核酸的化学组成课件
合集下载
核酸化学PPT课件

DNA与RNA结构特点
DNA结构特点
DNA是一种长链生物聚合物,组成单 位为四种脱氧核苷酸,由碱基、脱氧 核糖和磷酸构成。
RNA结构特点
RNA由核糖核苷酸经磷酸二酯键缩合而 成长链状分子。一个核糖核苷酸分子由 一分子磷酸、一分子核糖和一分子含氮 碱基构成。
碱基互补配对原则
碱基互补配对原则是指在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配 对必须遵循一定的规律,这就是A(腺嘌呤)一定与T(胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。
多肽。
基因编辑技术
如CRISPR-Cas9等,可对基因组 进行定点编辑,实现基因敲除、
敲入、突变等操作。
05
核酸药物设计与应用
抗病毒药物设 利用病毒基因序列中的特异性区域,设计与之互 补的核酸药物,通过阻断病毒基因复制或表达, 达到抗病毒效果。
靶向病毒关键蛋白的药物设计 针对病毒生命周期中的关键蛋白,设计能够与之 结合的核酸药物,从而阻止病毒的组装、释放等 过程。
RNA转录过程及调控
RNA转录的基本过程 转录起始、链延长、链终止与释放
RNA转录的酶学 RNA聚合酶、转录因子等
RNA转录的特点
模板链的选择性、转录的不对称性、 转录后加工等
RNA转录的调控
转录起始的调控、转录延伸的调控、 转录终止的调控
核酸酶作用及降解产物
核酸酶的种类与特性
01
核酸内切酶、核酸外切酶等
核酸的降解过程
02
核酸酶的切割作用、降解产物的生成与性质
核酸降解产物的应用
03
用于核酸序列分析、核酸检测等
03
核酸性质与功能
第5章核酸的化学 第二节 核酸的化学组成

DNA和RNA分子中,主要元素有碳、氢、氧、氮、磷等, 个别核酸分中还含有微量的S。磷在各种核酸中的含量比较接 近和恒定,DNA的平均含磷量为9.9%,RNA的平均含磷量为 9.4%。因此,只要测出生物样品中核酸的含磷量,就可以计算 出该样品的核酸含量,这是定磷法的理论基础。
食品生物化学
二、核酸的水解产物
3.次黄嘌呤衍生物——次黄嘌呤核苷酸(IMP)
在肌肉组织中,腺嘌呤核苷酸循环过程中由AMP脱氨形成 次黄嘌呤核苷酸。
次黄嘌呤核苷酸在生物体内是合成腺嘌呤核苷酸和鸟嘌呤 核苷酸的关键物质,对生物的遗传有重要的功能。另外,它还 是一种很好的助鲜剂,有肉鲜味,与味精以不同比例混合制成 具有特殊风味的强力味精(见第九章第二节鲜味)。
2.腺苷衍生物——环腺苷酸(cAMP)
cAMP是由ATP经腺苷酸环化酶催化而成的。
食品生物化学
图5-7 环腺苷酸(cAMP)
食品生物化学
cAMP广泛存在于一切细胞中,浓度很低。它们的主要作 用不是作为能量的供体,而是在生物体内参与细胞内多种调节 功能,如它可调节细胞内催化糖和脂肪反应的一系列酶的活性, 也可以调节蛋白激酶的活性。一般把激素称为第一信使,而称 cAMP为“第二信使”。
核酸是一种聚合物,它的结构单位是核苷酸 。
核酸
核苷酸
磷酸
核苷
碱基
戊糖
(嘌呤碱和嘧Ch啶em碱Pa)st(e核r 糖或脱氧核糖)
图5-1 核酸的水解产物
食品生物化学
三、核酸水解产物的化学结构
1.戊糖
DNA和RNA的主要区别是所含戊糖不同,DNA分子中的戊 糖是β-D-2-脱氧核糖,而RNA分子中的戊糖是β-D-核糖 。
碱基 Ade Gua Cyt Ura
食品生物化学
二、核酸的水解产物
3.次黄嘌呤衍生物——次黄嘌呤核苷酸(IMP)
在肌肉组织中,腺嘌呤核苷酸循环过程中由AMP脱氨形成 次黄嘌呤核苷酸。
次黄嘌呤核苷酸在生物体内是合成腺嘌呤核苷酸和鸟嘌呤 核苷酸的关键物质,对生物的遗传有重要的功能。另外,它还 是一种很好的助鲜剂,有肉鲜味,与味精以不同比例混合制成 具有特殊风味的强力味精(见第九章第二节鲜味)。
2.腺苷衍生物——环腺苷酸(cAMP)
cAMP是由ATP经腺苷酸环化酶催化而成的。
食品生物化学
图5-7 环腺苷酸(cAMP)
食品生物化学
cAMP广泛存在于一切细胞中,浓度很低。它们的主要作 用不是作为能量的供体,而是在生物体内参与细胞内多种调节 功能,如它可调节细胞内催化糖和脂肪反应的一系列酶的活性, 也可以调节蛋白激酶的活性。一般把激素称为第一信使,而称 cAMP为“第二信使”。
核酸是一种聚合物,它的结构单位是核苷酸 。
核酸
核苷酸
磷酸
核苷
碱基
戊糖
(嘌呤碱和嘧Ch啶em碱Pa)st(e核r 糖或脱氧核糖)
图5-1 核酸的水解产物
食品生物化学
三、核酸水解产物的化学结构
1.戊糖
DNA和RNA的主要区别是所含戊糖不同,DNA分子中的戊 糖是β-D-2-脱氧核糖,而RNA分子中的戊糖是β-D-核糖 。
碱基 Ade Gua Cyt Ura
第三章 核酸化学

rRNA的功能 参与组成核蛋白体,作为蛋白质生物合成的场所。
思考题:
体内有哪些重要的核苷酸?各有何作用?
DNA和RNA在化学组成、分子结构和生理功能有何异同? 利用核酸的理化性质在临床实践中有何应用?
N O O
-
NH2 N N OCH2
-
O O
-
O O
-
N H H
P O
-
P O
-
P O
O
H H
OH OH 三磷酸腺苷 (AT P )
多磷酸核苷酸
5′-磷酯键
N N O -O O O O O
NH 2
N
N
P O-
P O-
P O-
O
CH 2 H H OH
O H H H
脱氧腺嘌呤核苷 脱氧腺嘌呤一磷酸 (dAMP) 脱氧腺嘌呤二磷酸 (dADP) 脱氧腺嘌呤三磷酸 (dATP)
NH
核苷
N N
2 N 9 N
糖苷键
CH O H O 2 1'
H H OH H 2' O H H
嘌呤N-9或嘧啶N-1与核糖C-1通过β-N-糖苷 键相连形成核苷。
核苷酸(ribonucleotide)
NH2
酯键
O
N N O
N
9 N
糖苷键
HO P O CH 2 O
-
H
H
OH
' 1 H H 2'
* tRNA的二级结构
——三叶草形
氨基酸臂 DHU环 反密码环
额外环
核酸的化学组成

NH2
O
H3C
NH
N
NH
N 1
6
N H O
N H
O
N H
O
2,4-二氧嘧啶
2-氧-4-氨基嘧啶
5-甲基-2,4-二氧嘧啶
U
C
T
组成核酸的稀有碱基
核酸中除了5类基本的碱基外,还有一些含量甚 少的碱基,称为稀有碱基。
O
N N N N O N N
NH2
—CH3
I
m5C
DHU
碱基的结构特征
碱基都具有芳香环的结构特征。嘌呤环和嘧啶 环均呈平面或接近于平面的结构。 碱基的芳香环与环外基团可以发生酮式—烯醇 式或胺式—亚胺式互变异构。
DNA
D-2-脱氧核糖
A
NH2 N
鸟嘌呤
嘌呤
6
1N 2 5
guanine
7 N
O
N 3
4
N 9
8
N
N NH
N H
N
N H
N
NH2
A
G
1.组成核酸的碱基 尿嘧啶 uracil
O
嘧啶
4 3N 2 5
胞嘧啶 胸腺嘧啶 cytosine thymine
O
O
C2’-endo(2E) C5’ 4’ 3’ O 2’ 1’ N C5’ 4’
N O 3’ C3’-exo(E3) 2’ 1’
C2’-exo(E2)
(2)扭转式 糖环的C2’和C3’都偏离平面而且偏离方向相反称 为扭转式折叠(Twist,简写为T )。如C2’-endo C3’-exo(23T), C2’-exo-C3’- endo(3T2) 。上述几种构 象可分别以侧视简图表示:
O
H3C
NH
N
NH
N 1
6
N H O
N H
O
N H
O
2,4-二氧嘧啶
2-氧-4-氨基嘧啶
5-甲基-2,4-二氧嘧啶
U
C
T
组成核酸的稀有碱基
核酸中除了5类基本的碱基外,还有一些含量甚 少的碱基,称为稀有碱基。
O
N N N N O N N
NH2
—CH3
I
m5C
DHU
碱基的结构特征
碱基都具有芳香环的结构特征。嘌呤环和嘧啶 环均呈平面或接近于平面的结构。 碱基的芳香环与环外基团可以发生酮式—烯醇 式或胺式—亚胺式互变异构。
DNA
D-2-脱氧核糖
A
NH2 N
鸟嘌呤
嘌呤
6
1N 2 5
guanine
7 N
O
N 3
4
N 9
8
N
N NH
N H
N
N H
N
NH2
A
G
1.组成核酸的碱基 尿嘧啶 uracil
O
嘧啶
4 3N 2 5
胞嘧啶 胸腺嘧啶 cytosine thymine
O
O
C2’-endo(2E) C5’ 4’ 3’ O 2’ 1’ N C5’ 4’
N O 3’ C3’-exo(E3) 2’ 1’
C2’-exo(E2)
(2)扭转式 糖环的C2’和C3’都偏离平面而且偏离方向相反称 为扭转式折叠(Twist,简写为T )。如C2’-endo C3’-exo(23T), C2’-exo-C3’- endo(3T2) 。上述几种构 象可分别以侧视简图表示:
核酸-2江南大学食品学院生化课件第三章.

RNA
复制
翻译
蛋白质
遗传信息传递的中心法则
二、核酸的组成
核酸 核苷酸
水
磷酸
核苷
解
戊糖
碱基
三、碱基
嘌呤:
腺嘌呤 (A)
鸟嘌呤 (G) 胞嘧啶 (C) 尿嘧啶 (U) 胸腺嘧啶 (T)
嘧啶:
O
NH
碱基
N N
脂键
N
N H
HN O N H
H2O 核苷键
O
磷酸 O P OH
OHCH2 O
第三章 核酸化学
( Nucleic Acids Chemistry )
• 第一节
概述
• 第二节 • 第三节 • 第四节
核酸的组成 核酸的结构 核酸及核苷酸的性质
一、核酸的类别
• 脱氧核糖核酸( DNA)
• 核糖核酸( RNA)
• 核糖体RNA • 信使RNA • 转运RNA
DNA
复制
转录 反转录
实际上, Tm是增色效应达到最大值的50% 时的温度。也就是说,DNA溶液的温度达 到Tm时,将有50%的DNA双链处于解链状态。
DNA的Tm一般为70~85℃。 Tm随DNA分子中G-C碱基对含量的增加而升 高。它也与溶液的离子强度有关,一般情 况下,离 子强度低,Tm值小。
2、DNA的复性∶ 变性的DNA在适当条件下,两条彼此分开的互补 单链又可以恢复碱基配对,重新成为双螺旋,这个 过程称为DNA的复性(DNA renaturation)。 复性后的DNA的某些理化性质和生物活性也可以 得到部分或全部恢复。如∶减色效应。 退火(annealing): 即DNA由单链复性变成双链结构的过程。来源 相同的DNA单链经退火后完全恢复双链结构,不同 源DNA之间、DNA和RNA之间退火后形成杂交分子。
生物化学第三章核酸化学

核糖核酸酶类
牛胰核糖核酸酶:存在于牛胰中,简称为 RNaseⅠ,只作用于RNA,十分耐热,是具 有极高专一性的内切酶。 核糖核酸酶T1:从米曲霉中获得的,耐热, 耐酸,专一性更强。 核糖核酸酶T2:来源同T1,核酸酶:也叫做DNaseⅠ, 需要镁离子参与,切断双链DNA或者单链 DNA为寡聚核苷酸,平均长度为4个核苷酸。 ② 牛脾脱氧核糖核酸酶:也叫做DNaseⅡ, 需要钠离子激活,镁离子抑制活性。 ③ 限制性内切酶:主要降解外源性DNA,目 前发现有数千种,是基因工程最重要的工 具酶。
RNA功能的多样性
① ② ③ ④ ⑤ 控制蛋白质的生物合成; 作用于RNA转录后的加工与修饰; 基因表达与细胞功能调节; 生物催化与其他的细胞功能 遗传信息的加工与进化
第三节
核酸的分子结构
一. 核酸中核苷酸的连 接方式 二. DNA的分子结构 三. RNA的分子结构
核酸中核苷酸的连接方式
1. 核苷酸可以被酸、碱 和酶水解,水解后产 生寡核苷酸、核苷酸、 核苷和碱基。 2. 实验证明,核苷酸是 通过磷酸二酯键彼此 相连,并且形成的是 3’-5’磷酸二酯键(后 面核酸降解中详细说 明)。
tRNA的一级结构特点
① 一般由73-78个核苷酸组成; ② 碱基中有较多的稀有碱基; ③ 3’末端均有CCA-OH结构,用以携带氨基 酸,5’多为pG或者pC。
tRNA的二级结构特点
① 氨基酸臂,由3’和5’末端的7对互补碱基构 成,携带氨基酸,富含G,形成双螺旋; ② 二氢尿嘧啶环,8-12个核苷酸组成,由34对碱基构成双螺旋; ③ 反密码子环,7个核苷酸组成,其中3个组 成反密码子环; ④ 额外环,是tRNA分类的重要标志 ⑤ TψC环,是tRNA中起连接作用的。
核酸—RNA的分子组成和结构(生物化学课件)

一、tRNA的分子结构
1 73-88个核苷酸组成的单链核酸; 2 含有较多的稀有核苷,如DHU,m5C,Ψ[psai]
和其它甲基化的核苷; 3 3'—未端都为……CpCpA-OH; 4 5'—未端大多数为pG……, 也有pC……; 5 tRNA的二级结构呈三叶草形;
19
tRNA的二级结构:
1)氨基酸臂:由7对碱基组成,富含鸟嘌呤,末端为—CCA,接受活化的 氨基酸。
◆ 5-帽子结构:m7G-5ppp5-N-3-p-5-end的m7G通过 三个磷酸基与一个或两个2-O-甲基核苷(N)的C-5 相连。 它使mRNA具有抗5-核酸外切酶的作用,使mRNA 稳定,延长寿命。为核糖体提供识别位点,促进蛋 白质合成的起始复合物的合成。
◆ 3-端具3-poly(A)尾巴,其长短与mRNA 寿命有关,新合成的mRNA,.polyA链较长, 而衰老的mRNA,polyA链缩短
磷酸
核酸酶 RNA 水解 核苷酸
戊糖 核糖
核苷 核苷酶
嘌呤
碱基
嘧啶
(一)RNA中的碱基分为嘧啶碱和嘌呤碱两类
1.RNA中常见的4种碱基
碱 基:
嘌呤 (purine)
N 7
8 9 NH
5 6 1N
43 2 N
NH2 N
N
NH
N
腺嘌呤(adenine, A)
O
N NH
NH
N
NH2
鸟嘌呤(guanine, G)
嘧啶(pyrimidine)
NH2
5 4 3N
612 NH
N
NH
O
胞嘧啶(cytosine, C)
O
NH
NH
O
第2章核酸的结构与功能ppt课件

Sanger测序原理
1.2.1.2 DNA的二级结构及其多态性
Watson和Crick在总结前人研究工作的基础上, 在1953年以立体化学上的最适构型建立了与 DNA X-射线衍射资料相符的分子模型—— DNA双螺旋结构模型。 它可在分子水平上 阐述遗传(基因复制)的基本特征。
⑴DNA双螺旋结构的主要依据
核酸根据核酸的化学组成和生物学功能,将核 酸分为:
核糖核酸(ribonucleic acid RNA)和
脱氧核糖核酸(deoxyribonucleic acid DNA)
所有细胞都同时含有DNA和RNA两种核酸。病 毒只含一种核酸,DNA或RNA,故有DNA 病毒和RNA病毒之分。多数细菌病毒(噬菌 体)属DNA病毒,而植物和动物病毒多为 RNA病毒。
5’pApCpUpUpGpApApCpC3’ RNA
简化为: 5’pACTTGAACG3’ DNA
5’pACUUGAACG3’RNA
简写式的5`-末端均含有一个磷酸残基(与糖基 的C-5`位上的羟基相连),3`-末端含有一个 自由羟基(与糖基的C-3`位相连),若5`端 不写P,则表示5`-末端为自由羟基。
3.4nm 2.8nm 36° 33°
Z-DNA
Wang和Rich等在研究人工 合成的d(CGCGCG)单 晶的X-射线衍射图谱时, 发现这种六聚体的构象不 同于B-构象。
它是左手双螺旋,在主链 中各个磷酸根呈锯齿 (Zigzag)状排列,因此 称Z-构象。
B-DNA与Z-DNA的比较
比较内容
B-DNA
T 24.8
28 25.6 29.7 28.9 29.2 32.9
G 24.1 23.2 21.9 20.5 20.4 20.4 18.7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C5’
2’ N
O
4’
1’
3’
C2’-endo -C3’-exo(32T)
C5’
3’
N
4’
O
1’
2’
C2’-exo-C3’- endo(3T2)
3.核苷 (nucleoside)
核苷由戊糖和碱基缩合而成,嘌呤的N9或嘧啶的 N1与戊糖C-1’-OH以C-N糖苷键相连接。 O
NH2 N
N
N
9 NN
HOCH2 O
HH
H H
OH H
dA
O
1 N
HOCH2 O
HH
H H
OH O H
U
假尿苷
胸腺嘧啶核糖核苷
稀有核苷(tRNA)
4.核苷酸 (nucleotide)
核苷酸是核苷的磷酸酯。作为DNA或RNA结构单元的核苷 酸分别是5′-磷酸-脱氧核糖核苷和5′-磷酸-核糖核苷。
O
HO P OH2C O B OH
核酸中戊糖的五元糖环不呈一个平面,其中的 C1’-O-C4’这3个原子一般在一个平面上,而C2’和 C3’偏离平面0.05~0.06nm,这种偏离就使糖环具 有不同的构象。若C2’或C3’偏离平面的方向与C5’ 同向,则称为内式(endo)构象;若与C5’反向, 则称为外式(exo)构象。
综合C2’和C3’偏离平面的情况,糖环的折叠形 式有两大类:
碱基的芳香环与环外基团可以发生酮式—烯醇 式或胺式—亚胺式互变异构。
胺 式 亚 胺 式 互 变 异 构
酮 式 烯 醇 式 互 变 异 构
已公认:氢原子在碱基上有固定的位置
2.戊糖
组成核酸的戊糖有两种。DNA所含的戊糖 为β-D-2-脱氧核糖;RNA所含的戊糖则 为β-D-核糖。
HOCH2 O OH HH
O
HO P OH2C O B OH
OH OH
OH
核糖核苷酸
脱氧核糖核苷酸
B=腺嘌呤 ,鸟嘌呤 ,胞嘧啶 ,尿嘧啶 或胸腺密 啶
核苷酸的衍生物
(1) ATP (腺嘌呤核糖核苷三磷酸)
• ATP是生物体内分布最广和最重要的一种核苷酸衍生物。它的 结构如下:
NH2
N
N
O O- P
O-
O O- P
O-
O O- P
O-
NN OCH2 O
HH
H
H
OH OH 三磷酸腺苷 (ATP)
(2) GTP (鸟嘌呤核糖核苷三磷酸)
(3)环化核苷酸cAMP 和 cGMP
cAMP(3’,5’- 环腺嘌呤核苷一 磷酸)和 cGMP( 3’,5’-环鸟嘌 呤核苷一磷酸)的主要功能是 作为细胞之间传递信息的信使。
cAMP 和 cGMP 的环状磷酯键 是一个高能键。在 pH 7.4 条 件下, cAMP 和 cGMP 的水解 能约为43.9 kj /mol,比 ATP 水解能高得多。
O
H3C
N
NH
O
N
O
H
N
O
H
2-氧-4-氨基嘧啶 5-甲基-2,4-二氧嘧啶
C
T
组成核酸的稀有碱基
核酸中除了5类基本的碱基外,还有一些含量甚 少的碱基,称为稀有碱基。
O
NH2
N
N
N
—CH3
NN
ON
I
DHU m5C
碱基的结构特征
碱基都具有芳香环的结构特征。嘌呤环和嘧啶 环均呈平面或接近于平面的结构。
一、核酸的一般化学组分 二、核酸的修饰组分 三、核酸及其组分的化学反应 四、核酸组分的分离鉴定
二、核酸的修饰组分
1948年Hotchkiss在小牛胸腺DNA中检测到 5-甲基胞嘧啶脱氧核苷,这使人们认识到, 除了基本组分外,核酸中还有一些特别的组分 存在。
到目前为止,核酸中发现了近80种特别的 组分,它们绝大多数是基本组分的衍生物,即 在碱基或核糖的某些位置上附加或取代掉某些 基团。把这些特别的组分称为修饰组分(也称 稀有组分或附加组分)。
5.核苷酸的生物学作用
(1)参与DNA、RNA的合成、蛋白质的合成、糖 与磷脂的合成。
(2)在能量转化中起重要作用,ATP是生物体内 能量的通用货币。
(3)是构成多种辅酶的成分:NAD、NADP、FAD、 FMN和CoA。
(4)参与细胞中的代谢与调节(cAMP、cGMP)。
第一章 核酸化学组分的结构和性质
H
H
OH OH
HOCH2 O OH HH
H
H
OH H
D-核 糖
D-2-脱 氧 核 糖
糖环的折叠构象
核酸中糖环的折叠形式是一个构象问题。
所谓构象是指化合物中可以自由转动的单键上的原子 或基团绕单键旋转或随单键扭转时产生的若干种不同 的空间排列形式;构象的改变不伴随着共价键的破坏。 构型是指共价键化合物分子中各原子在空间的相对排 列关系。由于共价键具有方向性,所以每一分子具有 一定的几何构型,如乳酸的D和L型、单糖的α和β型。 构型的改变涉及共价键的破坏。 核酸中的戊糖只有一种构型,即β- D型,但它们的构 象却有许多种。
(1)信封式 糖环的C2’和C3’中只有一个原子偏离平面则称为 信封式折叠(Envelope,简写为E )。如C2’-endo (2E),C2’-exo(E2),C3’- endo( 3E) ,C3’-exo( E3 )。上 述几种构象可分别以侧视简图表示:
C5’
2’ N
C5’
3’
N
O
4’ 3’
1’
一、核酸的一般化学组分
DNA、RNA中主要的碱基、核苷和核苷酸
RNA DNA
戊糖 碱基
D-核糖
A
G
C
U
D-2-脱氧核糖 A G C T
核苷
腺苷A 鸟苷G 胞苷C 尿苷U 脱氧腺苷dA 脱氧鸟苷dG 脱氧胞苷dC 脱氧胸苷dT
核苷酸
5’-腺苷酸(AMP) 5’-鸟苷酸(GMP) 5’-胞苷酸(CMP) 5’-尿苷酸(UMP) 5’-脱氧腺苷酸(dAMP) 5’-脱氧鸟苷酸(dGMP) 5’-脱氧胞苷酸(dCMP) 5’-脱氧胸苷酸(dTMP)
C2’-endo(2E)
4’
O 2’ 1’
C3’- endo(3E)
C5’
N
O 4’ 3’
C2’-exo(E2)
1’ 2’
C5’
N
O
4’
2’ 1’
3’
C3’-exo(E3)
(2)扭转式 糖环的C2’和C3’都偏离平面而且偏离方向相反称 为扭转式折叠(Twist,简写为T )。如C2’-endo C3’-exo(23T), C2’-exo-C3’- endo(3T2) 。上述几种构 象可分别以侧视简图表示:
1.组成核酸的碱基
嘌呤
腺嘌呤 Adenine
鸟嘌呤 guanine
6
1N
5
7 N
2 N4N 8 39NH 2 NNN HNA
O
N NH
N H
N
NH 2
G
1.组成核酸的碱基
尿嘧啶 胞嘧啶 胸腺嘧啶
嘧啶
4 3N 5
2
6
N
1
uracil
O
NH
N H
2,4-二氧嘧啶
U
cytosine thymine
NH 2