应用多元统计分析课后答案 (2)

合集下载

应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt

应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt

4 3
u1u2
1
2
exp[
1 2
(2u12
u22
2u1u2 )]du1du2
1
2
u12
u1e 2
1
2
u2e
1 2
(
u2
u1
)
2
du2
du1
1
2
u12
u1e 2
1
2
(u2
u1
)e
1 2
(u2
u1
)
2
du2
u1
e
1 2
(
u2
u1
)
2
du2
du1
1
2
u e
2
u12 2
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
X
X X
(1) (2)
~
N
2
p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,

应用多元统计分析课后习题答案详解北大高惠璇部分习题解答

应用多元统计分析课后习题答案详解北大高惠璇部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
因2x12
2x1x2
x22
(x1,
x2
)
2 1
11
x1 x2
,

2 1
11 11
1011
10 BB,
令y
y1 y2
11
1 0
x1 x2
x1
x2 x1
,
则2
x12
2x1x2
x22
y12
y22
(2)第二次配方.由于
xx12
y2 y1
y2
14
第二章 多元正态分布及参数的估计
2x12 x22 2x1x2 22x1 14x2 65
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1

应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料

应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料

1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]

应用多元统计分析课后答案 .doc

应用多元统计分析课后答案 .doc

2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。

应用多元统计分析课后答案 (2)

应用多元统计分析课后答案 (2)

(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
'.
.
fx1 (x1)
d c
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a)( x2
c)]
dx
d
2(d c)(x1 (b a)2 (d
a)x2 c)2
d c
2[(b
a)( x2 (b
差阵。)
2.6 渐近无偏性、有效性和一致性;
2.7 设总体服从正态分布, X ~ N p (μ, Σ) ,有样本 X1, X2 ,..., Xn 。由于 X 是相互独立的正
态分布随机向量之和,所以 X 也服从正态分布。又
E(X)
E
n
Xi
n
n
E Xi
n
n μ

i1
i1
i1
D(X) D n Xi i1
μ j
nj i1
Σ1 ( Xij
μj)
0(
j
1, 2,..., k)
解之,得
μˆ j
xj
1 nj
nj
xij , Σˆ
i 1
k nj
xij x j
j1 i1
xij x j
n1 n2 ... nk
第三章
3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步骤。 其基本思想和步骤均可归纳为: 答:
i 1
i 1
n
(Xi - μ)(Xi - μ) 2n(X μ)(X μ) n(X μ)(X μ) i 1
n
(Xi - μ)(Xi - μ) n(X μ)(X μ) i 1

应用多元统计分析课后习题答案详解北大高惠璇部分习题解答课件

应用多元统计分析课后习题答案详解北大高惠璇部分习题解答课件


W X X X X ( ( 1 2 ) ) X X ( ( 1 1 ) ) X X ( ( 1 2 ) ) X X ( (2 2 ) ) W W 1 21 1 W W 1 2 2 2 , 即
W 1 1 X ( 1 ) X ( 1 )W ,2 2 X ( 2 ) X ( 2 )
性质4 分块Wishart矩阵的分布:设X(α) ~ Np(0,Σ) (α
=1,…,n)相互独立,其中
又已知随机矩阵
1211
12 r 22pr
W n 1X ()X ( ) W W 1 21 1W W 1 2 2 2p r r~ W p(n , )
因 X H ~ 0 下 N p(0 ,1 n 0 ),n (X 0 )H ~ 0 下 N p(0 , 0 )
所以由§3“一﹑2.的结论1”可知
2ln~2(p).
20
第三章 多元正态总体参数的检验
3-6 (均值向量各分量间结构关系的检验) 设总体
X~Np(μ ,Σ )(Σ >0),X(α) (α =1,…,n)(n>p)为 来自p维正态总体X的样本,记μ =(μ 1,…,μ p)′.C 为k×p常数(k<p),rank(C)=k,r为已知k维向量.试给出 检验H0:Cμ =r的检验统计量及分布.
6
第三章 多元正态总体参数的检验
证明 记rk(A)=r.
若r=n,由AB=O,知B= On×n,于是 X′AX与X′BX
若r=0时,则A=0,则两个二次型也是独 立的. 以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
7
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是

应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中

应用多元统计分析_课后答案

应用多元统计分析_课后答案

图 2.1
Descriptives 对话框
2.
单击 Options 按钮,打开 Options 子对话框。在对话框中选择 Mean 复选框,即计 算样本均值向量,如图 2.2 所示。单击 Continue 按钮返回主对话框。
图 2.2 Options 子对话框 3. 单击 OK 按钮,执行操作。则在结果输出窗口中给出样本均值向量,如表 2.1,即 样本均值向量为(35.3333,12.3333,17.1667,1.5250E2) 。
2.5 解: 依据题意,X= 57000 40200 21450 21900 45000 28350

15 16 12 8 15 8
27000 18750 12000 13200 21000 12000
144 36 381 190 138 26
′ E(X)= ∑6 α=1 x(α) = (35650,12.33,17325,152.5) n σ1 σ2 ρ2 (x1 −μ1 )2 σ2 1
+
σ2 1
(x2 −μ2 )2 σ2 2 )2
= = [
(x1 −μ1 )2 σ2 1 ρ(x1 −μ1 ) σ1
− −
2ρ(x1 −μ1 )(x2 −μ2 ) σ1 σ2 (x2 −μ2 ) 2 ] σ2
+
E( X ) μ
n→∞
lim E(
1 1 ������) = lim E( ������) = Σ n→∞ ������ n−1
2.7 试证多元正态总体 的样本均值向量 ̅) = E ( ΣX 证明: E(������ (α) ) = E (ΣX (α) ) =
n n 1 1 nμ n 1 n2
exp[−
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。

同理,由于2X 服从均匀分布[]2121,()0x x c d f x d c⎧∈⎪=-⎨⎪⎩其它,则均值为2d c+,方差为()212d c -。

(2)解:随机变量1X 和2X 的协方差和相关系数;12cov(,)x x12121212222[()()()()2()()]22()()dbca d c x ab a xc x a x c a bd c x x dx dx b a d c --+-----++⎛⎫⎛⎫=-- ⎪⎪--⎝⎭⎝⎭⎰⎰()()36c d b a --=1212cov(,)13x xx x ρσσ==(3)解:判断1X 和2X 是否相互独立。

1X 和2X 由于121212(,)()()x x f x x f x f x ≠,所以不独立。

2.4设12(,,)p X X X X '=L 服从正态分布,已知其协方差矩阵∑为对角阵,证明其分量是相互独立的随机变量。

解: 因为12(,,)p X X X X '=L 的密度函数为1/2111(,...,)exp ()()2pp f x x --⎧⎫'=---⎨⎬⎩⎭Σx μΣx μ 又由于21222p σσσ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ΣO 22212pσσσ=ΣL212122111p σσσ-⎛⎫ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ΣO则1(,...,)p f x x211/2222212122111exp ()()21pp p σσσσσσ--⎧⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪'==--=-⎨⎬ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎩⎭Σx μΣx μL O()222123111222212()()()111exp ...222p p p p p x x x μμμσσσσσσ-⎧⎫---⎪⎪=----⎨⎬⎪⎪⎩⎭L2121()()...()2pi i p i i x f x f x μσ=⎧⎫-=-=⎨⎬⎩⎭ 则其分量是相互独立。

2.6 渐近无偏性、有效性和一致性; 2.7 设总体服从正态分布,~(,)p N XμΣ,有样本12,,...,n X X X 。

由于X 是相互独立的正态分布随机向量之和,所以X 也服从正态分布。

又()111()n nni i i i i E E n E n n ===⎛⎫==== ⎪⎝⎭∑∑∑X X X μμ()2211111()n nn i i i i i D D n D n n n ===⎛⎫==== ⎪⎝⎭∑∑∑ΣX X X Σ 所以~(,)p N X μΣ。

2.8 方法1:11ˆ()()1n i i i n ='=---∑ΣX X X X 111ni i i n n =''=--∑X X XX11ˆ()()1ni i i E E n n =''=--∑ΣX X XX ()()111n i i i E nE n =⎡⎤''=-⎢⎥-⎣⎦∑X X XX 111(1)11n i n n n n n =⎡⎤=-=-=⎢⎥--⎣⎦∑ΣΣΣΣ。

方法2:1()n i i i ='=∑SX -X)(X -X 1((ni i i ='⎡⎤⎡⎤=----⎣⎦⎣⎦∑X -μX μ)X -μX μ)11()()2()()()nni i i i i n =='''=-+--∑∑X -μX -μX -μX -μX μ)(X μX μ1()()2()()ni i i n n ='''=---+--∑X -μX -μX μ)(X μX μ)(X μ1()()()ni i i n =''=---∑X -μX -μX μ)(X μ11()()()()11n i i i E E n n n =⎛⎫''=--- ⎪--⎝⎭∑S X -μX -μX μ)(X μ 11()()()1n i i i E nE n =⎛⎫''=---= ⎪-⎝⎭∑X -μX -μX μ)(X μΣ。

故1n -S 为Σ的无偏估计。

2.9.设(1)(2)()n X ,X ,...,X 是从多元正态分布~(,)p N XμΣ抽出的一个简单随机样本,试求S 的分布。

证明:设******()***ij γ⎛⎫ ⎪⎪==⎪ ⎪ΓL LL L 为一正交矩阵,即'=ΓΓI 。

令()'12n 12n Ζ=(ΖΖΖ)=X X X ΓLL ,(1,2,3,4,),i n =i X ΓL 由于独立同正态分布且为正交矩阵所以12()n 'Z =Z Z Z L 独立同正态分布。

且有1()()(1,2,3,,1)naaj j j E E r an ===-∑ΖΧL1najj ==r 10najnj i r r ='==∑ 1()()na aj j j Var Var r ==∑ΖΧ()2211n naj j aj j j r Var r =====∑∑ΧΣΣ所以121n -ΖΖΖL独立同(0,)N Σ分布。

又因为1()()nj j ='=--∑i S X X X X1nj j j n =''=-∑X X XX因为11n n i i n n i i n n =='⎫''==⎪⎭XX X X Z Z 又因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''='∑=n n nj jjX X X X X XX X M Λ21211()'⎛⎫ ⎪' ⎪'= ⎪ ⎪ ⎪'⎝⎭1212n n X X X X X ΓΓX LM ()'⎛⎫ ⎪' ⎪= ⎪ ⎪ ⎪'⎝⎭1212n n Z Z Z Z Z Z LM 所以原式nnnj jjnnnj jjZ Z Z Z Z Z X X '-'='-'∑∑==111122...n n ''''=+++n n Z Z Z Z Z Z -ΖΖ故11n j jj -='=Z Z ∑S,由于121,,,n Z Z Z -L 独立同正态分布(0,)p N Σ,所以11~(1,)n j j p j W n -='=Z Z -∑∑S2.10.设()i i X n p ⨯是来自(,)p i i N μΣ的简单随机样本,1,2,3,,i k =L ,(1)已知2...k ====1μμμμ且2...k ====1ΣΣΣΣ,求μ和Σ的估计。

(2)已知2...k ====1ΣΣΣΣ求2,,...,,k 1μμμ和Σ的估计。

解:(1)11121ˆ...an k a ia i kn n n ====+++∑∑μx x,()()1112ˆ...an k aa ii a i kn n n =='--=+++∑∑xx x x Σ(2)1ln (,,,)k L μμΣL 2111ln ()exp[]2a n k n paa i a i a a i 2π-=='⎡⎤=-⎣⎦∑∑-1Σ(x -μ)Σ(x -μ)1111ln ()ln()ln 222a n k aa i a i a a i n L pn 2π=='=---∑∑-1μ,ΣΣ(x -μ)Σ(x -μ)()21111ln (,)1()()022an k a a i a i a a i L n --==∂'=-+--=∂∑∑μΣΣX μX μΣΣ11ln (,)()0(1,2,...,)jn j ij j i jL j k -=∂=-==∂∑μΣΣX μμ 解之,得11ˆjn j j iji jn ===∑μx x,()()1112ˆ...jn kj j j i kn n n =='--=+++∑∑ijij xx x x Σ第三章3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步骤。

其基本思想和步骤均可归纳为:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界 值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。

相关文档
最新文档