蓄电池智能充放电控制器设计
第7章充放电控制器

第七章充放电控制器7.1 充放电控制器的功能在独立运行的以风能、太阳能为主的可再生能源发电系统中,必须配备储能蓄电池,蓄电池起着储存和调节电能的作用。
当风力很大或日照充足而产生的电能过剩时,蓄电池将多余的电能储存起来;反之,当系统发电量不足或负载用电量大时,蓄电池向负载补充电能,并保持供电电压的稳定。
蓄电池,尤其是铅酸蓄电池,要求在充电和放电过程中加以控制,频繁的过充电和过放电都会影响蓄电池的使用寿命。
过充电会使蓄电池大量出气(电解水),造成水分散失和活性物质的脱落;过放电则容易加速栅板的腐蚀和不可逆硫酸化。
为了保护蓄电池不受过充电和过度放电的损害,则必须要有一套控制系统来防止蓄电池的过充电和过放电,称为充放电控制器。
控制器通过检测蓄电池的电压或荷电状态判断蓄电池是否已经达到过充点或过放点,并根据检测结果发出继续充、放电或终止充、放电的指令。
随着可再生能源发电系统容量的不断增加,设计者和用户对系统运行状态及运行方式的合理性的要求越来越高,系统的安全性也更加突出和重要。
因此,近年来设计者又赋予控制器具有更多的保护和监测功能,使早期的蓄电池充电控制器发展到今天比较复杂的系统控制器。
此外,控制器在控制原理和使用的元器件方面也有了很大发展和提高,目前先进的系统控制器已经使用了微处理器,实现了软件编程和智能控制。
可再生能源系统中充放电控制器的功能主要有:1)高压(HVD)断开和恢复功能:控制器应具有输入高压断开和恢复连接的功能。
2)欠电压(LVG)告警和恢复功能:当蓄电池电压降到欠电压告警点时,控制器应能自动发出声光告警信号;3)低压(LVD)断开和恢复功能:这种功能可防止蓄电池过放电。
通过一种继电器或电子开关连结负载,可在某给定低压点自动切断负载。
当电压升到安全运行范围时,负载将自动重新接入或要求手动重新接入。
这一功能也往往通过逆变器来实现,而充电控制器不包含这一功能;4)保护功能:防止任何负载短路的电路保护;防止充电控制器内部短路的电路保护;防止夜间蓄电池通过太阳电池组件反向放电保护;防止负载、太阳电池组件或蓄电池极性反接的电路保护;防止感应雷的线路防雷。
MPPT控制器

这是一款最大功率点智能跟踪(MPPT)太阳能充放电控制器,比传统的控制器 充电效率提高了 30%~60%,其具有系统自动识别、三阶充电方式、可为多种 蓄电池充电、智能控制放电模式,RS232 通讯等优点,是我司 MPPT 太阳能控 制器 e-SMART 系列。
备注:控制器自动识别 DC12V 或 DC24V 或 DC48V 电池系统;
500us
MPPT 效率
12V/24V/48V 系统
≥96.5%,≤99%
输入特性12V 系统 NhomakorabeaDC14V~DC100V
MPPT 工作电压范围
24V 系统
DC30~DC100V
48V 系统
DC60~DC100V
12V 系统
DC14V
输入低压保护点
24V 系统
DC30V
48V 系统
DC60V
输入低压恢复点 (启动充电电压点)
输出稳压精度
12V/24V/48V 系统
输出放电特性
输出电压
输出低压保护
输出额定电流
输出控制方式
输出控制设置方式
显示
LED 数码管显示
LED 灯显示
PC 上位机(通信端口)
保护功能
输入低压保护
输入高压保护
充电过压功率保护
输出低压保护
输出额定电流保护
温度保护
其它参数
音响噪声
散热方式
元器件
认证
属性
尺寸 DxWxH(mm)
图示:测试软件
5.1.1 直观的显示太阳能充放电状态,PV 电压值,充电电压值,充电电流值等,并可设置电
池类型,LOAD 输出控制方式;
5.1.2 产品标准配置上位机软件;不提供测试软件(由于测试软件要求客户的 PC 具备软件
铅酸蓄电池智能检测仪控制器设计

智能 检测 的铅 酸蓄 电池 检 测 仪控 制 器 , 得 了较 为 取
理想 的应 用效 果 。
1 控制器工作原理
检测仪 控 制器 采 用 恒 流放 电 的方 法 , 立 检 测 独
铅 酸 蓄 电池 容量 和 内阻 , 而 避 免 交叉 检 测 带 来 的 从
21 0 2年 6月 1 日收 到 , 6 日修 改 8 7月 河 南工 业 大学 研 究 生
控 制器 液 晶显示 采用 菜单 式结 构 。
C =/ t () 1
r=
() 2
其 中: C是铅 酸蓄 电池容 量 , 是 恒定 放 电 电流 ,是 , t 放 电时间 , 是 前 后检 测 时 刻 的 蓄 电池 端 电压 变 △
化 量 , 是 蓄 电池 内阻 。 r
教 育创新计划基金 (O Jo 5 资助 1 Y S5 ) 第一作者简介 : 陈富安 (9 2 ) 男 , 16 一 , 河南 人 , 教授 , 硕士 , 究方 向: 研 铅酸 蓄电池智能管理 , 智能测控技术及 应用 , 电力电子与 电气传 动, 电力 系统综合 自动化及位置伺服与数字控制技术等。
第 1 卷 第 2 期 21 年 1 月 2 9 02 0
科
学
技
术
与
工
Байду номын сангаас
程
Vo.1 No 29 Oc . 2 2 1 2 . t 01
S i n e T c n lg n gn e i g c e c e h o o y a d En i e rn
⑥ 2 1 SiT c. nr. 0 2 c eh E gg .
多机并联大电流蓄电池充放电控制系统的开发

9 1・
电流计 算 出所需 要 充 放 电 副机 的数 量 、 设 定 主控 制
器的工作电流 、 合上各并联开关 , 主控制器通过通讯
线 查询 并联 开关 的状 态及 充放 电副 机 的最 大 额定工
作 电流, 并将其分配给各充放电副机 , 合上与需要测
试 的蓄 电池 对应 的接 通开 关并 通过 主控 制器 启动各 充 放 电副 机 , 由各充 放 电副 机 控 制并 完 成 某 蓄 电池 的充 、 放 电测试 。试 验 中 , 充放 电副 机将 采集 的数据
・
9 2・
小转换放大器的放大倍数 , 使输入的数据信号 , 特别
是电流信号在大范围内变化时 , 都有较高的分辨率 ,
4 系统特点
1 ) 将原来 由几 台不 同设 备才能进行的多项测 试项 目集中到一台设备上 , 使其做到一机多用 , 具备
通过通信总线传 回主控制器 , 主控制器根据该数据
判 定试 验是 否达 到 结 束条 件 , 由 主控 制 器 控 制各 副
图1 系统 组 成 框 图
机 结束 试验 。
显示模块
副
机
加 转 换 器
粱 巽 黩
2 系统 技 术 方 案
针 对 现有技 术 中存 在 的 问题 , 本 方 案 旨在 提供
一
通信模块
制 = 。 / A 转 换 器 } = = 充 放 电 功 率 模 块
器
—
种既可对单组蓄 电池独立进行充放电测试 , 又能
l 按键及状态 l I 信号模块 }
独 立 为某组 蓄 电池提 供并 联 大 电流 进行 充放 电测试 的多机 并联 大 电流 蓄 电池 充放 电控 制 系统 。为 了实 现 上述 目的 , 本 系统 采用 如下技 术方 案 : 1 ) 为达 到改 变充 放 电流 的 目的 , 系 统 选 用 了大 功率场 效 应 管 模 块 和 大 功 率 场 效 应 管 作 为 可 调 负 载 。大 功率 场 效 应 管 主 要 用 于放 电试 验 的 电流 调 节, 其具 有 驱动 功率 小 、 输 出功 率大 、 通道 电阻低 、 负 的 电流 温度 系数 、 无 二 次击 穿 等 优 良特性 。 而大 功
关于蓄电池智能充电控制器的讨论

控制电路 是开关电源的核心部分, 控制环节的好坏直接影响电 信号输入端可以是传感器 或转换器的输出, 路的整体性能 , 这个电路 中采用的是以S G 3 5 2 6 芯片为核心的控制电 拟信号转换成数字信号。 而AD C 的数 字信号 也可能 提供 给微 处理 器, 以便 广泛 地应 用。 路。 如 图1 - 1 所示 , 采用恒频脉宽调制控制方式 。 误差放大器的输入 信号是电压反馈信号, 是由输出电压经分压电路获取 , 反馈信号比较 AD C 0 8 0 4 的规 格及 引脚 图 精确, 因而可以精确地控制占空比调节输出电压, 提高了稳压精度。 8 6C O MS 依次逼近型的A/ D 转换器。 S G 3 5 2 6 芯片振荡频率的设定范围为1 0 0 - 5 0 0 k Hz , 芯片的脚6 和脚7 三态 锁 定输 出 间串联一个电阻R3 . 1 0 就可以在较大范围内调节死区时间。 S G 3 5 2 6 的 存取时间: 1 3 5 u s 振 荡频率 可表 示 为 : 分辨率: 8 6 转换时间: 1 0 0 u s = 面1
图2 - 1智能控 制电路原理图
单片机在 系统 中主要作用为对电池在电量的多少控制相应的充 电状 态 , 分 别对 电池 进 行小 电流 充 电、 恒 流 充电 、 恒 压 充电和 浮 充电 四 种充 电状态 。 其 次是 显示 电池 的实 时 电压电流 , 方便 检测 电池 的充 电情况 。 ( 一) 单片机选择 处 理 器采 用 5 l 系列 单片 机 A T8 9 S 5 2 。 该单 片 机 内部 有三个 定 时 / 计数 器 , 两 个外 部 中断 和 一 个 串行 口中断 , 四个八 位 的I / O口, 采 用l 1 . 0 5 9 2 MHZ 的 晶振 。 A T8 9 S 5 2 的 任务 是 从 采样 电路处 实 时采 集 电池的充电状态, 通过计算决定下一阶段的充电电流, 发送命令给
基于AVR微控制器的蓄电池充放电控制器设计

T V5 3 L 6 8寄存 器 选 择 位 只有 R0 0 =、 RI 0和 R0 0 = = 、RI I两 种状 态 。 = Me a 6的 S I口可 采用 4种 不 gl P 同 的数 据 传 输 格 式 工 作 ,传 输 格 式 由 S I 制 寄 存器 中的 CP P控 OL位 和 CPHA 位 控 制 。 应 用 中 ,考 虑 到 T V5 3 的使 用 要 求 , CP L 68 令 HA= , 0 CP OL= , I 即传 输开 始 时采 样 S CK下 降沿 ,结 束 时 采 样 S CK上 升 沿 。
UL 0 1 制 放 电 电阻 接入 。系 统 N2 8 控
图2 DA转换与通道选择 /
原 理 框 图如 图 1所 示 。
86 20. 08 7电子设计应用 ww a.mc w.w o. e c n
维普资讯
Ap l a in So u i n i pi t lt c o o
压 较 低 的 电池做 相 应处 理 。
本 文 针 对 5 9 H一 型 Ni 3C 1 — Cd蓄
电池 的充 放 电规 范 ,提 出一 种 充 放
电控 制器 的设 计 方 案 。
系 统 设 计
本 设 计 采 用 A 单 片 机 VR
图 1 系统原理框图
Me a 6 g 1 L作 为 核 心 ,可 同 时控 制 两
变 。 因 此 , 除初 始 化 过 程 以外 ,
豳
0
O 1
霉翻露
1 0 4V .2 2. 48 0 V
EPIP30 系列智能控制器 说明书

LCD数码、图形显示窗口接线端口太阳标志,表示白天和晚上光控启动点的状态;)择任一种方式;)蓄电池符号,内部条状图形表示充放电状态及当前容量百分比如果系统处于放电状态,则蓄电池的方式显示蓄电池处于放电状态;保险负载状态标志蓄电池状态充电控制方式参数及参数单位显示区负载控制方式标志闪烁,充电恢复后停止闪烁;直流输出符号;负载图标,表示负载状态及故障状态;常显,当允许输出为“开”状态时,显示负载状态;过载时,负载符号K4负载和闪电符号闪烁次短路保护动作,需用户检查负载线路,参数单位:LCD池容量,符号显示,充电符号“”闪烁,表示当前可以修改充电控制方号及充电符号“”闪烁时,按一下显示,恢复原控制方式,并返回到参量选择状态;在“SET”符号显示及太阳符号“符号闪烁,表示现在可以确认设置光启动电压,再按一下当出现太阳图形在天黑自动的启动负载输出,白天自动关闭输出。
太阳,表示光控+延时,控制器会自动检测光强弱,在天黑自动的启动负载输出,同时根据所选择的工作时长自动关闭负时钟无图形显示,表示手动控制;3.6时间调整操作:包括实时时间、延时时间和定时开关时间;●在负载控制为手动、光控模式下,只显示调整实时时间。
●在光控+延时模式下,可以调整实时时间和延时关闭小时数。
●定时模式下可以调整实时时间和定时开、关对应的小时、分钟数据,用户首次使用,默认的控制时间数据均为0,所以在首次连接使用时要设置相应的时间,之后,控制器按照最后一次的设置参数工作;1)在显示需要调整的时间时,按一下K3,“SET”符号及右下角的H:M 符号中的H闪烁,表示可以修改小时数据;2)通过K1/K2在0~23内调整数据;3)再按一下K3,保存小时数据并切换到修改分钟数据--“SET”符号及右下角的H:M符号中的M闪烁;4)通过K1/K2在0~59间调整数据;5)再次按K3保存修改数据,返回到选择状态—显示“SET”不闪烁;6)如果不保存更改,则按K4,返回到选择状态—显示“SET”不闪烁;3.7光控测试在浏览状态下,同时按下K1和K2键,放开后右侧太阳闪烁,控制器进入测试模式:光电池输入端加低于5V的电压,控制器开通输出光电池输入端加高于7V的电压,控制器关断输出如果符合上述现象,说明控制器光控功能正常,按K4键退出测试模式,返回浏览状态5安全及保护本控制器具有过压、过流、短路、反接等全保护功能,具有TVS防雷保护,并且过压、过流、短路保护在LCD上具有告警指示。
基于AVR微控制器的蓄电池充放电控制器

继 电器驱 动电路 放 电后 期 ,需 要将 电池 中的剩余 容量完
的S I P 口为 4 线
2 DA变换 通道选 串 口, / 所以连 接时单 片机 S I P 口的 P 6MIO) 全放 出 ,最终使 单体 电池 电压 下降到 0 B( S V。设
号调 整 电路 , 从而 完成 对充 放 电电流 的控 制 。
放 电过程 中 ,Me a 6 g 1 L通过 控制 8 锁存 器 D 7 L 5 3 复 合管阵 列 UL 0 1 4 S 7  ̄1 N2 8 控制放 电电
2 0 年 7月2 08 1日 收 到 本
文 。
引言
蓄 电池 是 飞行 器 电源 系统 中重要 的组 成
时 的放 电时 间 ,然 后在单 体 电池 两极 间接 入
放 电 电阻 。该 电池 的充 电规 范要 求使 用分 阶 后 ,通过 S I P 口将 控制 信号 发送给 T V5 3 。 L _ 8 6 段定 电流充 电法 。 充 电过 程 中要检 测 电池 的 T V5 3 将 收到 的数字信号 转换成 模拟信号 , L 68
栏 目编辑
韩汝水
基于A R V 微控制器的蓄电池充放电控制器
A Co t l r o at r a gn n s h r n as d o nr l r o e f B t yCh r ig a d Di a gig B e n AVRM CU e c
■
.
圈 1 系统 原理 框图
核 心 ,可 同时控制 两块 5 9 3 CH一 型 蓄 电池 的 择 控 制信 号的输 出通 道 ,使 该控 制 器可 同时 1
对2 蓄 电池进 行充 电和放 电。 部分 电路原 块 该 理 图如 图 2所示 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.蓄电池充放电方式研究,确定蓄电池的最佳充电方案;
调研蓄电池恒压、恒流、浮充,三段式充电等多种充电方式,比较各种充电方式的优缺点及适用场合,确定蓄电池的最佳充电方案。
2.蓄电池充放电控制的软件仿真,实现蓄电池各种充电方式仿真;
利用matlab软件仿真平台,实现蓄电池恒压、恒流、浮充等充电方式的软件仿真,并分析充电过程中蓄电池电压、电流的变化趋势。
航空电气综合课程设计任务书
一、设计题目
蓄电池智能充放电控制器设计
二、题目简介
传统的蓄电池充电器结构简单,充电控制由模拟控制的方式实现,因而充电方法单一,无法根据蓄电池的荷电状态调整充电方法,而且也没有对蓄电池充电过程的监测和保护等功能,无法满足在无人监控场合的蓄电池充电。近年来,随着数字信号处理技术的日益完善,微控制器的性价比不断提高,蓄电池的充电控制也由模拟控制向数字化控制转变,数字控制的蓄电池充电系统可以实现各种复杂的充电控制方法,而且能够对蓄电池的充电过程进行监控和显示,提高了系统的灵活性,缩小了系统的体积,在更加高效充电的同时延长了蓄电池的使用寿命。基于此,本课题以在对蓄电池充放电控制策略充分研究的基础上,开发蓄电池智能充放电控制器。
完成最终的蓄电池充放电控制系统的软、硬件调试。
四、要求的设计(调查/论文)成果
1.编写详细的设计说明书
说明书中至少包含以下内容:
(1)、关于蓄电池充放电控制的文献综述;
(2)、蓄电池充放电控制的选型依据;
(3)、蓄电池充放电控制的硬件设计电路,附硬件设计电路图;
(4)、蓄电池充放电软件编程:包括如下程序模块:控制算法子程序,电压电流检测子程பைடு நூலகம்,显示子程序等;
2.分析题意,查阅参考文献,提出设计方案。(6天)
3.充放电软件仿真,硬件电路原理图制作,PCB板制作。(14天)
4.软件编程调试。(10天)
5.撰写结题报告。(3天)
5.答辩。(1天)
3.蓄电池充放电控制器硬件电路设计
确定蓄电池充放电控制器的硬件设计方案,设计蓄电池充放电主电路,电压电流检测电路,显示电路,完成蓄电池充放电控制器的硬件电路设计。
4.蓄电池充放电控制器的软件编程实现;
在设计的蓄电池充放电硬件电路基础上,开发蓄电池充放电控制软件,实现最终的蓄电池充放电控制。
5.蓄电池充放电控制器的系统调试;
(5)、蓄电池充放电电路的硬件调试.
(6)、参考文献
2.绘制本课题设计的硬件设计电路原理图,PCB图纸
3.硬件电路所需元器件列表
4.所需元器件采购及PCB板制作,完成电路板焊接
5.编程调试,完成充放电控制电路设计
五、进程安排
1.下达设计任务书,讲解设计要求、进度安排、指导时间、注意事项等,提供参考资料、课程设计指导书。(1天)