专题1.4 函数的周期性、对称性(学生版)

合集下载

函数性质的八大题型综合应用(学生版)-高中数学

函数性质的八大题型综合应用(学生版)-高中数学

函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x≥1时,f(x)单调递增,则不等式f2-x≥f(x+1)的解集为()A.12,+∞B.0,1 2C.-∞,-12D.-∞,122(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x2+2ax+4,x≤1,1x,x>1是-12,+∞上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-13(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【题型2 函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x <6,则6x -x 2有()A.最小值3B.最大值3C.最小值9D.最大值9【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,92(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-43(2023·广东惠州·统考一模)若函数f x 的定义域为D ,如果对D 中的任意一个x ,都有f x >0,-x ∈D ,且f -x f x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g 0 =1B.若g x max =g 4 =4,则g x min =g -4 =14C.若g x 在0,+∞ 上单调递增,则g x 在-∞,0 上单调递减D.若g x 定义域为R ,且函数h x 也是定义域为R 的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.40922(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 33(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【题型4 函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f (x )的图像既关于点(-1,1)对称,又关于直线y =x 对称,且当x ∈[-1,0]时,f (x )=x 2,则f 174 =()A.-194B.-92C.-72D.-174【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y =f x 满足f a +x +f (a -x )=2b ,则说y =f x 的图象关于点a ,b 对称,则函数f (x )=x x +1+x +1x +2+x +2x +3+...+x +2021x +2022+x +2022x +2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,20232(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R ,且y =f 3+3x 为偶函数,y =g x +3 +2为奇函数,对∀x ∈R ,均有f x +g x =x 2+1,则f 7 g 7 =()A.615B.616C.1176D.20583(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x∈R都有f x+2=-f x ,且f-x= -f x ,当x∈-1,1时,f x =x3.则下列结论正确的是()A.函数y=f x 的图象关于点k,0k∈Z对称B.函数y=f x 的图象关于直线x=2k k∈Z对称C.当x∈2,3时,f x =x-23D.函数y=f x的最小正周期为22(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R,f1 =0,且f0 ≠0,∀x,y ∈R都有f x+y+f x-y=2f x f y ,则下列说法正确的命题是()①f0 =1;②∀x∈R,f-x+f x =0;③f x 关于点1,0对称;④2023i=1f(i)=-1A.①②B.②③C.①②④D.①③④3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g(x)的定义域均为R,f(x+1)为偶函数,且f(3-x)+g(x)=1,f(x)-g(1-x)=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i=1f(i)=2022D.2023i=0g(i)=0【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,522(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.42(2023·河南·校联考模拟预测)已知函数f x 对任意实数x ,y 恒有f (x -y )+f (x +y )=f (2x )成立,且当x <0时,f (x )>0.(1)求f (0)的值;(2)判断f x 的单调性,并证明;(3)解关于x 的不等式:f x 2-(a +2)x +f (a +y )+f (a -y )>0.3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x ,y 恒有f x +y =f x +f y ,当x >0时,f x <0,且f 1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3 上的最大值;(3)若f x <m 2-2am +2对所有的x ∈-1,1,a ∈ -1,1 恒成立,求实数m 的取值范围.【题型8 函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f (x )=a x ,g (x )=b ⋅a -x +x ,a >0且a ≠1,若f (1)+g (1)=52,f (1)-g (1)=32,设h (x )=f (x )+g (x ),x ∈[-4,4].(1)求函数h (x )的解析式并判断其奇偶性;(2)判断函数h (x )的单调性(不需证明),并求不等式h (2x +1)+h (2x -1)≥0的解集.【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.直击真题1(2023·全国·统考高考真题)若f x =x +a ln2x -12x +1为偶函数,则a =( ).A.-1B.0C.12D.12(2021·全国·统考高考真题)已知函数f x 的定义域为R ,f x +2 为偶函数,f 2x +1 为奇函数,则() A.f -12=0 B.f -1 =0C.f 2 =0D.f 4 =03(2022·全国·统考高考真题)已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )f (y ),f (1)=1,则22k =1f (k )=()A.-3B.-2C.0D.14(2021·全国·高考真题)设f x 是定义域为R 的奇函数,且f 1+x =f -x .若f -13 =13,则f 53=()A.-53B.-13C.13D.535(2022·天津·统考高考真题)函数f x =x 2-1x的图像为()A. B.C. D.6(2022·全国·统考高考真题)已知函数f (x ),g (x )的定义域均为R ,且f (x )+g (2-x )=5,g (x )-f (x -4)=7.若y =g (x )的图像关于直线x =2对称,g (2)=4,则22k =1f k = ()A.-21B.-22C.-23D.-247(2021·全国·统考高考真题)设函数f x 的定义域为R ,f x +1 为奇函数,f x +2 为偶函数,当x ∈1,2 时,f (x )=ax 2+b .若f 0 +f 3 =6,则f 92=()A.-94B.-32C.74D.528(2020·全国·统考高考真题)已知函数f (x )=sin x +1sin x,则()A.f (x )的最小值为2B.f (x )的图象关于y 轴对称C.f (x )的图象关于直线x =π对称D.f (x )的图象关于直线x =π2对称9(2020·山东·统考高考真题)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是()A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]。

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

高考函数对称轴对称中心压轴题专题

高考函数对称轴对称中心压轴题专题

高考函数压轴题专题对称性与周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.(2)关于函数周期性常用的结论①若满足()()f x a f x +=-,则()(2)[()]()f x a f x a a f x a f x +=++=-+=,所以2a 是函数的一个周期(0a ≠); ②若满足1()()f x a f x +=,则(2)[()]f x a f x a a +=++= 1()f x a +=()f x ,所以2a 是函数的一个周期(0a ≠); ③若函数满足1()()f x a f x +=-,同理可得2a 是函数的一个周期(0a ≠). ④如果)(x f y =是R 上的周期函数,且一个周期为T ,那么))(()(Z n x f nT x f ∈=±. ⑤函数图像关于b x a x ==,轴对称)(2b a T -=⇒.⑥函数图像关于()()0,,0,b a 中心对称)(2b a T -=⇒.⑦函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T -=⇒.(3)函数()y f x =的图象的对称性结论①若函数)(x f y =关于x a =对称⇔对定义域内任意x 都有()f a x +=()f a x -⇔对定义域内任意x 都有()f x =(2)f a x -⇔()y f x a =+是偶函数;②函数)(x f y =关于点(a ,0)⇔对定义域内任意x 都有()f a x -=-()f a x +⇔(2)f a x -=-()f x ⇔()y f x a =+是奇函数;③若函数)(x f y =对定义域内任意x 都有)()(x b f a x f -=+,则函数)(x f 的对称轴是2b a x +=; ④若函数)(x f y =对定义域内任意x 都有()()f x a f b x +=--,则函数)(x f 的对称轴中心为(,0)2a b +; 改编:若函数)(x f y =对定义域内任意x 都有f(a+x)+f(b-x)=c 则函数)(x f 的对称轴中心为________⑤函数(||)y f x a =-关于x a =对称.例1 2016 (12) 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=m ii x =∑(A)0 (B)m (C) 2m (D) 4m例 2 (2016年全国II 高考)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x +=与()y f x =图像的交点为 1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()m i i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m例3(2017新课标Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1 例4【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称 【命题意图探究】本题主要考查函数的单调性、对称性,是中档题. 【答案】C【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,C 正确,D 错误;又112(1)'()2(2)x f x x x x x -=-=--(02x <<),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误,故选C .例 5 【2018全国卷Ⅱ】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=f A .50- B .0 C .2 D .50例6 【2015高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x=-对称,且(2)(4)1f f -+-=,则a =( ) (A ) 1- (B )1 (C )2 (D )4例7【2015高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是 .例8 【2015高考福建,文15】若函数()2()x a f x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.例9 【2015高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.例10 (2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D .D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D .例11 (2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时, ()()f x f x -=-;当12x > 时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 D 【解析】当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,故选D .2018高考函数专题(2018全国卷 理数-1)5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 9.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)16.已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.(2018全国卷 理数-2)3.函数()2e e x xf x x --=的图像大致为6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29 D .2510.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A.50-B.0 C.2 D.50 (2018 全国卷理数-3)4.若1sin3α=,则cos2α=A.89B.79C.79-D.89-12.(2018鄂尔多斯市模拟卷)若定义在R上的函数f(x)满足f(-x)=-f(x),f(1-x)=f(1+x),且当xє(0,1]时,f(x)=1-x,则方程()1[7,1]xf x e=--在区间上的实数根的数为( )。

函数的对称性与周期性(解析版)--2024高考数学常考题型精华版

函数的对称性与周期性(解析版)--2024高考数学常考题型精华版

第2讲函数的对称性与周期性【考点分析】1.函数的对称性、周期性是高考命题热点,近两年新高考都考了一道选择题,分值5分,知识点比较灵活,需要全面掌握常见对称性,周期性的结论考点一:函数常见对称性结论①若函数()x f 对于任意的x 均满足()()f a x f b x +=-,则函数()y f x =关于直线()()22a xb x a bx ++-+==对称.②若函数()x f 对于任意的x 均满足()()2f a x f a x b ++-=则()y f x =关于点()a b ,对称.考点二:函数常见周期性结论若函数对于任意的x 都满足()()x f T x f =+,则T 为()x f 的一个周期,且()()x f nT x f =±几个常见周期性结论①若函数()y f x =满足()()f x m f x +=-,则2T m =.②若函数()y f x =满足)((1)f x m f x =±+,则2T m =.③若函数()y f x =满足1()()1()f x f x m f x -+=+,则2T m =.④若函数()y f x =满足()()b x f a x f +=+,则a b T -=.⑤若函数()y f x =的图象关于直线x a =,x b =都对称,则()f x 为周期函数且2||b a -是它的一个周期.⑥函数()y f x =()x R ∈的图象关于两点0()A a y ,、0()B b y ,都对称,则函数()y f x =是以2||b a -为周⑦函数()y f x =()x R ∈的图象关于0()A a y ,和直线x b =都对称,则函数()y f x =是以4||b a -为周期的周期函数.⑧若函数()y f x =满足1()()1()f x f x m f x ++=-,则函数()f x 是以4m 为周期的周期函数.【题型目录】题型一:利用周期性求函数值题型二:利用周期性求函数解析式题型三:根据函数的对称性、周期性、奇偶性写函数题型四:根据函数的对称性、奇偶性、周期性综合运用【典型例题】题型一:利用周期性求函数值【例1】设()f x 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,其中m R ∈.若13(()162f f =,则m 的值是.答案:1解析: ()x f 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,∴m m f f +-=+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛432122121232,41161161==⎪⎭⎫⎝⎛f ,∴14341=⇒+-=m m 【例2】设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________答案:5.0-解析: (2)()f x f x +=-,∴()x f 是周期为4的函数,所以()()()5.05.05.05.7-=-=-=f f f 【例3】定义在R 上的函数()f x 对任意x R ∈,都有()()()()112,214f x f x f f x -+==+,则()2016f 等于A.14B.12C.13D.35答案:D解析: ()()()()()()()()x f x f x f x f x f x f x f x f =+-++--=+++-=+11111121214,所以()x f 是周期为4的函数,()()()()53212142016=+-==f f f f 【例4】(重庆南开高一上期中)已知定义在R 上的奇函数()f x 满足()()4f x f x +=,且()11f =,则()()20202019f f -的值为()A.1-B.0C.1D.2答案:C解析: ()()4f x f x +=所以4=T ,所以()()002020==f f ,()()()1112019-=-=-=f f f ,所以()()()20202010119f f =--=-【例5】(2022·云南昭通·高一期末)已知函数()y f x =是定义在R 上的周期函数,且周期为2,当[]0,1x ∈时,()21xf x =-,则132f ⎛⎫ ⎪⎝⎭=()A .1B .1C 1D .1【题型专练】1.(2021·山东·临沂市兰山区教学研究室高三开学考试)已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =()A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【详解】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.(2023·全国·高三专题练习)已知()f x 是定义在R 上的偶函数,且(6)()f x f x +=-,若当[]3,0x ∈-时,()6x f x -=,则(2021)f =()A .0B .1C .6D .216【答案】C【分析】由(6)()f x f x +=-可得函数周期为6,进而(2021)(33761)(1)f f f =⨯-=-,最后求出答案.【详解】根据题意,偶函数()f x 满足(6)()f x f x +=-,即(6)()f x f x +=,()f x 是周期为6的周期函数,则(2021)(33761)(1)f f f =⨯-=-,当[3,0]x ∈-时,()6x f x -=,则1(1)66f -==,故(2021)6f =故选:C3.(重庆南开高一上期末)函数()f x 的定义域为R ,且102f ⎛⎫=⎪⎝⎭,()00f ≠.若对任意实数x ,y 都有()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则()2020f =()A.B.-1C.0D.1答案:D解析:由题意知,令0==y x ,可得()()02022f f =,因()00f ≠,所以()10=f 102f ⎛⎫=⎪⎝⎭所以()()0212121=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++=++x x f x x f x f x f ,所以()()x f x f -=+1,所以2=T ,所以()()102020==f f 4.(2022·云南红河·高一期末)已知()f x 是定义在R 上的奇函数,R x ∀∈,都有(4)()f x f x +=,若当[0,1]x ∈时,2()log ()f x x a =+,则(7)f -=()A .1-B .0C .1D .2【答案】C【分析】()f x 是定义在R 上的奇函数得a ,有(4)=()f x f x +得到()f x 是周期函数,利用函数周期性可得答案.【详解】()f x 是定义在R 上的奇函数,(0)=0f ∴,得=1a ,∴当[]0,1x ∈时,2()log (1)=+f x x ,R x ∀∈,都有(4)=()f x f x +,()f x ∴是周期为4的周期函数,()()()7=7811f f f ∴--+==.故选:C.5.(2022·黑龙江·大庆中学高二期末)()f x 是定义在R 上的奇函数,且满足()()22f x f x -=+,又当(]0,1x ∈时,()3xf x =,则131log 72f ⎛⎫= ⎪⎝⎭______.题型二:利用周期性求函数解析式【例1】已知定义在实数集R 上的函数()x f 满足:(1)()()x f x f =-;(2)()()x f x f -=+22;(3)当[]2,0∈x 时解析式为12-=x y ,当[]0,4-∈x 时,求函数的解析式。

2023年数学教案:数学 - 函数的对称性与周期性(精选3篇)

2023年数学教案:数学 - 函数的对称性与周期性(精选3篇)

2023年数学教案:数学 - 函数的对称性与周期性(精选3篇)教案一:函数的对称性教学目标:1. 能够理解函数的对称性的概念。

2. 能够识别并绘制函数的对称轴。

3. 能够利用函数的对称性来简化计算和证明过程。

教学准备:1. 彩色粉笔或者白板笔2. 图形绘制工具(纸和铅笔或者计算机绘图软件)教学过程:步骤1:引入概念(5分钟)首先,教师可以引入函数的对称性概念。

可以使用具体的例子来说明,例如y = x²这个函数。

让学生观察这个函数的图像,并指出函数的对称轴在x轴上。

步骤2:识别对称轴(15分钟)然后,教师可以给学生更多的例子,让他们识别函数图像的对称轴。

可以使用不同类型的函数,如多项式函数、三角函数等。

步骤3:绘制对称轴(25分钟)现在,学生可以用纸和铅笔,或者计算机绘图软件,绘制给定函数的图像,并标出对称轴。

教师可以给予学生一份工作表,上面列有几个函数,要求学生绘制它们的图像和标出对称轴。

步骤4:应用对称性(15分钟)最后,教师可以给学生一些问题,让他们应用对称性来简化计算和证明过程。

例如,让学生证明一个函数在对称轴上的值是相等的,或者让他们通过给定函数的对称轴来求出其他点的函数值。

教学延伸:教师可以进一步探讨函数的奇偶性质与对称性的关系,以及函数的图像在对称轴两侧的关系。

教案二:函数的周期性教学目标:1. 能够理解函数的周期性的概念。

2. 能够识别函数的周期和周期的长度。

3. 能够利用函数的周期性来简化计算和证明过程。

教学准备:1. 彩色粉笔或者白板笔2. 图形绘制工具(纸和铅笔或者计算机绘图软件)教学过程:步骤1:引入概念(5分钟)首先,教师可以引入函数的周期性概念。

可以使用具体的例子来说明,例如y = sin(x)这个函数。

让学生观察这个函数的图像,并指出函数的周期为2π。

步骤2:识别周期(15分钟)然后,教师可以给学生更多的例子,让他们识别函数的周期和周期的长度。

可以使用不同类型的函数,如三角函数、指数函数等。

函数的周期性和对称性(学生)——王彦文

函数的周期性和对称性(学生)——王彦文

专题二:函数的周期性和对称性【高考地位】函数的周期性和对称性是函数的两个基本性质。

在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。

因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。

【方法点评】一、函数的周期性求法 使用情景:几类特殊函数类型解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .51- (2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( ) A 、-12 B 、-16 C 、-20 D 、0 【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3【变式演练2】定义在R 上的函数()f x 满足()()[)20,0,2f x f x x ++=∈时,()31xf x =-,则()2015f 的值为( )A.-2B.0C.2D.8【变式演练3】定义在R 上的偶函数()y f x =满足(2)()f x f x +=-,且在[2,0]x ∈-上为增函数,3()2a f =,7()2b f =,12(log 8)c f =,则下列不等式成立的是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >> 二、函数的对称性问题 使用情景:几类特殊函数类型 解题模板:记住常见的几种对称结论:第一类 函数)(x f 满足()()f x a f b x +=-时,函数()y f x =的图像关于直线2a bx +=对称; 第二类 函数)(x f 满足()()c f x a f b x ++-=时,函数()y f x =的图像关于点(,)22a b c+对称;第三类 函数()y f x a =+的图像与函数()y f b x =-的图像关于直线2b ax -=对称.例2 .(从对称性思考)已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 例3 已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )A .669B .670C .2008D .1 例4 已知函数21()(,g x a xx e e e=-≤≤为自然对数的底数)与()2ln h x x =的图像上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .21[1,2]e + B .2[1,2]e - C .221[2,2]e e +-D .2[2,)e -+∞ 【变式演练4】定义在R 上的奇函数)(x f ,对于R x ∈∀,都有)43()43(x f x f -=+,且满足2)4(->f ,mm f 3)2(-=,则实数m 的取值范围是 . 【高考再现】1. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m2. 【2016高考山东理数】已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )23. 【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= .4. 【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是 .【反馈练习】1. 【2016届云南昆明一中高三仿真模拟七数学,理4】设函数()y f x =定义在实数集R 上,则函数()y f a x =-与()y f x a =-的图象( )A .关于直线0y =对称B .关于直线0x =对称C .关于直线y a =对称D .关于直线x a =对称2.【 2017届河南夏邑县第一高级中学高三文一轮复习周测二数学试卷】已知函数()f x 是定义在R 内的奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()2015f =( )A .-2B .2C .-98D .983. 【2017届河南新乡一中高三9月月考数学,文8】定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f <<C .(64)(49)(81)f f f <<D .(64)(81)(49)f f f << 4. 【2017届安徽合肥一中高三上学期月考一数学试卷,文12】已知定义在R 上的函数()f x 满足:(1)y f x =-的图象关于(1,0)点对称,且当0x ≥时恒有31()()22f x f x -=+,当[0,2)x ∈时,()1xf x e =-,则(2016)(2015)f f +-=( )A .1e -B .1e -C .1e --D .1e +5. 【2016-2017学年贵州遵义四中高一上月考一数学试卷,理11】已知函数2()(12)f x a x x =-≤≤与()2g x x =+的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .9[,)4-+∞ B .9[,0]4- C .[2,0]- D .[2,4] 6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】若对正常数m 和任意实数x ,等式1()()1()f x f x m f x ++=-成立,则下列说法正确的是( )A .函数()f x 是周期函数,最小正周期为2mB .函数()f x 是奇函数,但不是周期函数C .函数()f x 是周期函数,最小正周期为4mD .函数()f x 是偶函数,但不是周期函数7. 【2017届四川成都七中高三10月段测数学试卷,文10】 函数()f x 的定义域为R ,以下命题正确的是( ) ①同一坐标系中,函数(1)y f x =-与函数(1)y f x =-的图象关于直线1x =对称;②函数()f x 的图象既关于点3(,0)4-成中心对称,对于任意x ,又有3()()2f x f x +=-,则()f x 的图象关于直线32x =对称;③函数()f x 对于任意x ,满足关系式(2)(4)f x f x +=--+,则函数(3)y f x =+是奇函数. A .①② B .①③ C .②③ D .①②③8. 【2015-2016学年东北育才学校高二下段考二试数学,文12】函数⎪⎩⎪⎨⎧≥<++=)0(e2)0(142)(x 2x x x x x f 的图像上关于原点对称的点有( )对A. 0B. 2C. 3D. 无数个9. 【2015-2016学年东北育才学校高二下段考二试数学,文7】定义在实数集R 上的函数()f x 满足()()20f x f x ++=,(4)()f x f x -=.现有以下三种叙述:①8是函数()f x 的一个周期;②()f x 的图象关于直线2x =对称;③()f x 是偶函数.其中正确的是( )A .②③ B. ①② C .①③ D. ①②③。

专题——函数的奇偶性,周期性,对称性

专题——函数的奇偶性,周期性,对称性

专题1函数的奇偶性,周期性,对称性知识梳理【题型解读】【知识储备】一.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称二.关于函数对称性的结论扩充1.若函数y =f (x )的图象关于x =a 对称⇔对定义域内任意x 都有f (a +x )=f (a -x )⇔对定义域内任意x 都有f (x )=f (2a -x )⇔y =f (x +a )是偶函数。

2.函数y =f (x )的图象关于点(a,0)对称⇔对定义域内任意x 都有f (a -x )=-f (a +x )⇔f (2a -x )=-f (x )⇔y =f (x +a )是奇函数。

3.若函数y =f (x )对定义域内任意x 都有f (x +a )=f (b -x ),则函数f (x )的图象的对称轴是x =a +b2。

4.若函数y =f (x )对定义域内任意x 都有f (a +x )+f (b -x )=c ,则函数f (x )的图象的对称中心为22a b c+(,)。

5.函数y =f (|x -a |)的图象关于x =a 对称。

三.关于函数周期性的结论扩充1.若满足f (x +a )=-f (x ),则f (x +2a )=f ((x +a )+a )=-f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。

2.若满足f (x +a )=1f (x ),则f (x +2a )=f ((x +a )+a )=1f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。

3.若函数满足f (x +a )=-1f (x ),同理可得2a 是函数的一个周期(a ≠0)。

专题05 函数周期性,对称性,奇偶性问题(学生版)-2024年高考二级结论速解技巧

专题05 函数周期性,对称性,奇偶性问题(学生版)-2024年高考二级结论速解技巧

f (a + x)= f (a − x)
最常逆应用:若 y
=
f (x) 关于 x
=
a
对称:可得到如下结论中任意一个:
f= ( x)
f (2a − x)

f (−x=) f (2a + x)
周期性与对称性记忆口诀:同号周期,异号对称.
(2)点对称:若 f (a + x) =− f (b − x) + c ,则 y = f (x) 的图象关于点 ( a + b , c ) 对称. 22
C. f (2022) = 0
D. f (2023) = 2
三、填空题
6.(2023·四川南充·四川省南部中学校考模拟预测)已知函数 f ( x) 是定义在 R 上的奇函数,对任意的 x∈ R
都有
f
x
+
3 2
= − f
(
x)
,当
x


3 4
,
0
时, = f ( x)
log2 (1+ x) ,则 f (2021) + f (2022) = _________
当 x ∈[−2, 0] 时, f= ( x)
1 x 3
+
b
,则
f
(log3 162)
= ___________.
11.(2023·全国·高三专题练习)已知定义在 R 上的函数 f (x) 满足 f (2 + x) =f (x) ,当 x ∈[0, 2]时,
f (x) = −x(x − 2) ,则方程 f (x) = lg x 有___________个根.
最常逆应用:若 y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲函数的周期性与对称性(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。

2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

⒁绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。

前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx │就没有对称性,而y=│sinx│却仍然是轴对称(二)中心对称1.概念:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。

2.对称性的三个常用结论(1)若函数y =f(x +a)是偶函数,即f(a -x)=f(a +x),则函数y =f(x)的图象关于直线x =a 对称; (2)若对于R 上的任意x 都有f(2a -x)=f(x)或f(-x)=f(2a +x),则y =f(x)的图象关于直线x =a 对称; (3)若函数y =f(x +b)是奇函数,即f(-x +b)+f(x +b)=0,则函数y =f(x)关于点(b,0)中心对称. 二、.周期性(1)周期函数:对于函数y =f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数y =f(x)为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.考向一 周期性【例1】(1)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.(2)已知定义在R 上的函数f(x)满足f(2)=2-3,且对任意的x 都有f(x +2)=1-f (x ),则f(2 020)=________.(3)已知f(x)是定义在R 上的偶函数,且f(x +4)=f(x -2).若当x ∈[-3,0]时,f(x)=6-x,则f(919)=________【举一反三】1.设定义在R 上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x +2);③当0≤x<1时,f(x)=2x-1,则f ⎝ ⎛⎭⎪⎫12+f(1)+f⎝ ⎛⎭⎪⎫32+f(2)+f ⎝ ⎛⎭⎪⎫52=________. 2.已知函数f(x)的定义域为R.当x<0时,f(x)=x 3-1;当-1≤x ≤1时,f(-x)=-f(x);当x>12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f(6)=( )A.-2B.-1C.0D.23.定义在R 上的函数f(x)满足f(x +6)=f(x),当-3≤x<-1时,f(x)=-(x +2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2018)等于( )A .336B .339C .1678D .20124.设f(x)是定义在R 上且周期为2的函数,在区间[-1,1]上,f(x)=⎩⎪⎨⎪⎧ax +1,-1≤x<0,bx +2x +1,0≤x ≤1,其中a ,b∈R.若f ⎝ ⎛⎭⎪⎫12 =f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.考向二 对称性【例2】(1)已知定义在R 上的函数f(x)满足f(x +6)=f(x),且y =f(x +3)为偶函数,若f(x)在(0,3)内单调递减,则下面结论正确的是( )A . f(−4.5)<f(3.5)<f(12.5)B . f(3.5)<f(−4.5)<f(12.5)C.f(12.5)<f(3.5)<f(−4.5) D.f(3.5)<f(12.5)<f(−4.5)(2)已知函数f(x)满足f(1−x)=f(1+x),当(−∞,1]时,函数f(x)单调递减,设a=f(log412),b=f(log133),c=f(log39),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.a<c<b D.c<b<a(3)已知函数f(x−1)(x∈R)是偶函数,且函数f(x)的图象关于点(1,0)成中心对称,当x∈[−1,1]时,f(x)= x−1,则f(2019)=()A.−2 B.−1 C. 0 D. 2【举一反三】1.设函数f(x)的定义域为[0,4],若f(x)在[0,2]上单调递减,且f(x+2)为偶函数,则下列结论正确的是A.f(e)<f(√5)<f(1) B.f(1)<f(√5)<f(e)C.f(√5)<f(e)<f(1) D.f(√5)<f(1)<f(e)2.定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x ∈R ,都有f(x +1)=f(x −1); ②函数y =f(x +1)的图象关于y 轴对称;③对于任意的x 1,x 2∈[0,1],都有(f (x 1)−f (x 2))(x 1−x 2)>0 则f (32)、f(2)、f(3)从小到大的关系是( )A .f (32)>f(2)>f(3)B .f(3)>f(2)>f (32) C .f (32)>f(3)>f(2)D .f(3)>f (32)>f(2)3.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),f (1)=2,则f (-1)+f (3)=( ) A .4B .0C .−2D .−44.已知定义在R 上的函数f(x),g(x)满足g(x)=f (|x −1|),则函数y =g(x)的图象关于( ) A .直线x =−1对称 B .直线x =1对称C .原点对称D .y 轴对称5.已知函数f (x )={sin (π2x)−1,x <0log a x(a >0,且a ≠1),x >0 的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是( ) A .(0,√33) B .(√55,1) C .(√33,1) D .(0,√55) 考向三 函数基本性质的综合运用【例3】 (1)设f(x)是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f(x)=⎩⎪⎨⎪⎧ax +b ,-2≤x<0,ax -1,0<x ≤2,则f(2 021)=________.(2)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=________.(3)已知函数f (x )满足:f (2−x )=f (x ),当x ≥1时,f (x )={2−x,x ∈[1,2),x 2−4,x ∈[2,+∞),若不等式f (x )≥6x +a 恒成立,则实数a 的取值范围是 。

【举一反三】1.已知定义在R 上的奇函数f(x)满足f(x -4)=-f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)的大小关系为________.2.已知函数g(x)是R 上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x>0,若f(6-x 2)>f(x),则实数x 的取值范围是________.3.若函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是单调增函数.如果实数t 满足f(ln t)+f⎝ ⎛⎭⎪⎫ln 1t ≤2f(1),那么t 的取值范围是________. 4.已知函数f(x)=sin x -x +1-4x2x ,则关于x 的不等式f(1-x 2)+f(5x -7)<0的解集为________.1.若函数f (x )的图像与函数g (x )=10x 的图像关于直线y =x 对称,则f (100)=( ) A .10 B .-1 C .2 D .-22.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .f(2)<f(−1)<f(1) B .f(1)<f(2)<f(−1) C .f(1)<f(−1)<f(2)D .f(2)<f(1)<f(−1)3.函数f(x)满足:①y =f(x +1)为偶函数:②在[1,+∞)上为增函数.若x 2>−1,且x 1+x 2<−2,则f(−x 1)与f(−x 2)的大小关系是( ) A .f(−x 1)>f(−x 2) B .f(−x 1)<f(x 2) C .f(−x 1)≤f(−x 2)D .不能确定4.已知函数f (x)=f (π−x ),且当x ∈(−π2,π2)时,f (x)=x+sinx,设a=f (1),b=f (2),c=f (3),则 A .a<b<cB .b<c<aC .c<b<aD .c<a<b5.已知函数f(x)=x 2+log 2|x |,则不等式f(x +1)−f(2)<0的解集为( )A .(−3,−1)∪(−1,1)B .(−3,1)C .(−∞,−1)∪(3,+∞)D .(−1,1)∪(1,3)6.已知函数y =f(x +1)关于直线x =−1对称,且f(x)在(0,+∞)上单调递增,a =f (−log 315),b =f (−2−0.3),c =f (2log 32),则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .c <a <bD .b <c <a7.已知函数f (x )为偶函数,且函数f (x )与g (x )的图象关于直线y =x 对称,若g (2)=3,则f (−3)= A .−2 B .2 C .−3 D .38.已知定义在R 上的函数f (x )在[1,+∞)上单调递减,且f (x +1)是偶函数,不等式f (m +2)≥f (x −1)对任意的x ∈[−1,0]恒成立,则实数m 的取值范围是( )A .[−3,1]B .[−4,2]C .(−∞,−3]∪[1,+∞)D .(−∞,−4]∪[2,+∞) 9.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x ≥1时,f(x)=lnx ,则有A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13) C .f (12)<f (13)<f (2) D .f (2)<f (12)<f (13)10.已知函数f (x )的定义域为R 的奇函数,当x ∈[0,1]时, f (x )=x 3,且∀x ∈R , f (x )=f (2−x ),则f (2017.5)= A .−18B .18C .0D .111.函数y =f(x)的图象关于直线x =2对称,如图所示,则方程(f(x))2−5f(x)+6=0的所有根之和为( )A .8B .6C .4D .212.定义在R 上的偶函数f(x)满足f(1+x)=f(1−x),当x ∈[0,1]时,f(x)=−x +1,设函数g(x)=e −|x−1|(−1<x <3),则f(x)与g(x)的图象所有交点的横坐标之和为( ). A .3B .4C .5D .613.已知函数f(x)=m3x −1−52的图象关于(0,2)对称,则f(x)>11的解集为( ) A .(−1,0)B .(−1,0)∪(0,1)C .(−1,0)∪(0,+∞)D .(−1,0)∪(1,+∞)14.已知定义域R 的奇函数f (x )的图像关于直线x =1对称,且当0≤x ≤1时,f (x )=x 3,则f (52)=( )A .−278B .−18C .18D .27815.已知函数f(x)在[3,+∞)上单调递减,且f(x +3)是偶函数,则a =f(0.31.1),b =f(30.5),c =f(0)的大小关系是( ) A .a >b >cB .b >c >aC .c >b >aD .b >a >c16.若函数y =6lnx 的图象上各点的纵坐标保持不变,横坐标变为原来的λ(λ>0)倍,所得函数的图象与函数y =−(x +2)2+a 图象上存在关于原点对称的点,且a 的最小值为1−3ln3,则实数λ=( ) A .√3B .2C .3D .917.已知函数f(x)=e x+a+e−x−a2(a∈R)满足f(x+2)=f(2−x),则f(0)=()A.e 2+12eB.e4+12e2C.e2+12D.e4+1218.已知函数f(x)=log2|2x−a|(a∈R)满足f(x+1)=f(1−x),则f(0)=()A.2 B.1 C.0 D.−119.已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x−1)>f(x+2)的解集为()A.(−∞,3) B.(12,3) C.(−13,3) D.(13,3)20.已知函数f(x)是(−∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x−1,则f(2018)的值为()A.−2 B.−1 C.0 D.121.已知函数f(x)在[3,+∞)上单调递减,且f(x+3)是偶函数,则a=f(log32),b=f(30.5),c=f(log264)的大小关系是()A.a>b>c B.b>c>a C.c>b>a D.b>a>c22.已知函数f(x)=1x+1+x+a−1是以(−1,−1)为中心的中心对称图形,g(x)=e bx+ax2+bx,曲线y= f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,则a+b=__________.23.已知定义在R上的可导函数f (x)的导函数为f′(x),满足f′(x)<f (x),且f (x+2)为偶函数,f (4)=1,则不等式f (x)<e x的解集为________.24.已知定义在R上的偶函数y=f(x+2),其图像连续不间断,当x>2时,函数y=f(x)是单调函数,则满足f(x)=f(1−1x+4)的所有x之积为______.25.已知函数y=f(x)是定义在R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3),当x1,x2∈[0,3],且x1≠x2时,f(x1)−f(x2)x1−x2>0,给出如下命题:①f(3)=0;②直线x=−6是函数y=f(x)的图象的一条对称轴;③函数y=f(x)在[−9,−6]上为增函数;④函数y=f(x)在[−9,9]上有四个零点.其中所有正确命题的序号为。

相关文档
最新文档