离子交换原理
化学反应中离子交换作用机理与影响因素

化学反应中离子交换作用机理与影响因素离子交换作用是指在化学反应中,反应物和生成物中的离子之间发生交换的过程。
离子交换作用机理和影响因素如下:1.离子交换机理:a.直接交换机理:反应物中的阳离子与生成物中的阴离子直接交换,形成新的化合物。
b.间接交换机理:反应物中的阳离子与生成物中的阴离子通过共用电子对进行交换。
2.影响因素:a.离子浓度:离子浓度越大,离子交换作用越容易发生。
b.离子价态:离子价态越高,离子交换作用越容易发生。
c.溶剂:极性溶剂有利于离子交换作用的进行。
d.温度:温度越高,离子交换作用越容易发生。
e.压力:压力对离子交换作用的影响较小。
f.反应时间:反应时间越长,离子交换作用越充分。
3.离子交换反应的类型:a.单离子交换反应:反应物和生成物中只有一个离子发生交换。
b.双离子交换反应:反应物和生成物中分别有两个离子发生交换。
c.多离子交换反应:反应物和生成物中存在多个离子交换。
4.离子交换反应的平衡:a.平衡常数:离子交换反应的平衡常数K表示反应物和生成物浓度比的稳定值。
b.平衡移动:改变反应条件(如温度、浓度等)会导致平衡位置的移动。
5.离子交换反应的应用:a.离子交换树脂:用于水处理、药物提纯等领域。
b.离子交换膜:用于电池、燃料电池等领域的电极材料。
c.离子交换纤维:用于纺织品、生物医学等领域。
6.离子交换反应的实例:a.酸碱中和反应:酸和碱反应生成水和盐的离子交换反应。
b.沉淀溶解反应:难溶物质溶解时,离子交换生成可溶物质。
c.氧化还原反应:氧化剂和还原剂之间的离子交换反应。
以上是关于化学反应中离子交换作用机理与影响因素的知识点介绍。
希望对您有所帮助。
习题及方法:1.习题:在某溶液中,Na+和Mg2+的浓度分别为0.1mol/L和0.2mol/L,若加入Ba2+离子,哪种离子更容易发生交换?解题思路:根据离子浓度和离子价态,分析哪种离子更容易发生交换。
答案:Mg2+更容易发生交换,因为Mg2+的离子价态高于Na+,且Mg2+的浓度较低。
离子交换工作原理

离子交换工作原理〃离子交换法〃制取纯水,在国内应用比较广泛。
其原理是:原水中的各种无机盐电离生成的阳(钙、镁、铜、钠等金属离子)、阴离子(碳酸根、硝酸根、硫酸根等非金属离子),经过阳、阴树脂层(离子交换柱内的交换离子剂)时,跟树脂上的氢离子和氢氧根离子发生置换反应,而被树脂吸附。
从树脂上置换下来的氢离子和氢氧根离子结合成了水分子(H20),从而取得去除水中无机盐类的效果,达到制取脱盐纯水的目的。
随着离子交换柱的运行,柱内树脂上可置换的氢离子和氢氧根离子变得越来越少,置换能力也就越来越弱。
当这种置换能力弱到一定程度时,我们就称树脂〃失效〃,此时树脂就需要再生。
再生就是让强酸(常用HC1溶液)、强碱(常用NaOH 溶液)电离生成的氢离子和氢氧根离子,在流过阳、阴树脂层时,把吸附在树脂上的无机盐离子置换下来,并随着酸液或碱液一起流出离子交换柱,这样就使得离子交换柱内的树脂恢复了原有的置换能力。
本除盐水制取也是通过离子交换处理的方法达到处理目的。
经预处理设备去除了大部分的有机物杂质、及大于5μm以上的颗粒等后,水进入阳、阴离交换器、混合离子交换器以去除水中的各种金属与非金属的阳、阴离子无机盐类后,即得合格纯水进入纯水箱,然后经纯水供水泵送至车间的生产用水点整个处理过程。
3、工艺特点:本水站是采用〃逆流再生固定床〃的生产制取工艺,它具有结构简单、易操作,对进水要求低,再生剂耗量少,出水水质稳定,系统安全,可靠运行稳定等特点。
4、离子交换剂:①阳离子交换器采用强酸性阳离子交换树脂001x7(732#,H+型);②阴离子交换器采用强酸性阴离子交换树脂201X7(717#QH-型15、再生剂:①阳离子交换器采用化学纯盐酸(HC1)浓度按大于31%;②阴离子交换器采用化学纯氢氧化钠(NaOH)浓度按大于32%β6.主要设备选择:A机械过滤器机械过滤器是较为实用处理效果好的预处理常用设备,内装英砂滤料。
主要去除水中机械杂质、有机物、悬浮物,从而使原水浊度降低到1~2度以下,达到保护后级水处理设备的进水要求。
离子交换原理

离子交换原理离子交换设备在水站里的种类有:阴床,阳床,混床等,.每种设备内的树脂种类也不同,故每种设备的工作原理也有区别。
离子交换的特点水处理系统引入离子交换设备的原因就在于离子交换树脂的优点表现在稳定性好,交换容量高,其最大的特点是失效后可以再生,使树脂能够较长时期的反复使用,利用效率高,成本低,出水水质好等方面。
离子交换的基本原理离子交换是一种特殊的固体吸附过程,它是由离子交换剂在电解质溶液中进行的。
一般的离子交换剂是一种不溶于水的固体颗粒状物质,既离子交换树脂.它能够从电解质溶液中吸取阳离子或阴离子,而把自身所含的另一种带相同电荷符号的离子等量的交换出来,并释放到溶液中去,这就是离子交换的基本原理。
离子交换树脂的交换过程:离子交换的过程与一般的扩散过程不同,这是因为离子交换剂在溶液中与溶液建立起离子交换平衡的过程需要的时间很长,只有少数的离子交换可以在瞬间完成,一般的交换都需要长时间的.这是因为离子交换不只是在离子交换剂的表面进行的,而且在整个离子交换树脂的内部进行,离子交换的过程可分为7个连续的步骤:①再生剂离子从溶液中扩散到离子交换树脂颗粒的表面,②再生剂离子透过离子交换树脂颗粒表面的边界膜,③再生剂离子在离子交换树脂颗粒的内部孔隙中扩散,并扩散到交换点,④离子交换反应进行,⑤交换后的离子在离子交换树脂颗粒的内部空隙中扩散,并扩散到离子交换树脂的表面,⑥交换后的离子透过离子交换树脂颗粒表面的边界膜,⑦向外扩散到溶液中去,完成整个离子交换的过程。
在这7个连续的步骤中,① ~ ③是再生剂的离子向离子交换树脂颗粒内部扩散的,⑤ ~ ⑦是再生剂再生后置换出来的离子交换树脂的离子,并且是等价的离子,离子的运动方向相反;①和⑦是离子在溶液中扩散,②和⑥是离子透过交换树脂的边界膜扩散,③和⑤是离子在交换树脂的内部扩散,那么离子交换过程的快慢就决定离子扩散的速度。
F、离子交换树脂的再生方法:脂尽可能的恢复或接近原来树脂的工作状态。
离子交换反应的原理

离子交换反应的原理
离子交换反应是一种重要的化学反应,它是指在水溶液中,离子交换树脂与水溶液中的离子发生反应,使得水溶液中的离子被树脂吸附,而树脂上的离子则被释放到水溶液中。
这种反应的原理是基于离子的电荷性质和树脂的吸附性质。
离子是带电的粒子,它们可以是正离子或负离子。
在水溶液中,离子会与水分子形成水合物,这些水合物会影响离子的活性和溶解度。
离子交换树脂是一种高分子化合物,它具有一定的吸附性质,可以吸附水溶液中的离子。
离子交换树脂的吸附性质是基于树脂上的功能基团与离子之间的相互作用。
离子交换反应的原理是基于离子的电荷性质和树脂的吸附性质。
当离子交换树脂与水溶液中的离子接触时,它们会发生相互作用。
如果树脂上的功能基团与水溶液中的离子之间的相互作用比水合物与离子之间的相互作用更强,那么离子就会被树脂吸附。
反之,如果水合物与离子之间的相互作用更强,那么离子就不会被树脂吸附。
离子交换反应的原理可以应用于许多领域,例如水处理、药物制剂、食品加工等。
在水处理中,离子交换树脂可以用于去除水中的硬度离子、重金属离子、放射性核素等。
在药物制剂中,离子交换树脂可以用于纯化药物、去除杂质等。
在食品加工中,离子交换树脂可以用于去除水中的钠离子、调节食品的味道等。
离子交换反应的原理是基于离子的电荷性质和树脂的吸附性质。
离子交换反应可以应用于许多领域,具有广泛的应用前景。
离子交换法的原理

离子交换法的原理离子交换法是一种常用的分离和纯化离子的方法,其原理是利用离子交换树脂对溶液中的离子进行交换,从而实现离子的分离和纯化。
离子交换树脂是一种具有固定正或负电荷的高分子化合物,通过与溶液中的离子发生化学反应,使得原来在树脂上的离子被替换成溶液中的其他离子,从而实现离子的分离和纯化。
离子交换法的原理可以简单地理解为树脂上的固定离子与溶液中的离子进行交换。
当溶液中的离子与树脂上的离子之间的亲和力更强时,就会发生离子交换。
在这个过程中,树脂上的离子会被溶液中的离子替换下来,从而实现了离子的分离和纯化。
离子交换法的应用非常广泛,常见的应用包括水处理、生物制药、食品加工等领域。
在水处理中,离子交换法可以用来去除水中的硬度离子,降低水的硬度,提高水的质量。
在生物制药中,离子交换法可以用来纯化蛋白质、去除杂质离子,提高药物的纯度。
在食品加工中,离子交换法可以用来去除食品中的杂质离子,提高食品的质量。
离子交换法的原理虽然简单,但是在实际应用中需要根据不同的离子和树脂的性质进行选择和设计。
树脂的选择需要考虑树脂的交换容量、选择性、稳定性等因素,以及溶液中离子的浓度、种类等因素。
同时,离子交换法的操作条件也需要进行优化,包括溶液的pH值、温度、流速等因素。
总之,离子交换法作为一种常用的离子分离和纯化方法,其原理是利用离子交换树脂对溶液中的离子进行交换,从而实现离子的分离和纯化。
在实际应用中,需要根据不同的离子和树脂的性质进行选择和设计,并优化操作条件,以实现最佳的分离和纯化效果。
离子交换法在水处理、生物制药、食品加工等领域有着重要的应用,对提高产品质量、保障人类健康具有重要意义。
离子交换法的工作原理

离子交换法的工作原理离子交换法(Ion Exchange)是一种分离技术,它能够通过将溶液中一些离子与固体材料上的同种离子交换,在溶液中提取出需要的离子,可用于水处理、糖化、化学分析等领域。
离子交换法工作原理是基于固体材料与溶液中的离子进行反应,形成交换反应。
通俗地讲,达到与溶液相平衡时,溶液中的某种离子会与固体材料上的相同能量等离子体发生吸附,而背景中的其他部分则不会。
这里的固体材料常常称为“树脂”。
离子交换树脂是一种能在水中交换离子的多孔材料。
它是由无定型聚合物材料(如聚氯乙烯、聚丙烯、聚酰胺、聚乙烯醇等)制成的,通过化学反应,上面带有功能基团,可选择性地吸附溶液中的离子。
这些树脂通过浸渍物料(如二羧甘氨、氨基甲酸氢盐、十六烷基三甲基溴化铵等)而产生特定酸度,这可以帮助它们特异性地吸收溶液中想要选择的离子。
离子交换树脂的选择因物质而异,可为阳离子或阴离子。
阳离子交换树脂上有功能基团,如磺酸树脂和卤素树脂等,一般用于吸附正电荷离子,如钠、钾、钙等。
阴离子交换树脂具有硫酸树脂、氢氧化物树脂等功能基团,可选择性地吸附阴离子,如氯离子、硝酸根等。
引入离子交换树脂的离子交换器又被称为离子交换柱。
离子交换柱是离子交换过程所需的装置,是等流法的重要组成部分,以及提高交换效率的主要设备之一。
当溶液通过离子交换柱时,离子交换树脂吸附某些离子,并将它们替换成环境中的其他离子,如水分子和氢氧化物离子。
在交换过程中,离子吸附的排斥掉的原离子被水洗去,并进一步淋洗并去除残留于树脂上的离子,以保持交换柱的活性。
在离子交换之前,树脂必须经过一系列的准备工作。
首先,树脂必须经过一个预处理过程,以提高其化学性质,增加它对特异离子的吸附能力。
此外,树脂还必须进行浸泡水或某种溶液,以使其达到最佳的吸附状态。
这种吸附液通常被称为反应剂。
随着反应剂被吸附和替换,离子吸附柱最终会到达饱和点,这意味着它不能再吸附更多的离子。
虽然离子交换法在处理水和其他化工过程中有许多应用,但它仅能有效地处理溶液中有限的种类的离子。
离子交换原理

离子交换原理离子交换是一种重要的化学过程,广泛应用于水处理、环境保护、化学分离、药物制造等领域。
本文将介绍离子交换的原理、应用以及相关技术。
离子交换是一种离子间相互转移的过程,通过固定相中的离子与溶液中的离子进行交换,在溶液中产生多种离子形态的分离和转移。
这一过程基于离子的电荷性质,涉及到离子的吸附、解吸和交换平衡。
离子交换的原理可以通过固定相与溶液中的离子之间发生相互作用来解释。
固体材料通常具有离子交换功能的特殊结构,如具有阴阳离子交换基团的树脂。
当溶液中的离子接触到固体材料表面时,离子交换基团可以与溶液中的离子发生反应,使溶液中的离子被固体材料吸附,并释放出与之反应的离子到溶液中。
离子交换的过程受到多种因素的影响,如离子交换材料的性质、溶液中的离子浓度、PH值、温度等。
这些因素的变化会影响离子交换平衡的位置和速率。
离子交换平衡一般分为吸附平衡和解附平衡两个过程,吸附平衡是指离子被吸附到固体材料上的过程,而解附平衡是指离子从固体材料解离到溶液中的过程。
离子交换在水处理中有广泛的应用,尤其是对水中的离子污染物进行去除。
水中的离子污染物包括镁、钙、铁、锌、铜、铝等金属离子,以及硝酸盐、磷酸盐等溶解性无机离子。
通过选择合适的离子交换材料,可以实现对特定离子的选择性吸附和去除。
离子交换在饮用水净化、工业废水处理、海水淡化等方面都起到了重要作用。
此外,离子交换也被广泛应用于化学分离和纯化过程中。
许多化学反应和制造过程需要纯净的溶液或溶剂,离子交换可以通过去除溶液中的杂质离子,实现对目标物质的分离和提纯。
例如,在制药工业中,离子交换被用于从混合物中分离和纯化生物分子、药物和降解产物。
此外,离子交换还可以用于催化剂的制备、电化学能量转换、离子选择性传感器等方面。
离子交换技术的发展为众多领域提供了重要的技术支持,对改善环境、提高生产效率、促进科学研究等方面具有重要意义。
总之,离子交换作为一种重要的化学过程,通过固定相中的离子与溶液中的离子进行交换,实现了离子的分离、纯化和转移。
离子交换法的原理

离子交换法的原理离子交换法是一种常用的分离和净化离子物质的方法,它的原理是利用固体离子交换树脂与溶液中的离子发生置换反应,从而实现对离子的选择性吸附和分离。
这种方法在化工、环保、生物制药等领域有着广泛的应用。
离子交换树脂是离子交换法的核心材料,它通常是一种聚合物材料,具有大量的功能基团,如阴离子交换树脂上的-SO3H基团、阳离子交换树脂上的-NH2基团等。
这些功能基团能够与溶液中的离子发生化学反应,实现离子的吸附和交换。
离子交换法的原理可以简单地描述为,当溶液中的离子与固体离子交换树脂表面的功能基团发生作用时,原来吸附在树脂上的离子被溶液中的离子所替代,从而实现了离子的交换。
这种离子交换过程是可逆的,当树脂上的功能基团全部被溶液中的离子所替代时,离子交换树脂就失去了吸附能力,需要进行再生或者更换。
离子交换法的原理可以根据不同的离子种类和溶液的性质进行调控和优化。
在实际应用中,可以通过控制溶液的pH值、离子浓度、温度等条件来实现对特定离子的选择性吸附和分离。
此外,还可以通过改变离子交换树脂的功能基团种类和密度,来实现对不同离子的选择性吸附和分离。
离子交换法的原理简单清晰,操作方便灵活,可以实现对多种离子的选择性吸附和分离,因此在水处理、化工生产、生物制药等领域有着广泛的应用前景。
同时,随着离子交换树脂材料的不断改进和完善,离子交换法在实际应用中的效率和效果也在不断提升,为解决离子物质分离和净化问题提供了一种有效的技术手段。
总之,离子交换法作为一种重要的分离和净化技术,其原理简单清晰,操作方便灵活,具有广泛的应用前景。
随着离子交换树脂材料和技术的不断改进,离子交换法在化工、环保、生物制药等领域的应用将会更加广泛,为相关领域的发展和进步提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容量,但实际上再生剂用量比理论值大得多。
实验证明,再生剂用量越多,再生效率越高。但当再生剂用量增 加到一定值后,再生效率随再生剂用量增长不大。因此再生剂用 量过高既不经济也无必要。图8-4为用2%NaOH对交换了Cr6+的 强碱性树脂的再生情况。
式中:f 为活度系数。
三、离子交换选择性
fRB[R Bb ]a f A[ Aa ]b fRa[R Aa ]b fB[Bb ]a
K/
设:fR-B/fR-A=C; f A/fB=1
选择性平系衡数吸着K/率/C=K
[R Bb ]a
[Bb ]a
[R Aa ]b K [Aa ]b
[R Bb ]a
四、特点 1 去除率高,净化效果好; 2 可做到污染物的回收利用; 3 对废水的预处理要求较高; 4 树脂再生液需要进一步处置。
第一节 离子交换树脂及其性能
一、离子交换树脂
固体球形颗粒,多孔网状 结构;不溶于水;具有离子交换 特性的有机高分子聚电解质。
(一) 组成
离子交 换树脂
母体(骨架) 活性基团
离子交 换树脂
凝胶型 孔隙小、少,溶胀度较大,水溶胀后呈凝胶状。 大孔型 孔大,溶胀度小,交换速度高,抗污染能力强。
等孔型 孔大、均匀,抗有机污染能力强。
离子交换树脂的命名
表 分类代号
代号 功能基
0
1
2
强酸性 弱酸性 强碱性
3 弱碱性
4 螯合性
5 两性
6 氧化还原
表 骨架代号
代号
0
1
2
3
4
5
6
✓ 弱碱性阴离子交换树脂OH- ﹥ SO42- ﹥ NO3- ﹥ Cl- ﹥ HCO3﹥ HSiO3-
三、树脂的选择
根据处理对象选择对应类型的树脂。
注意离子在水中的存在状态,如Cr6+ 在废水中的 存在形式为 CrO42- 或 Cr2O72-。
第二节 离子交换原理
一、离子交换反应
⇌ b(R—A)a++aBb+
形状:透明或半透明的球状珠体。 颜色:白、浅黄、赤褐色。
(二) 含水率
树脂孔隙内所含的水分,一般在40%~69%。 与树脂的胶联度有关,交联度低,空隙率高, 含水率高。
(三) 密度 干真密度:干燥状态下,树脂材料本身具有的密度。 湿真密度:在水中充分溶胀后湿树脂本身的密度。 表观密度:树脂在水中充分溶胀后的堆积密度(视密 度) 。 单位均为mg/L.
1 在常温、稀溶液中
▪ 离子价数越高,与固定离子的静电引力越大,越优先交换。
Cr3+>Ca2+>Na+
PO43+>SO42->Cl-
▪ 同价离子原子序数越大,与固定离子的静电引力越大;稀
土元素相反。
2 在高浓度的溶液中
由于离子的水化作用不充分,水合离子的半径接近离子半 径,原子序数越大,离子半径增大,离子表面电荷密度相对 减小,与固定离子的静电引力越小。
❖ 选用(交换容量、原水水质、出水水质、水处理设 备的类型)
❖ 保管(新:保持树脂的水分、防止树脂受冻或受热 、防止树脂劣化;旧:树脂转型、湿法存放、防止 霉变)
❖ 新树脂投运前的预处理(阴阳树脂不同) ❖ 树脂的装填 ❖ 离子交换树脂的鉴别(阴阳、酸碱性强弱)
离子交换树脂的选择、保存、使用和鉴别
树脂颗粒的大小
树脂颗粒小,比表面积增加,利于液膜扩散。
2 树脂颗粒内扩散
离子电荷
离子电荷越大,扩散系数越小,不利于液膜扩散。
树脂交联度
交联度越低,树脂网孔越大,有利于离子的内扩散。
离子的水化度
离子水化程度大,水合离子半径越大,不利于离子 的内扩散。
水溶液的温度
提高水温同时加快液膜扩散和颗粒内扩散
第三节 离子交换树脂的使用
法
第五节 离子交换工艺过程
❖ 离子交换系统及应用 ❖ 离子交换过程
1. 固定床离子交换器间歇工作过程 2. 连续式离子交换器工作工程
❖ 离子交换系统及应用
在实际应用当中需根据原水水质、出水要求、生产能力等来确定
合适的离子交换工艺。
1. 在水的软化主要使用
Hale Waihona Puke Na+离子交换软化法 H+离子交换软化法
H-Na串联及并联
2. 再生 通过树脂再生,一方面可恢复树胎的交换能力,另一方面可回收有用物质 。固定床再生操作包括反洗,再生和正洗三个过程。有时再生后还需要对 树脂作转型处理。影响再生效果和处理费用的因素如下: 1) 再生剂种类
强酸性阳树脂用HCl或H2SO4等强酸及NaCl、Na2SO4再生; 弱酸性阳树脂用HCl、H2SO4再生; 强碱性阴树脂用NaOH等强碱及NaCl再生, 弱碱性阴树脂用NaOH,Na2CO3、NaHCO3等再生。 2) 再生剂用量
(四) 交联度
交联度为树脂合成时交联剂的用量,一般为7%~10%。 交联度越高,孔隙度越低,密度越大,对半径较大的 离子和水合离子扩散速度越低,交换量越小。 在水中浸泡,形变小,较稳定。
(五) 溶胀性
吸水后体积增大的现象。溶胀程度用溶胀率表示:
溶胀率
V后 V前 V前
100%
溶胀的原因
水扩散到树脂交联网孔发生溶胀; 活性基团离解形成水合离子。 影响因素 树脂交联度:交联度越大,溶胀率越低。 活性基团:离解程度越大,溶胀率越大; 可交换离子:水合半径越大,溶胀率越高。
a(R—B)b++bAa+
特点:
▪ 符合质量作用定律;
▪ 等当量进行的同性离子的互换反应;
▪ 具有饱和性;
▪ 树脂母体和固定离子不发生变化。
二、离子交换平衡
⇌ b(R—A)a++aBb+ a(R—B)b++bAa+
有:
(R Bb )a ( Aa )b (R Aa )b (Bb )a
K/
fRB[R Bb ]a f A[ Aa ]b K / fRa[R Aa ]b fB[Bb ]a
不变色
加1N NaOH15mL摇1min,水洗 ,加酚酞,水洗
红色
不变色
强酸性阳树脂 弱酸性阳树脂 强碱性阴树脂 弱碱性阴树脂
第四节 离子交换树脂的变质、污染与复苏
❖ 变质
✓ 阳离子交换树脂的氧化 ✓ 强碱性阴树脂的降解
❖ 污染与复苏(铁、铝、钙、硅、油、有机物) 现象、原因、鉴别方法、树脂的复苏、防止污染的方
示法)可发生交换的活性基团数量。 容量表示法 EV :mmol/ml、mol/l。 重量表示法 EW :mmol/g、mol/kg。 EV = EW ×[湿比重×(1-含水率)] 全交换容量: 单位体积或重量树脂中含可交换基团的总数。 工作交换容量: 在动态工作条件下,当出水水质达到交换终点时,树脂层 达到的平均交换容量。
固定离子 可交换离子
苯乙烯(单体) +
二乙烯苯(交联剂)
共聚
母体
功 能 H2SO4 基 反 应
R —SO3 H
母体 固定离子 可交换离子
(二) 树脂分类 按选择性
离子交 换树脂
阳离子交换树脂 阴离子交换树脂
按结构
强酸性阳离子交换树脂 R—SO3H 弱酸性阳离子交换树脂 R—COOH 强碱性阴离子交换树脂 R NOH 弱碱性阴离子交换树脂 R—NH3OH
树脂的再生
再生液与水流方向相同 1.顺流再生 特点:⑴ 上部再生程度高,下部差,越是下部越差
⑵ 再生剂耗量大,2~3倍理论值时,效果仍不理想 ⑶ 出水剩余硬度高 ⑷ 交换器失效早,降低工作效率,工作交换容量降低 ⑸ 适合于硬度较低的场合
2.逆流再生 特点:⑴ 再生效果好,耗量可降低20%以上
2. 在除盐中
一级复床除盐系统 多极复床除盐系统
混合床除盐系统 3. 在处理工业废水中
多级阴阳离子交换系统
碱度是指水中吸收质子的能力,水中 碱度的形成主要是由于重碳酸盐、碳 酸盐及氢氧化物的存在,硼酸盐、磷 酸盐和硅酸盐也会产生一些碱度。此 外还有有机碱等。
❖ 离子交换过程
❖ 固定床离子交换器间歇工作过程
3 树脂的结构和性质
▪ 树脂的交联度:交联度越高,选择性增加 ▪ 强酸(碱)、弱酸碱树脂的交换
4 溶液的温度和pH
▪ 温度升高,K值增大,离子和固定基团交换势增大。 ▪ pH值: 影响某些离子的存在状态,
Cr2O72-+OH-=2CrO42-+H+
影响弱酸、碱树脂固定基团的电离。
四、离子交换速度
(一) 交换过程
外 扩 散 薄膜扩散 内 扩 散
B
(1)
(2)
(3)
B
(4) (A) (5)
(6)
A
树脂颗粒 水膜
(二) 影响交换速度的因素
1 液膜扩散 离子浓度
溶液离子浓度低,树脂交换容量大时,液膜扩散受阻。 溶液离子浓度过高,树脂易发生收缩现象,内扩散受阻。
水流速度
水流速度增加,水膜变薄,液膜扩散加快。
骨架类型 苯乙烯系 丙烯酸系 酚醛系 环氧系 乙烯吡啶系 脲醛系 氯乙烯系
例如:001×7——(凝胶型)苯乙烯系强酸阳离子交换树脂,交联度为7 。 110×4——(凝胶型)丙烯酸系弱酸性阳离子交换树脂,交联度为4。 D201——大孔型苯乙稀系强碱性阴离子交换树脂。
二、树脂的性能
物理性能
(一) 外观
3.2 离 子 交 换 Company
LOGO
Ion Exchange
概述
一、离子交换法
离子交换剂上的离子和水中的离子进行交换的一 种特殊吸附现象。
与其它吸附过程相比: 主要吸附水中离子态物质; 交换剂上的离子和水中离子进行“等当量”的交 换。