大学物理上册 第四版 公式

合集下载

大学物理上册所有公式

大学物理上册所有公式

大学物理上册所有公式第一章质点运动学和牛顿运动定律1.1平均速度=1.2瞬时速度v==1.3速度v=1.6平均加速度=1.7瞬时加速度(加速度)a==1.8瞬时加速度a==1.11匀速直线运动质点坐标x=x0+vt1.12变速运动速度v=v0+at1.13变速运动质点坐标x=x0+v0t+at21.14速度随坐标变化公式:v2-v02=2a(x-x0)1.15自由落体运动1.16竖直上抛运动1.17抛体运动速度分量1.18抛体运动距离分量1.19射程X=1.20射高Y=1.21飞行时间y=xtga—1.22轨迹方程y=xtga—1.23向心加速度a=1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=at+an1.25加速度数值a=1.26法向加速度和匀速圆周运动的向心加速度相同an=1.27切向加速度只改变速度的大小at=1.281.29角速度1.30角加速度1.31角加速度a与线加速度an、at间的关系an=at=牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。

牛顿第二定律:物体受到外力作用时,所获得的加速度a的大小与外力F的大小成正比,与物体的质量m成反比;加速度的方向与外力的方向相同。

1.37F=ma牛顿第三定律:若物体A以力F1作用与物体B,则同时物体B必以力F2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。

万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线1.39F=GG为万有引力称量=6.67×10-11Nm2/kg21.40重力P=mg(g重力加速度)1.41重力P=G1.42有上两式重力加速度g=G(物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)1.43胡克定律F=—kx(k是比例常数,称为弹簧的劲度系数)1.44最大静摩擦力f最大=μ0N(μ0静摩擦系数)1.45滑动摩擦系数f=μN(μ滑动摩擦系数略小于μ0)第二章守恒定律2.1动量P=mv2.2牛顿第二定律F=2.3动量定理的微分形式Fdt=mdv=d(mv)F=ma=m2.4==mv2-mv12.5冲量I=2.6动量定理I=P2-P12.7平均冲力与冲量I==(t2-t1)2.9平均冲力===2.12质点系的动量定理(F1+F2)△t=(m1v1+m2v2)—(m1v10+m2v20)左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量2.13质点系的动量定理:作用在系统上的外力的总冲量等于系统总动量的增量2.14质点系的动量守恒定律(系统不受外力或外力矢量和为零)==常矢量2.16圆周运动角动量R为半径2.17非圆周运动,d为参考点o到p点的垂直距离2.18同上2.21F对参考点的力矩2.22力矩2.24作用在质点上的合外力矩等于质点角动量的时间变化率2.26如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。

大学物理上册 第四版 公式

大学物理上册 第四版 公式

一基本概念1. 位移,速度,加速度, 动量,力,冲量,功,动能,势能,机械能,角动量,力矩;2. 参考系,坐标系,惯性坐标系,质点, 位置矢量,速率,角速度,角加速度, 法向加速度,切向加速度,转动惯量,冲量矩。

二.基本定律、定理、原理、公式 1. 质点运动学:位置矢量:在直角坐标系中 k z j y i x r ++= ,r ∆大小r =222z y x ++运动方程:k t z j t y i t x t r)()()()(++=;或)(t x x =;)(t y y =;)(t z z =位移:12r r r -=∆=k z j y i x ∆∆∆++,r ∆大小r ∆=222z y x ∆∆∆++,一般r r ∆∆≠速度:dtr d v=,在直角坐标系中:k v j v i v v z y x ++=;dt dx v x =;dt dy v y =;dtdz v z =;速率:222z y x v v v v ++= 加速度:22dtd dt d a ==,在直角坐标系中:a a a z y x ++=;22dtx d dt dv a x x ==;22dt y d dt dv a y y ==;22dt z d dt dv a z z ==;222z y x a a a a ++=在自然坐标系中:运动方程:)(t s s = ,速率:dtdsv =圆周运动角量描述:运动方程:)(t θθ=,角速度:dt d θω=,角加速度:dtd ωβ= 切向加速度:βR dt dv a t == , 法向加速度:22ωR R v a n ==,一般曲线运动ρ2v a n = 加速度:a a n τ+= ; 22t n a a a +=, ,ωR v = n πω2=直线运动:)(t x x =;dt dxv =;22dtx d dt dv a ==匀变速直线运动:20021at t v x x ++=;at v v +=0;)(20202x x a v v -+=匀变速圆周运动:t βωω+=0;)(20202θθβωω-+=;抛物体运动。

大学物理所有公式

大学物理所有公式

第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —g gx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。

大学物理公式总结(全面-易懂)

大学物理公式总结(全面-易懂)
大学物理公式总结
目录 CONTENT
• 力学 • 热学 • 电磁学 • 光学 • 量子物理
01
力学
牛顿运动定律
牛顿第一定律
01
一个物体将保持其静止状态或匀速直线运动状态,除非有外力
作用于它。
牛顿第二定律
02
物体的加速度与作用在它上面的力成正比,与它的质量成反比。
牛顿第三定律
03
作用力和反作用力总是大小相等、方向相反,作用在同一条直
B=μ0*H,其中B是磁感应强度,μ0是真空中的磁导率,H是磁场强度。磁感应强度描述了磁场对电流和磁体的 作用力。
法拉第电磁感应定律
总结词
描述当磁场发生变化时,会在导体中产生电动势的规律。
详细描述
E=N*dΦ/dt,其中E是电动势,N是线圈匝数,dΦ/dt是磁通量 随时间的变化率。法拉第电磁感应定律表明,当磁场发生变化 时,会在导体中产生电动势,从而产生电流。
薛定谔方程
总结词
描述量子力学中粒子状态的偏微分方程。
详细描述
薛定谔方程是量子力学的基本方程之一,用 于描述一个量子系统的状态随时间的变化。 它是一个非相对论的波动方程,可以用来计 算波函数的概率幅和概率密度。
感谢您的观看
THANKS中p是动量,m是质量,v 是速度。
冲量
I = Ft,其中I是冲量,F是力,t是时 间。
角动量
• 角动量:L = mvr,其中L是角动量,m是质量,v 是速度,r是物体到旋转中心的距离。
万有引力定律
• 万有引力定律:两个物体之间的引力与它们的质量成正比, 与它们之间的距离的平方成反比。
衍射公式
$I = I_0 left| frac{sin(pi frac{a}{lambda})}{pi frac{a}{lambda}} right|^2$

大学物理所有公式

大学物理所有公式

大学物理所有公式第一章质点运动学和牛顿运动定律1.1平均速度v =t △△r1.2 瞬时速度v=lim 0△t →△t △r =dt dr1. 3速度v=dt ds==→→lim lim 0△t 0△t △t △r1.6 平均加速度a =△t △v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0)1.15自由落体运动 1.16竖直上抛运动===gy v at y gt v 22122 -=-=-=gyv v gt t v y gtvv 2212022001.17 抛体运动速度分量-==gta v v a v v y x sin cos 001.18 抛体运动距离分量-?=?=20021sin cos gt t a v y tav x1.23向心加速度 a=R v 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =R v 21.27切向加速度只改变速度的大小a t =dt dv1.28 ωΦR dtd R dt ds v ===1.29角速度dt φωd = 1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dt d R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。

牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。

大学物理公式全集

大学物理公式全集

大学物理公式全集基本概念(定义和相关公式)位置矢量:r ,其在直角坐标系中:k z j y i x r++=;222z y x r ++=角位置:θ速度:dtr d V =平均速度:tr V ∆∆=速率:dtds V =(τV V =)角速度:dt d θω=角速度与速度的关系:V=rω加速度:dtV d a=或22dt r d a =平均加速度:tV a ∆∆=角加速度:dtd ωβ=在自然坐标系中n a a an+=ττ其中dtdV a =τ(=rβ),rV na 2=(=r2 ω)1.力:F =ma(或F =dtp d ) 力矩:F r M⨯=(大小:M=rFcos θ方向:右手螺旋法则)2.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)3.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )4.动能:mV 2/25.势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=E K +E P6.热量:CRT M Q μ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 7.压强:ωn tSISF P 32=∆==8.分子平均平动能:k T 23=ω;理想气体内能:RT s r t M E )2(2++=μ9.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分子数所占比率) 10.平均速率:πμRTNdNdV V Vf V V80)(==⎰⎰∞方均根速率:μRTV22=;最可几速率:μRTpV 3=11.熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数)mg(重力) → mgh-kx (弹性力) → kx 2/2F= r r Mm G ˆ2- (万有引力) →r Mm G - =E p r r Qq ˆ420πε(静电力) →r Qq 04πε12.电场强度:E =F /q 0 (对点电荷:rr q Eˆ420πε=) 13.电势:⎰∞⋅=aar d E U(对点电荷rq U04πε=);电势能:W a =qU a (A= –ΔW) 14. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 15. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。

大学的物理公式大全(大学的物理所有地公式应有尽有)

大学的物理公式大全(大学的物理所有地公式应有尽有)

第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim△t →△t △r =dtdr1. 3速度v=dtds ==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim△t →△t △v =dtdv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-∙=∙=20021sin cos gt t a v y t a v x 1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dt d R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。

大学物理(上)公式总结..

大学物理(上)公式总结..
2 2 0 I B2 4 B a2
2
2 0 I 2a2
B1
0 I
2a1
(D)
1.在一个孤立的导体球壳内,若在偏离球中心 处放一个点电荷,则在球壳内、外表面上出现 感应电荷,其分布为内表面___;外表面 .。 不均匀 均匀 (填均匀或不均匀) 2.如图,边长为a的正方形的四个角上固定有四个电荷 均为q的点电荷,此正方形以角速度ω绕AC轴旋转时,s 中心o点产生的磁感强度大小为B1;此正方形同样以角 速度ω绕过o点垂直于正方形的轴旋转时,在点产生磁 感强度的大小为B2,则B1与B2间的关系为 (A) B1=B2; (B) B1=0.5B2; (c) B1=0.25B2; (D)B1=2B2
en 0
(3)导体是等势体
(4)导体电荷分布在外表面,孤立导体的电荷面密度 沿表面分布与各处曲率正相关
Q 2 电容和电容器 (1)定义 C U
(2)计算方法及几种典型电容器的电容 (3)电容器串,并联及其特性
3 静电场中的电介质 P i ( , P ) (1)电介质的极化现象 V (2)电介质中的电场强度 ( E E0 E ) (3)基本规律
S
3.理解安培力和洛仑兹力的概念和联系。
dF Idl B
Fm qv B
4.了解带电粒子在电场和磁场中的运动,理解霍尔效应
5.理解恒定电流产生的条件,理解电流密度和电 动势的概念. 6.理解磁介质磁化的微观机理,掌握铁磁质的特 性,掌握磁介质中的安培环路定理.
电位移矢量 D o r E E
麦克斯韦方程组:

D dS q0 0 dV S V B LE dl S t dS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一基本概念
1. 位移,速度,加速度, 动量,力,冲量,功,动能,势能,机械能,角动量,力矩;
2. 参考系,坐标系,惯性坐标系,质点, 位置矢量,速率,角速度,角加速度, 法向加速度,切向加速度,转动惯量,冲量矩。

二.基本定律、定理、原理、公式 1. 质点运动学:
位置矢量:在直角坐标系中 k z j y i x r ++= ,r ∆大小r =2
22z y x ++
运动方程:k t z j t y i t x t r
)()()()(++=;或)(t x x =;)(t y y =;)(t z z =
位移:12r r r -=∆=k z j y i x ∆∆∆++,r ∆大小r ∆=2
22z y x ∆∆∆++,一般r r ∆∆≠
速度:dt
r d v
=,在直角坐标系中:k v j v i v v z y x ++=;
dt dx v x =
;dt dy v y =;dt
dz v z =;速率:2
22z y x v v v v ++= 加速度:22dt
d dt d a ==,在直角坐标系中:a a a z y x ++=;
22dt
x d dt dv a x x ==;22dt y d dt dv a y y ==;22dt z d dt dv a z z ==;2
22z y x a a a a ++=
在自然坐标系中:运动方程:)(t s s = ,速率:dt
ds
v =
圆周运动角量描述:运动方程:)(t θθ=,角速度:dt d θω=
,角加速度:dt
d ωβ= 切向加速度:βR dt dv a t == , 法向加速度:2
2ωR R v a n ==,一般曲线运动ρ
2v a n = 加速度:a a n τ+= ; 2
2t n a a a +=, ,ωR v = n πω2=
直线运动:)(t x x =;dt dx
v =;22dt
x d dt dv a ==
匀变速直线运动:2002
1at t v x x ++=;at v v +=0;)(20202
x x a v v -+=
匀变速圆周运动:t βωω+=0;)(202
02
θθβωω-+=;
抛物体运动。

相对运动:'+=v 0,'
+=a 0
运动学两类问题:(1))()()(t t t →→,求导;(2))()(t t →→,积分。

2.质点动力学:第二章。

1.。

2.。

3.。

4.。

5.。

8。

10.。

18.。

P40例3 牛顿运动三定律。

动量m =,力:dt
m d F )
(=
,m 常数时m =,∑=i F 牛顿定律解题的基本思路:察明题意,隔离物体,受力分析,列出方 程(一般用分量式),求解、讨论。

力学中常见的几种力: 万有引力:2210
r m m G F =,重力mg R
mM
G G ==2
0;弹力:kx F -=; 摩擦力:(1)滑动磨擦力N f k k μ=;(2)静摩擦力N f f s s μ=≤ 动量定理:物体在运动过程中所受合外力的冲量,等于该物体动量的增量。

122
1
P P dt F I t t -=⎰=合 。

其中, 冲量:dt F I t t ⎰=2
1
,动量:
m = 动量守恒定律: 条件:若0=∑i F ,结论:常矢量=∑m i
分量:若0=∑ix F ,则:常数=∑ix i v m
质点的动能定理:合外力对质点做的功等于质点动能的增量。

功:d dA ∙= ,dz F dy F dx F d F A z b
a
b
a
y x ab ++==⎰⎰
保守力的功:W=0=∙⎰r d F L ,动能:E k =22
1
mv , 机械能:E=E k +E p
势能:万有引力势能:r Mm
G E p 0-= ∞=r 为零势能参考位置。

重力势能: m g h E p =
, h=0处为势能零点。

弹簧弹性势能:2
2
1kx E p =
以弹簧的自然长度为势能零点。

功能原理: E E E A p k ∆=∆+∆=+非保守内力外力A 。

保守力的功:)(E 12p P p E E A --=∆=-保 机械能守恒定律:若0A =+非保守内力外A ,则常数=+p k E E 。

碰撞:弹性碰撞;非弹性碰撞;完全非弹性碰撞。

1.定义和概念
简谐波方程: x 处t 时刻相位 振幅
简谐振动方程:x=Acos(ωt+φ) 波函数:y=Acos(2πx/λ+φ′)
2
22
121a
b ab mv mv A -=
相位Φ——决定振动状态的量
振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数
圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k / 周期T ——振动一次的时间 单摆ω=l g /
波速V ——波的相位传播速度或能量传播速度。

决定于介质如: 绳V=μ/T 光速V=C/n 空气V=ρ/B
波的干涉:同振动方向、同频率、相位差恒定的波的叠加。

光程:L=nx(即光走过的几何路程与介质的折射率的乘积。

相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。

驻波:两列完全相同仅方向相反的波的合成波。

多普勒效应:因波源与观察者相对运动产生的频率改变的现象。

衍射:光偏离直线传播的现象。

自然光:一般光源发出的光
偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。

部分偏振光:各振动方向概率不等的光。

可看成相互垂直两振幅不同的光的合成。

2.方法、定律和定理 ①旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针
旋转的矢量A
在x方向的投影。

相干光合成振幅: A=φ∆++cos 2212
221A A A A
其中:Δφ=φ1-φ2–λπ
2(r 2–r 1)当当φ1-φ2=0时,光程差δ=(r 2–r 1)
②惠更斯原理:波面子波的包络面为新波前。

(用来判断波的传播方向) ③菲涅尔原理:波面子波相干叠加确定其后任一点的振动。

④*马吕斯定律:I 2=I 1cos 2θ ⑤*布儒斯特定律:
当入射光以I p 入射角入射时则反射光为垂直入射面振动的完全偏振光。

I p
称布儒斯特角,其满足:
tg i p = n 2/n 1
3. 公式
振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2/2 E p =kx 2/2= (t)
杨氏双缝: dsin θ=kλ(明纹) θ≈sin θ≈y/D 条纹间距Δ
y=D/λd
单缝衍射(夫琅禾费衍射): asin θ=kλ(暗纹)
θ≈sin θ≈y/f
瑞利判据:
θmin =1/R =1.22λ/D (最小分辨角) 光栅:
dsin θ=kλ(明纹即主极大满足条件) tg θ=y/f
d=1/n=L/N (光栅常数) 薄膜干涉:(垂直入射)
δ反=2n2t+δ0 δ0= 0 中 λ/2 极 增反:δ反=(2k+1)λ/2 增透:δ反=k λ。

相关文档
最新文档