ATP,大部分来自TCA循环。
()
07.葡萄糖彻底氧化产生38个ATP,大部分来自糖酵解。
()
08.丙酮丁醇发酵是在好气条件下进行的,该菌是一种梭状芽胞杆菌。
()
09.ED途径一般存在于好氧生活的G-细菌中。
()
10.ED途径主要存在于G-的厌氧菌中。
()
11.乳酸杆菌走EMP途径进行同型乳酸发酵。
()
12.乳酸杆菌走ED途径进行异型乳酸发酵。
()
13.酿酒酵母(Saccharomyces cerevisia e)走EMP途径进行酒精发酵。
()
14.运动发酵单胞菌(Zymomonas mobilis)走ED途径进行酒精发酵。
()
15.磷酸化酶和淀粉酶都可以将淀粉转化为葡萄糖。
()
16.NAD链可产生3个ATP,FAD链可产2个ATP。
()
17.PRPP是ATP,GTP,UTP,CTP四种核苷酸合成的共同前体物。
()
18.微生物的次生代谢产物是微生物主代谢不畅通时,由支路代谢产生的。
()
19.次级代谢途径被阻断会影响菌体的生长繁殖。
()
20.CO2是自养微生物的唯一碳源,异养微生物也可用其作为辅助碳源。
()
五、思考题:
01. 分解代谢的三个阶段是什么?
02.举例说明微生物的主要几种发酵类型。
03.比较呼吸作用与发酵作用的主要区别。
04.比较红螺菌与蓝细菌光合作用的异同。
05.酵母菌利用葡萄糖发酵的类型有哪些?
06.胃八叠球菌和运动发酵单胞菌产生乙醇的方式有何不同?
07.乳酸发酵的类型有哪些?
08.分支合成途径调节有哪些方式?并举例说明。
09.与动植物相比,微生物代谢的多样性表现在哪些方面?
10.试述分解代谢与合成代谢的关系。
11.说明氧化磷酸化的机制。
12. 如何利用代谢调控提高微生物发酵产物产量?
13. 简述肽聚糖合成的过程,并说明青霉素抑制细菌生长的机理。