2004年考研数学(一)试题及答案解析
2004考研数一真题及答案解析

令 Y
1 n
n i 1
Xi
,
则
(A)
Cov(
X1,
Y
)
2 n
(B) Cov( X1,Y ) 2
(C)
D( X 1
Y)
n
n
2
2
(D)
D( X 1
Y)
n 1 n
2
三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算
步骤)
(15)(本题满分 12 分)
设
e
a
b
e2
,证明
(2)已知 f (e x ) xex ,且 f(1)=0, 则 f(x)= 1 (ln x)2 . 2
【分析】 先求出 f (x) 的表达式,再积分即可。
【详解】 令 e x t ,则 x ln t ,于是有
f (t) ln t , 即 f (x) ln x .
t
x
积分得 f (x) ln xdx 1 (ln x)2 C . 利用初始条件 f(1)=0, 得 C=0,故所求函数为 f(x)= 1 (ln x)2 .
【详解】
x2
lim x0
lim x0
tan tdt
0
x cos t 2dt
lim
x0
tan x 2x cos x 2
0 ,可排除(C),(D)选项,
0
又
lim lim
x0
x0
x sin t 3dt
0 x2
tan tdt
lim
x0
3
sin x 2
1
2x
2x tan x
0
= 1 lim 4 x0
0 0 1
2004年考研数一真题及解析

2004年考研数学试题答案与解析(数学一)、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=l nx 上与直线x ・y=1垂直的切线方程为 y=x_1.【分析】 本题为基础题型,相当于已知切线的斜率为 1,由曲线y=lnx 的导数为1可确定切点的坐标.1【详解】由/-(ln x)1,得x=i,可见切点为(1,0),于是所求的切线方程为xy - 0 =1 (x -1),即 y = x -1.11,得x 0 =1,由此可知所求切线方程为 X 。
本题比较简单,类似例题在一般教科书上均可找到 .1(2)已知 f (e x )二 xe 」,且 f(1)=0,则 f(x)=(ln x)22【分析】先求出f (X )的表达式,再积分即可. 【详解】令e -1,则x - I nt ,于是有IntInxf (t),即f (x).tx积分得上 / 、 」n x , 1 “ 、2 丄f (x) dx (I nx) C .利用初始条件f(1)=0,得c=0,故所求函数x 21 2 为 f(x) = (In x). 2【评注】 本题属基础题型,已知导函数求原函数一般用不定积分(3)设L 为正向圆周x y =2在第一象限中的部分, 则曲线积分L xd^2ydx 的3值为一二.2【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分2 2【详解】 正向圆周x y = 2在第一象限中的部分,可表示为【评注】本题也可先设切点为(x 0, ln x 0),曲线y=l nx 过此切点的导数为y -0 =1 (x-1),即 y = x -1.x = ^2 cos 日, y = P2 sin B ,二二 刁 2sin 2 rd :-—』02【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加 的线段上用参数法化为定积分计算即可.(4)欧拉方程x 2写・4x 也・2y=0(x .0)的通解为y 丄弋.dxdxx x欧拉方程的求解有固定方法,作变量代换 x = e '化为常系数线性齐次微分方程即可.代入原方程,整理得010,矩阵B 满足ABA^2BA^ E ,其中A *为A 的伴随矩1xdy2ydx cos 一 2cos 2、2si n $2s i n]d【分析】 【详解】令…t ,则齐乌史edx_t 鱼]dy dt x dtd 2y dx 221 dy 1 d y dt x2 dt x dt 2 1 r d 2y dy dx~2 [ 2 x dtdt ], d 2 y dt 2證"0, 解此方程,得通解为y = c 1e _L c 2e^2t【评注】 本题属基础题型,也可直接套用公式,二e ',则欧拉方程可化为ax 2啤dxbx 慕 cy = f(x),dt 2dt_2(5)设矩阵A = 1】01阵,E 是单位矩阵,则 B = 1.9【分析】 可先用公式 A *A = |AE 进行化简 【详解】 已知等式两边同时右乘 A ,得ABA *A =2BA *A A , 而 A = 3,于是有3AB =6B A ,即(3A —6E )B =A ,再两边取行列式,有3A-6E[B| = A = 3,1而3A —6E|=27,故所求行列式为 B=~. 9【评注】先化简再计算是此类问题求解的特点, 而题设含有伴随矩阵 A *,一般均应先利用公式A A = AA = A E 进行化简.(6)设随机变量X 服从参数为入的指数分布,则P{x >J DX}=-.e【分析】 已知连续型随机变量 x 的分布,求其满足一定条件的概率,转化为定积分计 算即可.1【详解】 由题设,知DX . 2,于是扎P{X . DX} =P{X -} =「'e^dx去推算.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内)IX2门X 2厂备"X3(7)把 X T 0 时的无穷小量 口 = cost dt, 0 = [ tanw'tdt, 丫 = ( sin t dt ,使 排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) :, .(B): , /■ .(C) ■/, . (D), /■.【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再1【分析】先两两进行比较,再排出次序即可【分析】 函数f(x)只在一点的导数大于零, 一般不能推导出单调性, 因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可【详解】 由导数的定义,知f(x)-f(O)门 f (o )Pm,f (X )- f (0)即当 x (-、,0)时,f(x)<f(0);而当 x (0,、)时,有 f(x)>f(0).故应选(C).【评注】题设函数一点可导,一般均应联想到用导数的定义进行讨论CO(9)设v a n 为正项级数,下列结论中正确的是n =1【详解】x 2 —tan tdt lim — = lim 0T%T\0C0St 「dt t arx 2x x 2... Pm 「2cox=0,可排除(C),(D)选项,32Sinx 2 「lim xx 2xta nxtan Vtdt 1 x -=—lim ==::,可见 是比:低阶的无穷小量,故应选 (B). 4x 刃 x 21 limlim x _0 ■ ]x _0■- x 30 sint dt12一x 【评注】 本题是无穷小量的比较问题,也可先将 :-,'-,分别与x n 进行比较,再确定相互的高低次序(8)设函数f(x)连续,且f (0) • 0,则存在:.■ 0,使得(A) f(x)在(0,.)内单调增加.(B) f (x)在(-「0)内单调减少•(C) 对任意的 x (0,、)有 f(x)>f(0).(D) 对任 意的 X := ( -、,0)有 f(x)>f(0).根据保号性,知存在0,当 x • (-、;,0) (0, 时,有于是,F (t)二 f (t)(t -1),从而有 F (2H f (2),故应选(B).若lim na n =0,则级数a .收敛. n & :1,则级数J a n 收敛,但limn 2a .n* n n=【评注】 本题也可用比较判别法的极限形式,alim na n = lim 丄「「0,而级数' 上发散,因此级数’二a n 也发散,故应选(B). n 厂 n : 1t t(10)设f(x)为连续函数,F(t)二dy f(x)dx ,则F (2)等于(A) 2f(2). (B) f(2). (C) -(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求F (2)即可.关键是求导前应先交换积分次序,使得被 积函数中不含有变量t.【详解】 交换积分次序,得t tt xtF(t) = [dyj y f (x)dx = [[ J f (x)dy]dx =」f (x)(x-1)dx(A) (B ) 若存在非零常数 ■,使得lim na n = ■,则级数a n n _jpc发散.(C)若级数v a n 收敛,则limn 2a n =0.n —^c(D)若级数v a n 发散,则存在非零常数,,使得lim na nn —jpc【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到 正确选项.【详解】 取a n,贝U lim na n =0,但nlnnn->::n =1发散,排除(A), (D);nA n ln n又取a n,排除(C),故应选(B).:=1 n =1【评注】在应用变限的积分对变量x求导时,应注意被积函数中不能含有变量X:b(x)[a(x)f(t)dt]=f[b(x)]b(x) — f[a(x)]a(x)否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x换到积分号外或积分线上•(11)设A是3阶方阵,将A的第1列与第2列交换得B再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为(A)0 1 0(B) 1 0 1 . (C)〕°°1一0 1 1(D) 1 0 0【°0 1一【分析】本题考查初等矩阵的的概念与性质,对A作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q即为此两个初等矩阵的乘积•【详解】由题设,有1 0 0B 0 1 1 =C,〕0 0 1一于是, 0 0 0 1 11 1 =A 1 0 0 =C.0 0 1 一可见,应选(D).【评注】涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系(12)设A,B为满足AB=O的任意两个非零矩阵,则必有(A) A的列向量组线性相关(B) A的列向量组线性相关(C) A的行向量组线性相关(D) A的行向量组线性相关B的行向量组线性相关B的列向量组线性相关B的行向量组线性相关B的列向量组线性相关【分析】A,B的行列向量组是否线性相关,可从A,B是否行(或列)满秩或Ax=0 ( Bx=0)是否有非零解进行分析讨论•【详解1】设A为m n矩阵,B为n s矩阵,则由AB=O知,r(A) r(B) < n .又A,B为非零矩阵,必有r(A)>0,r(B)>0.可见r(A)<n, r(B)<n,即A的列向量组线性相关,B的行向量组线性相关,故应选 (A).【详解2】由AB=O 知,B 的每一列均为 Ax=0的解,而B 为非零矩阵,即 Ax=0存在非 零解,可见A 的列向量组线性相关.同理,由AB=O 知,B T A T =0,于是有B T 的列向量组,从而B 的行向量组线性相关, 故应选(A).【评注】AB=0是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=0二 r( A) r(B) :: n ; 2)AB=0= B 的每列均为 Ax=0的解.(13)设随机变量 X 服从正态分布N(0,1),对给定的:•(0 :::「:: 1),数u-.满足P{X A U 』,若 P{ X| £ X} ,则 x 等于(A) U. .(B) U .. .(C) Uy .(D) Uj :. .[ C ]22 2【分析】此类问题的求解,可通过U-.的定义进行分析,也可通过画出草图,直观地得 到结论. 【详解】 由标准正态分布概率密度函数的对称性知,P{X-U 一.} = ,于是1 —a =1—P{X <x} =P{X Ax} =P{X Zx} +P{X 兰―x} =2P{X 王 x}1 -a即有 P{X _x},可见根据定义有 x 二5_一,故应选(C).2—22【评注】本题U :.相当于分位数,(14)设随机变量X「X2,…,X n( n・1)独立同分布,且其方差为二0.令【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:CovX’X j ) =0,i =2,3, n.JCov(X i ,X i )丄、Cov(X i ,X i ) n1 1 _2 =DX 1 .nn【评注】 本题(C),(D)两个选项的方差也可直接计算得到:如n-2n 2 n-2 2= 2n n(15) (本题满分12分)设 e :: a :: b :: e 2,证明 In 2 b — In 2 a £ (b — a).e【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用 单调性证明.【证法1】 对函数ln 2x 在[a,b ]上应用拉格朗日中值定理,得设e 晋,则〈)二耳,当t>e 时,:(t) ::0,所以:(t)单调减少,从而•「(e 2),即(A) Cov(X 1,Y)=—n2(B) Cov(X 「Y)-. (C) D(X i Y) j.n(D) D(X 「Y)二卫1二2.n【详解】Cov(X i ,Y) =Cov(X i 」' X i )n yD(X i1 --X n )2(1 n)n -1D(X 1 —Y)二 D(n 1X 1 -丄 X 2 - n nAn)n (n -1)2「22n-1——<T2n2 2ln b Tn a =2ln::b.故 In 2 b 一 In 2 a g (b 一 a). e 【证法2】设「(x) =1 n 2x-耸x ,则e(x)二 2所以当x>e 时,「(x) ::: 0,故:(x)单调减少,从而当e ::: x ::: e 2时,2 4 4(x) .「(e 2—-飞=0,e e2即当e ::: x ::: e 时,(x)单调增加.因此当 e ■■■■. x ::: e 2时,「(b):(a),2424 即 In b ^b In a 2 a ,ee4故 In b - In a 2 (b - a).e【评注】本题也可设辅助函数为(x) = In 2x-ln 2 a - 4(x -a),e ::: a :::x ::: e 2或e(x) = In 2 b 「In 2 x - $ (b 「x),e ::: x : b e 2,再用单调性进行证明即可.e(16) (本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞, 以增大阻力,使飞机迅速减速并停下现有一质量为9000kg 的飞机,着陆时的水平速度为 700km/h.经测试,减速伞打开后, 飞机所受的总阻力与飞机的速度成正比(比例系数为 k =6.0 106).问从着陆点算起,飞 机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度 v 0 =700km/h .从飞 机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得InIn e 2e 2(x)二 2In x xdv m — dt=-kv .dv dv dx dv又v -dt dx dt dx由以上两式得dx dv , k积分得x(t)v C.由于v(0) = v 0, x(0) = 0 ,故得C v 0,从而k kx(t)「m(…t)).k+ —九=0,解之得人=0,几2 m,当v ⑴>0时,心kmv °9000 700 6.0 106=1.05(km).所以,飞机滑行的最长距离为1.05km.【详解2】 根据牛顿第二定律,得 dvm 一 dt所以dv kdt.v m两端积分得通解v = Ce,代入初始条件J%解得—k故 v(t)二 v °e m . 飞机滑行的最长距离为X = 0 v(t)dtmv ° 咼 mv 0=1.05( km).kk dxt=v 0e m,知 x(t)t 0v 0ektmdtkkv£(e^t -1),故最长距离为当t >时,x(t) > 也m=1.05(km).【详解3】 根据牛顿第二定律,得d 2x m —2" dt-k dx dtd 2x dt 2K^=0,dt其特征方程为_k t故 ^C 1 C 2e m当 t —• :* 时,x(t) —; m ^ = 1.05(km).k所以,飞机滑行的最长距离为 1.05km.【评注】 本题求飞机滑行的最长距离,可理解为 t —• -■或v(t) > 0的极限值,这种条件应引起注意.(17) (本题满分12分) 计算曲面积分332I 二 2x dydz 2y dzdx 3(z -1)dxdy,Z其中v 是曲面z =1 -x 2 -y 2(z _0)的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加 的曲面上应用直接投影法求解即可.2 2【详解】 取' 1为xoy 平面上被圆x y =1所围部分的下侧,记 门为由7与7 1围 成的空间闭区域,贝UI 二 2x 3dydz 2y 3dzdx 3(z 2 -1)dxdy- 2x 3dydz 2y 3dzdx 3(z 2 -1)dxdy.由高斯公式知3 3 2 2 22x dy dz2y dzdx3(z -1)dxdy 6(x y z)d x d y d z'八 1-J22 二1 1 -4 2=6 .0 d o dr p (z r )rdz11=12二.°[?r(1 -r 2)2r 3(1 -r 2)]dr =2;而 112x 3dydz 2y 3dzdx 3(z 2 -1)dxdy - -- 3dxdy 二 3二,、1x 2 y 2-i1故 I 二 2恵一3二一-二.得 C 1-C2kx(t)=由x mv o t 厂Vo,曰疋【评注】本题选择时应注意其侧与围成封闭曲面后同为外侧(或内侧),再就是在' 1上直接投影积分时,应注意符号Ci取下侧,与z轴正向相反,所以取负号).(18)(本题满分11分)设有方程x n• nx 一1 = 0,其中n为正整数.证明此方程存在惟一正实根x n,并证明当〉1时,级数V x]收敛•n 4【分析】利用介值定理证明存在性,利用单调性证明惟一性•而正项级数的敛散性可用比较法判定•【证】记f n(x)二x n• nx-1.由f n(0) =-1 :::0 , f n(1)= n ・0,及连续函数的介值定理知,方程x n nx-1 =0存在正实数根x n• (0,1).当x>0时,f n(x)二nx nJ1• n .0 ,可见f n(x)在[0,=)上单调增加,故方程x n 5X -1 =0存在惟一正实数根x n•由x n• nx -1 = 0与X n 0 知1 _ x n 1 . 1 -0 ■ x n二—-:::一,故当〉-1 时,0 :::x n < (一):n n noO 1 co而正项级数7 —收敛,所以当:1时,级数7 X;收敛•n 二n n T【评注】本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证(佃)(本题满分12分)设z=z(x,y)是由x2 -6xy • 10y2 -2yz-z2 T8 =0 确定的函数,求z= z(x, y)的极值点和极值.【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】因为x2 -6xy T0y2-2yz-z2 T8 = 0,所以cz cz2x-6y-2y 2z 0,■x :Xcz cz-6x 20y-2z-2y 2z 0.cy cy令;:x得*类似地,z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意 x,y,z 满足原方程.(20)(本题满分9分):z c 0x 「3y 二 0, 3x 10y - z = 0,x=3y,z = y.将上式代入 x 2「6xy 10y 2「2yz 「z 218=0,可得由于=3,x = -9,y ~ -3 z = -3.2-2yj:x-2-2z 5=02 x一6一2—二exz— -2z ;:xxydz20 -::z:y-2c z-2y 2 ■y ;z 2() ■y;:2z-2z —2 = 0,;:2z所以 A =2.x故 AC -B 2(9,3,3);:2z(9,3,3)从而点 丄,C 仝y 2(9,3,3)(9,3)是z(x,y)的极小值点, 极小值为z(9,3)=3.;:2zA\2;:2z .:x :yJ C 二(』,D 2, 寸(-9,」,」)5 _3,可知AC -B 2二丄 0,又A =36--0,从而点(-9, -3)是z(x,y)的极大值点,极大值为6令;:x 得*设有齐次线性方程组= (12 ,n)T ,(1 a)% x 2 亠 亠焉=0, 2x 1 (2 a)x 2 川…川‘2x 二 0,nx 2 卷…卷(n a)x n =0,试问a 取何值时,该方程组有非零解,并求出其通解【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩 n ,进而判断是否有非零解;或直接当a=0时,r(A)=1<n ,故方程组有非零解,其同解方程组为花 X 2X n =0,由此得基础解系为1=(-1,1,0, ,0)T ,2=(-1,0,1, ,0)T ,, n 」=(-1,0,0,,1)T ,当a = 0时,对矩阵B 作初等行变换, -1 +a 1 1 BBL1 B T-2 1 0 …-_n 00 (1)有-崇叶1)0 0 … 0〕2T-2 1 0 0-n0 0 …1-2x 1 +X 2 =0, - 3x 1 x a =0, -nx 「X n =0,由此得基础解系为于是方程组的通解为 k n 4其中k 1,…,k n 」为任意常数可知a =n(n 1) 2时, r(A)二n -1 ::: n ,故方程组也有非零解,其同解方程组为阵直接用初等行变换化为阶梯形,再讨论其秩是否小于 计算系数矩阵的行列式,根据题设行列式的值必为零, 可•【详解1】 对方程组的系数矩阵 A 作初等行变换,由此对参数 a 的可能取值进行讨论即有一1+a 1 1 ・・L 1亠-2aa 0… 0 =B._na 0 0 … a(n_2)于是方程组的通解为x = k ,其中k 为任意常数.故方程组的同解方程组为由此得基础解系为于是方程组的通解为其中k 1, ,k n_,为任意常数._2 1 0 …-2 1 0 0T… … … … … T -・- … … …---_ n 00 … 1 _1 1 -n 0 0 … 1 _故方程组的同解方程组为【详解2】方程组的系数行列式为a=0 或 a =当a=0时,对系数矩阵 一1 2叫」时2 ,A 作初等行变换,■1 0方程组有非零解• 1【 2「°1【 0A =2 2+a 2 (2)T-2a a0 0nnnn +a _ 1 1 -na 00 …a _一1 +a1 1 … 11 -0 ■ …0 1A 作初等行变换,有时, 对系数矩阵 11 1 1 1 11 1 a 1 aX 1 X 2X n =0,1=(-1,1,0, ,0)T ,2 =(一1,0,1, ,0)T ,,n 」=(-1,0,0,…,1)T ,n(n 1)= (12 ,n)T ,"-2% +x 2 = 0,-3% + x 3 = 0, -n X i x n =0,由此得基础解系为= (1,2, ,n)T ,于是方程组的通解为x = k ,其中k 为任意常数_n葺卫故行列式A=(a 咛ba n 」(21)(本题满分9分)丸一1-2 3丸—2 _ (丸 _ 2) 0 矩-A=1 丸—4 3—1 、、一43-1-a丸—5-1-a丸—53 =(&-2)(&2 -8& +18+3a).■1 2-1+a 212 +a 1 ■■亠1 12 ■1 2 12 1 ■■亠11 2 A = ---… --- … …=aE + -- --- … … ---n n n … n +a_1 1nnn …nn(n 1)征值为0, 02的特征值为a,a,,a设矩阵A似对角化•【分析】_1 先求出 -3〕-3的特征方程有一个二重根,求5的特征值, a 的值, 并讨论A 是否可相A 定A 是否可相似对角化即可【详解】 A 的特征多项式为再根据其二重根是否有两个线性无关的特征向量,确1=(人-2) 1-1-1 -4 -a【评注】矩阵A 的行列式A 也可这样计算:1 11,矩阵当怎=2是特征方程的二重根,则有22 _16 18 3^0,解得a= -2.■1当a= -2时,A 的特征值为2,2,6,矩阵2E-A= 1的线性无关的特征向量有两个,从而A 可相似对角化■2 -8,;“ -.-18 - 3a 为完全平方,从而 18+3a=16, 解得a-2n - r (打E - A ) = k j .而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)1 1 1设 A,B 为随机事件,且 p (A ) =*,P (B A ) =§,P (AB ) =?,令1, A 发生, 4 B 发生, X =』Y =』0, A 不发生0, B 不发生.求:(I )二维随机变量(X,Y 的概率分布;(II ) X 和Y 的相关系数:\Y -【分析】 先确定(X,丫的可能取值,再求在每一个可能取值点上的概率,而这可利用随 机事件的运算性质得到,即得二维随机变量(X,丫的概率分布;利用联合概率分布可求出边缘 概率分布,进而可计算出相关系数•a 时,A 的特征值为2,4,34,矩阵 4E-A=-1-1应的线性无关的特征向量只有一个,从而A 不可相似对角化【评注】n 阶矩阵A 可对角化的充要条件是:对于秩为2,故冬=4对的任意k i 重特征根■ i ,恒有 -2 3-2 3 的秩为1,故k = 2对应 2— 3若,=2不是特征方程的二重根,则当怎=2是特征方程的二重根,则有22 _16 18 3^0,解得a= -2.1【详解】(I) 由于P(AB) = P(A)P(BA)=丄,12所以,P(B)=P{X =1,Y =1}P(AB) =1P(A|B) 6=P(AB)112- 1P{X =1,Y =0} =P(AB)二 P(A) -P(AB)= 6- 1P{X =0,Y =1} =P(AB) =P(B) _P(AB) ,P{X =0,Y =0} =P(AB) =1 - P(A B)=1 _P(A) _P(B) P(AB)故(X,Y)的概率分布为(II) X, Y的概率分布分别为Cov(X,Y)二 E(XY)-EX EY 二土,从而c _ Cov(X,Y) _J 15 XY = DX 、DY =石.【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强 •通过随机事件定义随机变量或通过随机变量定义随机事件, 可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意•(23)(本题满分9分) 设总体X 的分布函数为1F(x, P )才I其中未知参数1・1,X 1,X 2,…,X n 为来自总体 X 的简单随机样本,求:(I) :的矩估计量; (II):的最大似然估计量X0 1Y315 P——P一4 4611 2 3 51二—,— ?DX =—, DY=—— E(XY)—, 4 6 16 3612 则EX 11 6(或 P{X =0,Y =0} =11 12【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方 法进行讨论即可【详解】X 的概率密度为[Pf(x 「)= 7-0,由于EX 二 "xf (x; '■ )dx3 二?=X -1故1的最大似然估计量为?n_n、ln X i【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算x 1, x <1.-1X-1,所以参数' 的矩估计量为(II ) 似然函数为f (X i ;')=i 吕->x i1(i=1,2, ,n),(X 1X 2…$0,其他当X j 1(i =12 , n)时,L( J 0,取对数得nIn L( ■) = nln 一: -「: 1p In X j ,i#两边对1求导,得令dInL( ) = 0 ,可得 dP二 In x ii =1X ii 经的准确性.。
2004考研数一真题及解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩LLL L L L L LL试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004考研数学一真题及答案解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y lnx上与直线x y 1垂直的切线方程为.(2)已知 f (e x) xe x,且f(1) 0,则f(x)=.(3)设L为正向圆周x2 y2 2在第一象限中的部分,则曲线积分Lxdy 2ydx的值为.(4)欧拉方程x2嗅4xdy 2y 0(x 0)的通解为^dx2dx -------------2 1 0(5)设矩阵A 1 2 0,矩阵B满足ABA* 2BA* E ,其中A*为A的伴随矩阵,E 0 0 1是单位矩阵,则|B =.(6)设随机变量X服从参数为的指数分布,则P{ X JDX} =.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中只有一个符合题目要求,把所选项前的字母填在题后的括号内)x o x2- ■ x(7)把x 0时的无力小重cost出,tandtdt, sin t dt ,使排在后面的0 0 0是前一个的高阶无穷小,则正确的排列次序是(A),,(C),,(8)设函数f (x)连续,且f⑼0,则存在(A)他)在(0,)内单调增加(C)对任意的x (0,)有f(x) f(0) (B),,(D),,0,使得(B)“刈在(,0)内单调减少(D)对任意的x ( ,0)有f(x) f(0)(9)设 a n 为正项级数,下列结论中正确的是 n 1 (A)若 limna n =0, 则级数 a n 收敛ndn 1(B)若存在非零常数,使得lim na n,则级数 a n 发散ndn 1(C)若级数 a n 收敛,则n imn 2a n 0n 1n(D)若级数 a n 发散,则存在非零常数,使得lim na n n 1 n(10)设 f(x)为连续函数,F(t) 1t dy : f (x)dx ,则 F (2)等于(B) f(2)(C) f ⑵(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足AQ C 的可逆矩阵Q 为0 1 0(B) 1 0 10 0 1 0 1 1(D) 1 0 00 0 1(12)设A,B 为满足AB O 的任意两个非零矩阵,则必有(13)设随机变量X 服从正态分布N(0,1),对给定的(01),数u 满足P{X u} ,若 P{X x} ,则 x 等于(A) 2 f (2) 0 1 0(A) 1 0 01 0 1 0 1 0(C) 1 0 00 1 1(A) A 的列向量组线性相关 (B) A 的列向量组线性相关 (C) A 的行向量组线性相关(D) A 的行向量组线性相关 ,B 的行向量组线性相关 ,B 的列向量组线性相关 ,B 的行向量组线性相关,B 的列向量组线性相关(A) u(B) u1 _22(C) u 二 (D) U 1n(14)设随机变重X i ,X 2,,X n (n 1)独立同分布,且其万差为20.令Y - X i , n i 1(A) Cov(X 1,Y)一n三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算 步骤)(15)(本题满分12分)设 e a b e 2,证明 ln 2b ln 2a --2- (b a). e(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速 伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打 开后,飞机所受的总阻力与飞机的速度成正比 (比例系数为k 6.0 106).问从着陆点 算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分 I2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,其中 是曲面 z 1 x 2 y 2(z 0)(18)(本题满分11分)设有方程x n nx 1 0,其中n 为正整数.证明此方程存在惟一正实根 x n ,并证明当 1时,级数X n 收敛.n 1(B) Cov(X 1,Y) (C) D(X 1 Y)42n(D) D(X 1 Y)— n(19)(本题满分12分)设z z(x,y)是由x2 6xy 10y2 2yz z2 18 0确定的函数,求z z(x,y)的极值点和极值.(20)(本题满分9分)(1 a)x1 x2 L x n 0,设有齐次线性方程组2x1 (2 a)x2 L 2x n 0, (n 2),L L L L L Ln% n” L (n a)x n 0,试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)1 2 3设矩阵A 1 4 3的特征方程有一个二重根,求a的值,并讨论A是否可相似1 a 5对角化.(22)(本题满分9分)设A,B 为随机事件,且P(A) 1,P(B|A) 1,P(A|B) L 令 4 32X 1, A发生,Y 1, B发生,0,A不发生;0,B不发生.求:(1)二维随机变量(X,Y)的概率分布.(2) X 和Y 的相关系数(23)(本题满分9分)设总体X 的分布函数为其中未知参数 1,X 1,X 2, ,X n 为来自总体X 的简单随机样本,求:(1) 的矩估计量.(2) 的最大似然估计量2004年数学一试题分析、详解和评注填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx 上与直线x y 1垂直的切线方程为y x 1.【分析】本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004考研数一真题答案及详细解析

一、填空题(1)【答案】 y =x −1【详解】方法 1:因为直线 x +y =1的斜率k 1 − =1,所以与其垂直的直线的斜率k 2 满足121k k =-,所以21k -=-,即21k =,曲线l n y x =上与直线1=+y x 垂直的切线方程的斜率为1,即11)(ln =='='xx y ,得1x =,把1x =代入l n y x =,得切点坐标为)0,1(,根据点斜式公式得所求切线方程为:)1(10-⋅=-x y ,即1-=x y 方法2:本题也可先设切点为)l n ,(00x x ,曲线l n y x =过此切点的导数为11=='=x y x x ,得10=x ,所以切点为()00(,ln )1,0x x =,由此可知所求切线方程为)1(10-⋅=-x y ,即1-=x y .(2)【答案】2)(ln 21x 【详解】先求出)(x f '的表达式,再积分即可.方法1:令t e x=,则t x l n =,1xet -=,于是有t t t f ln )(=',即.ln )(xx x f ='两边积分得2ln 1()ln ln (ln )2xf x dx xd x x C x ===+⎰⎰.利用初始条件(1)0f =,代入上式:21(1)(ln1)02f C C =+==,即0C =,故所求函数为()f x =2)(ln 21x .方法2:由l n xx e =,所以xx x ee f -=')(l n ln xx xx e e ee-=⋅=,所以.ln )(x x x f ='下同.(3)【答案】23【详解】利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分.2004 年全国硕士研究生入学统一考试数学一试题解析L 为正向圆周222=+y x 在第一象限中的部分,用参数式可表示为.20:,s in 2,cos 2πθθθ→⎩⎨⎧==y x 于是2Lx dy ydx -=⎰202cos 2sin 22sin 2cos d d πθθθθ⎡⎤-⎣⎦⎰20[2cos 2cos 22sin 2sin ]d πθθθθθ=⋅+⋅⎰()22222220[2cos 4sin ][2cos sin 2sin ]d d ππθθθθθθθ=+=++⎰⎰222220[22sin ]22sin d d d πππθθθθθ=+=+⎰⎰⎰()220021cos 2d ππθθθ=+-⎰222000131cos 22sin 2222d πππππθθθθ=+-=-⎰()3133sin sin 002222ππππ=--=-=(4)【答案】221x c x c y +=【详解】欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可.令te x =,有1ln ,dt t x dx x ==,则1dy dy dt dy dx dt dx x dt=⋅=,221d y d dy dx dx x dt ⎛⎫= ⎪⎝⎭()211dy d dy d uv vdu udv x dt x dx dt ⎛⎫=+ -+ ⎪⎝⎭211dy d dy dt x dt x dt dt dx ⎛⎫=-+⋅⎪⎝⎭2222222111dy d y d y dy x dt x dt x dt dt ⎛⎫=-+=- ⎪⎝⎭代入原方程:222211420d y dy dyx x y x dt dt x dt⎛⎫⋅-+⋅+= ⎪⎝⎭,整理得02322=++y dt dy dt y d ,此式为二阶齐次线性微分方程,对应的特征方程为2320r r ++=,所以特征根为:121,2r r =- =- ,12r r ≠ ,所以02322=++y dt dydty d 的通解为1221212r t r t t ty c e c e c e c e --=+=+又因为te x =,所以2211,tt ee x x --= =,代入上式得212122.t t c cy c e c e x x--=+=+(5)【答案】91【详解】方法1:已知等式两边同时右乘A ,得**2ABA A BA A A =+,由伴随矩阵的运算规律:**A A AA A E ==,有2A B A B A A =+,而210120001A =3321(1)12+=-2211=⨯-⨯3=,于是有A B A B +=63,移项、合并有A B E A =-)63(,再两边取行列式,由方阵乘积的行列式的性质:矩阵乘积的行列式等于矩阵行列式的积,有(36)363A E B A E B A -=-==,而36A E -21010031206010001001⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦630600030360060300003006003⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦3303(1)(3)(3)3330+=--=-⨯⨯27=,故所求行列式为B 33627A A E ==-19=方法2:由题设条件**2ABA BA E =+,得**2ABA BA -=*(2)A E BA E-=由方阵乘积行的列式的性质:矩阵乘积的行列式等于矩阵行列式的积,故两边取行列式,有**(2)21A E BA A EB A E -=-==其中210120001A =3321(1)12+=-2211=⨯-⨯3=;由伴随矩阵行列式的公式:若A 是n 阶矩阵,则1n A A-*=.所以,312A A A -*===9;又0102100001A E -=1210(1)01+=-=1.故1192B A E A*==-.(6)【答案】e1【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{D X X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题(7)【答案】(B)【详解】方法1:202200tan tan 2lim limlim 0cos cos x xx x x tdt x xxt dtβα+++→→→⋅= =⎰⎰洛必达,则β是α的高阶无穷小,根据题设,排在后面的是前一个的高阶无穷小,所以可排除(C),(D)选项,又23230001sin sin 2lim lim lim 2tan tan xx x x x x t dtx x xtdtγβ+++→→→⋅= ⎰⎰洛必达201lim4x x x +→=∞等价无穷小替换,可见γ是比β低阶的无穷小量,故应选(B).方法2:用kx (当0x →时)去比较.221000cos cos limlimlim ,xkkk x x x t dt x xxkxα+++-→→→=⎰洛欲使上式极限存在但不为0,应取1k =,有220lim cos cos lim lim 1lim x x x x t txxxα++++→→→→===,所以(当+→0x 时)α与x 同阶.211300000tan tan 222lim limlim lim lim xk k k k k x x x x x tdtx x x x x x kx kx kx β+++++---→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取3k =,有3320002tan 2tan 2lim lim lim 333x x x x x x x x β+++-→→→===,所以(当+→0x 时)β与3x 同阶.31313222211100000sin sin lim lim lim lim lim ,222xk kk k k x x x x x t dtx x x x xx x kx kx kx γ+++++-----→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取2k =,有221001lim lim 224x x xx x γ++-→→==⋅,所以(当+→0x 时)γ与2x 同阶.因此,后面一个是前面一个的高阶小的次序是,,αγβ,选(B).(8)【答案】(C)【详解】函数()f x 只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B).由导数的定义,知0)0()(lim)0(0>-='→xf x f f x 根据极限的保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f .即当)0,(δ-∈x 时,0x <,有()(0)f x f <;而当),0(δ∈x 时,0x >有()(0)f x f >.(9)【答案】(B)【详解】对于敛散性的判定问题,若不便直接推证,往往可通过反例排除找到正确选项.方法1:排除法.取()()11ln 1n a n n =++,则n n na ∞→lim =0,又()()1111ln 11pn p n n p ∞= >⎧⎨++ ≤⎩∑收敛,当发散,当,所以()()1111ln 1n n n a n n ∞∞===++∑∑发散,排除A ,D ;又取n n a n 1=,因为p 级数1111p n p n p ∞= >⎧⎨ ≤⎩∑收敛,当发散,当,则级数111n n n a n n ∞∞===∑∑收敛,但221lim lim lim n n n n n a n n n n→∞→∞→∞=⋅==∞,排除(C),故应选(B).方法2:证明(B)正确.l im 0n n na λ→∞=≠,即l im 1nn a nλ→∞=.因为11n n∞=∑发散,由比较判别法的极限形式知,1nn a∞=∑也发散,故应选(B)..(10)【答案】(B)【详解】在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x :⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f 否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.方法1:交换积分次序,使得只有外面这道积分限中才有t ,其他地方不出现t由⎰⎰=t tydx x f dy t F 1)()(知:1y x ty t <<⎧⎨<<⎩,交换积分次序11x t y x <<⎧⎨<<⎩,得⎰⎰=t tydx x f dy t F 1)()(=⎰⎰⎰-=t x tdxx x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有)2()2(f F =',故应选(B).方法2:设()()x f x 'Φ=,于是1()()t t yF t dy f x dx =⎰⎰11()()t t t tyydy x dx dy d x '=Φ=Φ⎰⎰⎰⎰1[()()]t t y dy =Φ-Φ⎰1()(1)()tt t y dy=Φ--Φ⎰所以()()(1)()()()(1),F t t t t t f t t ''=Φ-+Φ-Φ=-所以(2)(2)F f '=,选(B).(11)【答案】(D)【详解】由题设,将A 的第1列与第2列交换,即12010100001AE A B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,将B 的第2列加到第3列,即100010100011011100011100.001001001001B A A AQ ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故011100001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,应选(D).(12)【答案】(A)【详解】方法1:由矩阵秩的重要公式:若A 为n m ⨯矩阵,B 为n p ⨯矩阵,如果0A B =,则()()r A r B n+≤设A 为n m ⨯矩阵,B 为s n ⨯矩阵,由0A B =知,()()r A r B n +≤,其中n 是矩阵A 的列数,也是B 的行数因A 为非零矩阵,故()1r A ≥,因()()r A r B n +≤,从而()1r B n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知B 的行向量组线性相关.因B 为非零矩阵,故()1r B ≥,因()()r A r B n +≤,从而()1r A n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知A 的列向量组线性相关.故应选(A).方法2:设A 为n m ⨯矩阵,B 为s n ⨯矩阵,将B 按列分块,由0A B =得,[]12,,,0,0,1,2,,.s i AB A A i s ββββ==== 因B 是非零矩阵,故存在0i β≠,使得0i A β=.即齐次线性方程组0A x =有非零解.由齐次线性方程组0A x =有非零解的充要条件()r A n <,知()r A n <.所以A 的列向量组线性相关.又()0T T T AB B A ==,将TA 按列分块,得12[,,,]0,0,1,2,,.T T T T T TT T m i B A B B i m αααα==== 因A 是非零矩阵,故存在0T i α≠,使得0TT i Bα=,即齐次线性方程组0Bx =有非零解.由齐次线性方程组0Bx =有非零解的充要条件,知TB 的列向量组线性相关,由TB 是由B 行列互换得到的,从而B 的行向量组线性相关,故应选(A).方法3:设(),i j m n A a ⨯=()i j n s B b ⨯=,将A 按列分块,记()12n A A A A =由0A B =⇒()11121212221212s s n n n ns b b b b bb A A A b b b ⎛⎫⎪⎪ ⎪⋅⋅⋅⎪⎝⎭()111111,,0n n s ns n b A b A b A b A =++++= (1)由于0B ≠,所以至少有一个0i j b ≠(1,1i n j s ≤≤≤≤),又由(1)知,11220j j i j i nj n b A b A b A b A +++++= ,所以12,,,m A A A 线性相关.即A 的列向量组线性相关.(向量组线性相关的定义:如果对m 个向量12,,,nm R ααα∈ ,有m 个不全为零的数12,,,m k k k R ∈,使11220m m k k k ααα++=成立,则称12,,,m ααα 线性相关.)又将B 按行分块,记12n B BB B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,同样,0A B =⇒11121121222212n n m m mn n a a a B a a a B a a a B ⎛⎫⎛⎫⎪⎪⎪⎪ ⎪⎪⋅⋅⋅⎪⎪⎝⎭⎝⎭ 111122121122221122n n n n m m mn n a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪=⎪ ⎪ ⎪+++⎝⎭ 0=由于0A ≠,则至少存在一个0i j a ≠(1,1i m j n ≤≤≤≤),使11220i i i j j in n a B a B a B a B ++++= ,由向量组线性相关的定义知,12,,,m B B B 线性相关,即B 的行向量组线性相关,故应选(A).方法4:用排除法.取满足题设条件的,A B .取001000,10010001A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有00100100,10001AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A 的行向量组,列向量组均线性相关,但B 的列向量组线性无关,故(B),(D)不成立.又取110100,00000100A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有1101000000100AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,A 的行向量组线性无关,B 的列向量组线性相关,故(C)不成立.由排除法知应选(A).(13)【答案】C【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>.或直接利用图形求解.方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C).方法2:Oxy()f x {}P X u αα>=图1图2如图1所示题设条件.图2显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n 独立同分布,所以必有:2, (,)0, i j i jCov X X i jσ⎧==⎨≠⎩又222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑Oxy{}P X x α<=12α-()f x下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n=21n σ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算.可以看本题(C),(D)选项.因为X 与Y 独立时,有()()()D X Y D X D Y ±=+.所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n nσσ++-+=+++=+ =222233σσn n n n n +=+,222222111)1()111()(σσnn n n X n X n X n n D Y X D n -+-=----=- =.222222σσn n n n n -=-所以本题选(A)三、解答题(15)【详解】根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.方法1:因为函数()2l n f x x =在()2[,],a b e e ⊂上连续,且在(),a b 内可导,所以满足拉格朗日中值定理的条件,对函数()2ln f x x =在[,]a b 上应用拉格朗日中值定理,得()()()22222ln ln ln ln ,b a b a b a e a b e ξξξξ'-=-=- <<<<下证:22ln 4eξξ>.设t t t ln )(=ϕ,则2ln 1)(ttt -='ϕ,当t e >时,1ln 1ln 0t e -<-=,即,0)(<'t ϕ所以)(t ϕ单调减少,又因为2e ξ<,所以)()(2e ϕξϕ>,即2222ln ln e e e =>ξξ,得22ln 4eξξ>故)(4ln ln 222a b ea b ->-.方法2:利用单调性,设x ex x 224ln )(-=ϕ,证()x ϕ在区间()2,e e 内严格单调增即可.24ln 2)(e x x x -='ϕ,(222222ln 444()20e e e e e eϕ'=-=-=,)2ln 12)(x x x -=''ϕ,当x e >时,1ln 1ln 0x e -<-=,,0)(<''x ϕ故)(x ϕ'单调减少,从而当2e x e <<时,2()()0x e ϕϕ''>=,即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即a e a b e b 22224ln 4ln ->-,故)(4ln ln 222a b ea b ->-.方法3:设2224()ln ln ()x x a x a eϕ=---,则2ln 4()2x x x e ϕ'=-,21ln ()2x x x ϕ-''=,⇒x e >时,1ln 1ln 0x e -<-=,得()0x ϕ''<,⇒()x ϕ'在2(,)e e 上单调减少,从而当2e x e <<时,22244()()0x e e eϕϕ''>=-=,⇒()x ϕ在2(,)e e 上单调增加.从而当2e a x b e <<≤<时,()()0x a ϕϕ>=.⇒()0b ϕ>,即2224ln ln ()b a b a e ->-.(16)【详解】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.方法1:由题设,飞机质量9000m kg =,着陆时的水平速度h k m v /7000=.从飞机接触跑道开始计时,设t 时刻飞机的滑行距离为()x t ,速度为()v t ,则0)0(,)0(0==x v v .根据牛顿第二定律,得kv dt dv m -=.又dx dv v dt dx dx dv dt dv =⋅=.由以上两式得dv k m dx -=,积分得.)(C v kmt x +-=由于0)0(,)0(0==x v v ,所以0(0)0.mx v C k=-+=故得0v k m C =,从而)).(()(0t v v kmt x -=当0)(→t v 时,).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km.方法2:根据牛顿第二定律,得kv dtdvm-=,分离变量:dv k dt v m =-,两端积分得:1ln kv t C m=-+,通解:t mk C ev -=,代入初始条件00v vt ==,解得0v C =,故.)(0t mk ev t v -=飞机在跑道上滑行得距离相当于滑行到0v →,对应地t →+∞.于是由d x vdt =,有00() 1.05().k k t t mmmv mv x v t dt v edt e km kk+∞--+∞+∞===-==⎰⎰或由()0kt mdx v t v e dt-==,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→方法3:由kv dt dv m -=,dx v dt =,化为x 对t 的求导,得dt dxk dtx d m -=22,变形为022=+dtdxm k dt x d ,0(0)(0),(0)0v x v x '===其特征方程为02=+λλm k ,解之得mk-==21,0λλ,故.21t m ke C C x -+=由2000000,kt m t t t t kC dxx v e v dt m-=======-=,得,021km v C C =-=于是).1()(0t m k e kmv t x --=当+∞→t 时,).(05.1)(0km k mv t x =→所以,飞机滑行的最长距离为1.05km .(17)【详解】这是常规题,加、减曲面片高斯公式法,转换投影法,逐个投影法都可用.方法1:加、减曲面片高斯公式.取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdyzdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233133212223(1)x dydz y dzdx z dxdy I I ∑-++-=-⎰⎰由高斯公式:设空间闭区域Ω是由分段光滑的闭曲面∑所围成,函数()()(),,,,,,,,P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有P Q R Pdydz Qdzdx Rdxd y dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 这里3322,2,3(1)P x Q y R z = == -,2226,6,6P QR x y z x y z∂∂∂===∂∂∂,所以2216()I x y z dvΩ=++⎰⎰⎰利用柱面坐标:c os sin ,01,02,x r y r r dv rdrd dz z z θθθπθ=⎧⎪= ≤≤ ≤≤ =⎨⎪=⎩,有:2216()I x y z dxdydz Ω=++⎰⎰⎰=r dzr z dr d r )(620101022⎰⎰⎰-+πθ()()221221123200011212122r r z r r z dr rr r drππ--⎛⎫=+=+- ⎪⎝⎭⎰⎰()13246011124346r r r π⎛⎫- ⎪=-⋅+- ⎪⎝⎭11226ππ=⋅=记D 为1∑在x oy 平面上的投影域(){}22,1D x y xy =+≤,则0z =,0d z =,又1∑为220(1)z x y =+≤的下侧,从而:()13322223(1)301DI x dydz y dzdx z dxdy dxdy ∑=++-=--⎰⎰⎰⎰33Ddxdy π==⎰⎰(其中Ddxdy ⎰⎰为半径为1圆的面积,所以11Ddxdy ππ=⋅=⎰⎰)故1223.I I I πππ=-=-=-方法2:用转换投影法:若(),z z x y =,z 对,x y 具有一阶连续偏导数,则,z zdzdx dxdy dydz dxdy x y∂∂=-=-∂∂.曲面22221:1,(1),2,2z zz x y x y x y x y∂∂=--+≤=-=-∂∂∑,由转换投影公式332223(1)I x dydz y dzdx z dxdy∑=++-⎰⎰332[2()2()3(1)]z zx y z dxdy x y∑∂∂=-+-+-∂∂⎰⎰44222[443(1)3]Dx y x y dxdy=++---⎰⎰利用极坐标变换:c os ,01,02,sin x r r dxdy rdrd y r θθπθθ=⎧ ≤≤ ≤≤ =⎨=⎩,所以214444220[4cos 4sin 3(1)3]I d r r r rdrπθθθ=++--⎰⎰215454530[4cos 4sin 3(2)]d r r r r drπθθθ=++-⎰⎰24404413(cos sin )6622d πθθθ=++-⎰()2222222004cos sin 2cos sin 6d d ππθθθθθθ⎡⎤=+--⎢⎥⎣⎦⎰⎰2220412cos sin 26d πθθθπ⎡⎤=--⎣⎦⎰22220041cos sin 2263d d ππθθθθπ=--⎰⎰()20411cos 4236d ππθθπ=---⎰22004112cos 4sin 433624d πππππθθπθ=---=--⎰0ππ=--=-或244044(cos sin )66d πθθθ+⎰直接利用公式44220031cos sin 422d d πππθθθθ==⋅⋅⎰⎰及224444220cos 4cos 4sin sin d d d d ππππθθθθθθθθ===⎰⎰⎰⎰则244044431(cos sin )24666422d ππθθθπ+=⋅⋅⋅⋅⋅=⎰所以,原式2πππ=-=-(18)【分析】利用零点定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.零点定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,那么在开区间(),a b 内至少存在一点ξ,使()0f ξ=;单调性:设函数()f x 在闭区间[],a b 上连续,在(),a b 内可导,如果在(),a b 内()0f x '>,那么函数()f x 在[],a b 上单调增加;比较审敛法:设1nn u∞=∑和1nn v∞=∑都是正项级数,且n n u v ≤,若级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛.【证明】记()1nn f x x nx =+-,则()n f x 是连续函数,由01)0(<-=n f ,0)1(>=n f n ,对照连续函数的零点定理知,方程01=-+nx x n 存在正实数根).1,0(∈n x 当0x >时,0)(1>+='-n nxx f n n ,可见)(x f n 在),0[+∞上单调增加,故方程01=-+nx x n 存在惟一正实数根.n x 由01=-+nx x n与0>n x 知nn x x nn n 110<-=<,故当1>α时,函数y x α=单调增,所以αα)1(0n x n <<.而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.(19)【分析】根据极值点存在的充分条件:设函数(,)z f x y =在点()00,x y 的某领域内连续且有一阶及二阶连续偏导数,又0000(,)0,(,)0x y f x y f x y = =,令000000(,),(,),(,)xx xy yy f x y A f x y B f x y C = = =,则(,)z f x y =在()00,x y 处是否取得极值的条件如下:(1)20A C B ->时具有极值,且当0A <时有极大值,当0A >时有极小值;(2)20A C B -<时没有极值;(3)20A C B -=时,可能有极值,也可能没有极值,需另外讨论.所以对照极值点存在的充分性定理,先求出一阶偏导,再令其为零确定极值点,接下来求函数二阶偏导,确定是极大值还是极小值,并求出相应的极值.求二元隐函数的极值与求二元显函数的极值的有关定理是一样,差异仅在于求驻点及极值的充分条件时,用到隐函数求偏导数.【详解】因为0182106222=+--+-z y z y xy x ,所以两边对x 求导:02262=∂∂-∂∂--xz z x z yy x ,①两边对y 求导:0222206=∂∂-∂∂--+-yzz y z yz y x .②根据极值点存在的充分条件,令00zx z y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得303100x y x y z -=⎧⎨-+-=⎩,故⎩⎨⎧==.,3y z y x 将上式代入0182106222=+--+-z y z y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 对照极值点存在的充分条件,为判别两点是否为极值点,再①分别对,x y 求偏导数,②分别对,x y 求偏导数①式对x 求导:02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,②式对x 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--y x zz x z y z y x z y x z ①式对y 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z ②式对y 求导:02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,将⎪⎩⎪⎨⎧===3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz代入,于是61)3,3,9(22=∂∂=x z A ,21)3,3,9(2-=∂∂∂=yx z B ,35)3,3,9(22=∂∂=yz C ,故03612>=-B AC ,又061>=A ,从而点(9,3)是(,)z x y 的极小值点,极小值为(9,3)3z =.类似地,将⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z x z 代入,于是22(9,3,3)16z A x ---∂==-∂,2(9,3,3)12zB x y---∂==∂∂,22(9,3,3)53z C y ---∂==-∂,可知03612>=-B AC ,又061<-=A ,从而点(-9,-3)是(,)z x y 的极大值点,极大值为(9,3)3z --=-.(20)【详解】方法1:对方程组的系数矩阵A 作初等行变换,有11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦1()(2,)i i i n ⨯-+= 行行111120000a a a B na a +⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦对||B 是否为零进行讨论:当0a =时,()1r A n =<,由齐次方程组有非零解的判别定理:设A 是m n ⨯矩阵,齐次方程组0A x =有非零解的充要条件是()r A n <.故此方程组有非零解,把0a =代入原方程组,得其同解方程组为,021=+++n x x x ()*此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,得基础解系,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)12,3i i n ⨯-+= 行()(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ ,可知2)1(+-=n n a 时,n n A r <-=1)(,由齐次方程组有非零解的判别定理,知方程组也有非零解,把2)1(+-=n n a 代入原方程组,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.方法2:计算方程组的系数行列式:11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦00011110002222000a a a n n n n ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦矩阵加法a E =+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111aE Q ∆ +,下面求矩阵Q 的特征值:11112222E Q n n n n λλλλ---------=---- 11112001(-)(2,3,,)00i i i n n λλλλλ-----⨯+=- 行行(1)1112()1000(2,3,,)000n n i i i n λλλ+----⨯+=列列1(1)2n n n λλ-+⎛⎫=- ⎪⎝⎭则Q 的特征值2)1(,0,,0+n n ,由性质:若A x x λ=,则()(),m m kA x k x A x x λλ==,因此对任意多项式()f x ,()()f A x f x λ=,即()f λ是()f A 的特征值.故,A 的特征值为(1),,,2n n a a a ++,由特征值的乘积等于矩阵行列式的值,得A 行列式.)2)1((1-++=n a n n a A 由齐次方程组有非零解的判别定理:设A 是n 阶矩阵,齐次方程组0Ax =有非零解的充要条件是0=A .可知,当0=A ,即0a =或2)1(+-=n n a 时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有11112222A n n n n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 1)(2,)i i i n ⨯-+= 行(行1111000000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,.故方程组的同解方程组为,021=+++n x x x 此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,由此得基础解系为,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)1(2,3)i i n ⨯-+= 行(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,即00002100001n ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦ ,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.(21)【详解】A 的特征多项式为12314315E A aλλλλ---=----2(2)021114315aλλλλ---⨯-+----行()行1101(2)14315a λλλ------提出行公因数1101(1)2(2)03315a λλλ-⨯-+-----行行11012(2)033015a λλλ-+-----行行33(2)15a λλλ-=----(2)[(3)(5)3(1)]a λλλ=---++2(2)(8183).a λλλ=--++已知A 有一个二重特征值,有两种情况,(1)2=λ就是二重特征值,(2)若2=λ不是二重根,则28183a λλ-++是一个完全平方(1)若2=λ是特征方程的二重根,则有,03181622=++-a 解得2a =-.由E A λ-2(2)(8183(2))λλλ=--++⨯-2(2)(812)λλλ=--+2(2)(6)0λλ=--=求得A 的特征值为2,2,6,由1232123123E A -⎡⎤⎢⎥-=-⎢⎥⎢⎥--⎣⎦1231(-1)2,000113000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦行倍加到行行的倍加到行,知()21E A -=秩,故2=λ对应的线性无关的特征向量的个数为312n r -=-=,等于2=λ的重数.由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,从而A 可相似对角化.(2)若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18316a +=,解得.32-=a 当32-=a 时,由E A λ-=22(2)(8183())3λλλ=--++⨯-2(2)(816)λλλ=--+2(2)(4)0λλ=--=知A 的特征值为2,4,4,由32341032113E A ⎡⎤⎢⎥-⎢⎥-=⎢⎥⎢⎥--⎢⎥⎣⎦1133⨯+ 行行323103000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦知()42E A -=秩,故4=λ对应的线性无关的特征向量有321n r -=-=,不等于4=λ的重数,则由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,知A 不可相似对角化.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.先确定(,)X Y 的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(,)X Y 的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I)由于1()()(|)12P AB P A P B A ==,所以,61)()()(==B A P AB P B P利用条件概率公式和事件间简单的运算关系,有121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P ,,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-====21()()()3P A P B P AB =--+=(或32121611211}0,0{=---===Y X P ),故(,)X Y 的概率分布为Y X1032121161121(II),X Y 的概率分布分别为213{0}{0,1}{0,0},3124P X P X Y P X Y ====+===+=111{1}{1,1}{1,0},6124P X P X Y P X Y ====+===+=111{1}{0,1}{1,1},12126P Y P X Y P X Y ====+===+=215{0}{0,0}{1,0}.366P Y P X Y P X Y ====+===+=所以,X Y 的概率分布为X 01Y 01P4341P6561由01-分布的数学期望和方差公式,则61,41==EY EX ,1334416DX =⨯=,1566DY =⨯536=,{}{}{}()00111,1E XY P XY P XY P X Y =⋅=+⋅====112=,故241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY (23)【分析】本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.似然函数的定义:121()(,,,;)(;)nn ii L f x x x f x θθθ===∏ 【详解】X 的概率密度为11,,(;) 1.0,x f x xx βββ+⎧>⎪=⎨≤⎪⎩(I)矩估计.由数学期望的定义:1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx xx dx x x f EX ,用样本均值估计期望有E X X =,令X =-1ββ,解得1-=X Xβ,所以参数β的矩估计量为.1ˆ-=X X β其中11nii X X n ==∑(II)最大似然估计.设12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L in nni i ββββ当),,2,1(1n i x i =>时,0)(>βL ,()L β与l n ()L β在相同的β点取得最大值;所以等式两边取自然对数,得1ln ()ln (1)ln ni i L n x βββ==-+∑,两边对β求导,得∑=-=n i i x nd L d 1ln )(ln βββ,令0)(l n =ββd L d ,可得∑==ni ixn1ln β,解得β的最大似然估计值为: 1ln nii nxβ==∑。
2004考研数一真题及解析

2004年全国硕士研究生入学统一考试数学一试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 曲线ln y x =上与直线1=+y x 垂直的切线方程为 . (2) 已知x x xe e f -=')(,且(1)0f =, 则()f x = .(3) 设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为 .(4) 欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为 . (5) 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B(6) 设随机变量X 服从参数为λ的指数分布,则}{DX X P >= .二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 把+→0x 时的无穷小量dt t dt t dt txx x⎰⎰⎰===302sin ,tan ,cos 2γβα,排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是( )(A)γβα,,. (B)βγα,,. (C)γαβ,,. (D)αγβ,,.(8) 设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 ( )(A)()f x 在(0,)δ内单调增加. (B)()f x 在)0,(δ-内单调减少. (C)对任意的),0(δ∈x ,有()(0)f x f > . (D)对任意的)0,(δ-∈x ,有()(0)f x f > . (9) 设∑∞=1n na为正项级数,下列结论中正确的是 ( )(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim .(10) 设()f x 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于 ( )(A) 2(2)f . (B) (2)f . (C) (2)f -. (D) 0.(11) 设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为 ( )(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010 (B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110.(12) 设,A B 为满足0AB =的任意两个非零矩阵,则必有 ( )(A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关.(13) 设随机变量X 服从正态分布(0,1)N ),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于( )(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u .(14) 设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则( )(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注kg 表示千克,kgh表示千米/小时.)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设(,)z z x y =是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(本题满分9分)设A ,B 为随机事件,且111(),(),()432P A P B A P A B ===,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I)二维随机变量(,)X Y 的概率分布; (II)X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为 11,1,(;)1,0,x F x xx ββ⎧>-⎪=⎨≤⎪⎩ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I) β的矩估计量; (II) β的最大似然估计量.。
2004—数一真题、标准答案及解析

2004年全国硕士研究生入学统一考试数学一真题、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx上与直线x y 1垂直的切线方程为(2)已知f(e x) xxe ,且f(1)=0,则f(x)=(3)设L为正向圆周x22在第一象限中的部分,则曲线积分L xdy 2ydx的值为(4)欧拉方程x2d2ydx24x d^ 2y 0(x 0)的通解为•dx(5)2 1 设矩阵A 1 2矩阵,则(6)矩阵B满足ABA*2BA E ,其中A为A的伴随矩阵,E是单位设随机变量X服从参数为的指数分布,则P{X DX} =二、选择题(本题共8小题,每小题把所选项前的字母填在题后的括号内)4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,(7)把x 0时的无穷小量X cost2dt,0 '2xtanX 30 si nt dt ,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B) (C) (D)(8)设函数f(x)连续,且f (0)0,则存在0,使得(A) f(x)在(0,)内单调增加.(B) f(x)在( ,0)内单调减少•(C) 对任意的x(0,)有f(x)>f(0).(D) 对任意的x(,0)有f(x)>f(0).(9)设a n为正项级数,下列结论中正确的是n 1(A) 若lim na n=0,则级数na n收敛•n 1(B)若存在非零常数,使得lim na nn ,则级数a n发散•n 1阻力与飞机的速度成正比(比例系数为k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?t t(10) 设f(x)为连续函数,F(t) 1 dy y f(x)dx ,则F ⑵等于 (A)2f(2).(B) f(2).(C) -(2).(D) 0.[](11) 设A 是3阶方阵,将 A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C,贝U 满足AQ=C 的可逆矩阵Q 为(A) A 的列向量组线性相关, (B) A 的列向量组线性相关, (C) A 的行向量组线性相关, (D) A 的行向量组线性相关,(A) Cov( X 1,Y)2n(B) Cov(X 1,Y)2.(C)D(X 1 Y)n 2 2 (D)D(X 1Y) n 1nn(15) (本题满分 12分)设ea b e 2 ,证明ln 2 bIn 2a —2(b a)e(16) (本题满分 11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使 (C) 若级数2a n 收敛,则lim nn0.(D)若级数a n 发散,则存在非零常数n 1,使得 lim na nn0 1 00 1 00 1 0 0 1 1 (A)1 0 0 . (B)1 0 1 . (C) 1 0 0 .(D)1 0 0 1 0 1 0 0 10 1 10 0 1的任意两个非零矩阵,则必有(12)设A,B 为满足AB=OB 的行向量组线性相关B 的列向量组线性相关 B 的行向量组线性相关 B 的列向量组线性相关1),数u 满足P{X u } ,若P{X x},则x 等于(A) U_.2(B) U .1I(C) u 」. ~2-(D) U 1(14)设随机变量X 1,X 2, 0.令Y 丄 X i ,则n i 1(13)设随机变量 X 服从正态分布 N(0,1),对给定的(0,X n ( n 1)独立同分布,且其方差为飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?1F(x, )1x0, x 1,x 1,注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分I2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,数 x n 收敛.n 1(20)(本题满分9分) 设有齐次线性方程组(1 a)X 1X 2X n 0, 2x 1 (2 a)X 2 2x n 0, (n 2)n% nx 2(n a)X n0,并求出其通解9分)试问a 取何值时,该方程组有非零解, (21)(本题满分33的特征方程有一个二重根,求 a 的值,并讨论5(22)(本题满分9 分)求:(I )二维随机变量(X,Y)的概率分布;(23)(本题满分9分) 设总体X 的分布函数为其中是曲面z 1(z 0)的上侧.(18)(本题满分 11 分)设有方程x nnx 10,其中 n 为正整数.证明此方程存在惟一正实根X n ,并证明当 1时,级(19)(本题满分 12 分)设z=z(x,y)是由x 2 6xy 10y 22yzz 2 18 0确定的函数,求zz(x, y)的极值点和极值.设矩阵A 11A 是否可相似对角化.设A,B 为随机事件,且P(A) 右P(BA) 3‘P (AB)-,令XA发生, 0, A 不发生;Y 1, B 发生,0, B 不发生.(II ) X 和Y 的相关系数 XY -其中未知参数1,X!,X2, ,X n为来自总体X的简单随机样本,求: (I)的矩估计量;(II)的最大似然估计量.3 022004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx 上与直线x y 1垂直的切线方程为 y x 1 .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.1【详解】由y (Inx)1,得x=1,可见切点为(1,0),于是所求的切线方程为xy 0 1 (x 1),即 y x 1.1【评注】本题也可先设切点为 (x 0,|n x 0),曲线y=lnx 过此切点的导数为 y— 1,得x 0 1,x x 0x 0由此可知所求切线方程为 y0 1(x1),即yx1.本题比较简单,类似例题在一般教科书上均可找到xx1 2(2) 已知 f (e ) xe ,且 f(1)=0,则 f(x) = (In x).2【分析】 先求出f (X )的表达式,再积分即可.【详解】令e x t ,则x lnt ,于是有ln tr, ln xf (t),即f (x)t x 积分得f(x)In x, 1 2dx (ln x) C .利用初始条件 f(1)=0,得C=0,故所求函数为 f(x)x 2丄仲x)2. 2【评注】 本题属基础题型,已知导函数求原函数一般用不定积分223 (3)设L 为正向圆周x y 2在第一象限中的部分,则曲线积分 L xdy 2ydx 的值为 -【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分 2 2【详解】 正向圆周x y2在第一象限中的部分,可表示为x 、 2 cos , 小y -2sin ,:0222si n 2【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参于是Lxdy 2ydx o 2 [一 2 cos 2 cos2 2sin ■- 2 sin ]d9数法化为定积分计算即可【分析】欧拉方程的求解有固定方法,作变量代换x e t 化为常系数线性齐次微分方程即可【详解】令xe t ,则 dy dy dt e 电1 dydx dt dxdt x dtd 2y 1 dy 1 d 2y dt 1[d 2 x 2[dt y dy F dt ]dx 2x 2 dt x dt 2dx 代入原方程,整理得d 2y c dy2y 0,.2 3 - dtdt解此方程,得通解为y tqe c 2e2tC1C22・2x x【评注】 本题属基础题型,也可直接套用公式,令 x e t ,则欧拉方程【详解】 已知等式两边同时右乘 A ,得ABA *A 2BA *A A ,而 A 3,于是有3AB 6B A ,即(3A 6E)B A ,再两边取行列式,有3A 6E||B A 3,1而3A 6E 27,故所求行列式为 B(4)欧拉方程2d 2y x dx 24x2y 0(x 0)的通解为y 纟乌dx x x可化为2 axd 2y dx 2cy f (x),2眷貉哼cy 讪.(5)设矩阵A2 1 01 2 0,矩阵B 满足ABA * 2BA * E ,其中A *为A 的伴随矩阵, 0 0 1E 是单位矩阵,则B【分析】可先用公式A *AA E 进行化简【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵A ,一般均应先利用公式A A AA * AE 进行化简.(6)设随机变量X 服从参数为 的指数分布,则P{X , DX } = 1 .e【分析】 已知连续型随机变量 X 的分布,求其满足一定条件的概率,转化为定积分计算即可1【详解】 由题设,知DX 冷,于是一1XP{X DX} = P{X -}ie X dx【评注】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算 二、选择题(本题共8小题,每小题 把所选项前的字母填在题后的括号内)一个的高阶无穷小,则正确的排列次序是4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,(7 )把x0时的无穷小量Xcost 2dt,2xtan 、tdt,0 ':X 30 si nt dt ,使排在后面的是前(A)(B)(C)(D)【分析】 先两两进行比较,再排出次序即可【详解】 lim — x 0 tan 一tdt lim 卫厂 x 0cost 2dt 0limtanx 2x 2cosx0,可排除 (C),(D)选项,【评注】 limx 0limx 0=-lim 4 x 0x3sint dt_0 ___________X 2 tan )t dt3 2sin x 2 ,可见 lim2x tanx是比低阶的无穷小量,故应选 (B).本题是无穷小量的比较问题,也可先将 ,,分别与x n 进行比较,再确定相互的高低次序(8)设函数f(x)连续,且f (0) 0,则存在0,使得 (A) f(x)在(0,)内单调增加. (B) f(x)在(,0)内单调减少.(C) 对任意的 x (0,)有 f(x)>f(0)(D)对任意的 x ( ,0)有 f(x)>f(0)【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除 (A),(B)选项,再利用导数的定义及极限的保号性进行分析即可•【详解】 由导数的定义,知f(0) lim f(x) f(0)0,x 0 x根据保号性,知存在 0,当x (,0) (0,)时,有f(x) f(0)x即当 x (,0)时,f(x)<f(0);而当 x (0,)时,有 f(x)>f(0).故应选(C).【评注】题设函数一点可导,一般均应联想到用导数的定义进行讨论 (9) 设 a n 为正项级数,下列结论中正确的是n 12(C)若级数a n 收敛,则limn a “0.nn 1(E)若级数n1a n 发散,则存在非零常数,使得^m na n* "]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项1 2又取a n ----------------- ,则级数a n 收敛,但lim n a “nUnn1 n【评注】 本题也可用比较判别法的极限形式,a1 lim na n lim n0,而级数发散,因此级数a n 也发散,故应选(B).n n1n 1nn 1n【分析】 先求导,再代入t=2求F (2)即可.关键是求导前应先交换积分次序,使得被积函数中不含有(A)若lim na n =0,则级数na n 收敛.n 1(B )若存在非零常数,使得lim na nn,则级数a n 发散•n 1【详解】 取a n1 nln n,则 lim na n =0,但na nn 111n ln n发散,排除(A),(D);,排除(C),故应选(B).(10) 设f(x)为连续函数,F(t) (A)2f(2). (B) f(2).t t1 dy y f(x)dx ,贝U F (2)等于(C) -(2).(D)0.变量 t.【详解 】 交换积分次序,得t t t x tF(t) 1dy y f(x)dx = 1[1 f(x)dy]dx 1 f(x)(x 1)dx于是,F (t) f(t)(t 1),从而有 F (2)f(2),故应选(B).评注】 在应用变限的积分对变量 x 求导时,应注意被积函数中不能含有变量 x: b(x)[ a(x) f(t)dt] f [b(x)]b (x) f[a(x)]a(x)a(x)否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量 x 换到积分号外或积分线上 .( 11) 设 A 是 3 阶方阵,将 A 的第 1 列与第 2 列交换得 B, 再把 B 的第 2 列加到第 3 列得 C, 则满足 AQ=C 的可逆矩阵 Q 为0 1 0 0 1 0 0 1 0 0 1 1 (A)1 0 0. (B)1 0 1. (C) 1 0 0. (D) 10 0 1 0 10 0 11 10 0 1[ D ]分析 】 本题考查初等矩阵的的概念与性质,对 A 作两次初等列变换,相当于右乘两个相应的初等 矩阵, 而 Q 即为此两个初等矩阵的乘积 详解 】由题设,有0 1 01 0 0A 1 0 0B , B 0 1 1C ,0010 0 10 1 0 10 00 1 1 于是,A 1 0 0 0 1 1A 1 0 0 C.0 0 1 0 0 10 0 1可见, 应选 (D). 评注 】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系12) 设 A,B 为满足 AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关, (E) A 的列向量组线性相关, (F)A 的行向量组线性相关, (D) A 的行向量组线性相关,【详解1】 设A 为m n 矩阵,B 为n s 矩阵,则由AB=O 知,r(A) r(B) n .又 A,B 为非零矩阵,必有 r(A)>0,r(B)>0. 可见 r(A)<n, r(B)<n, 即 A 的列向量组线性相关, B 的行向量组线 性相关,故应选 (A).【详解 2】 由 AB=O 知, B 的每一列均为 Ax=0 的解,而 B 为非零矩阵,即 Ax=0 存在非零解,可见 A 的列向量组线性相关 .B 的行向量组线性相关B 的列向量组线性相关 B 的行向量组线性相关B 的列向量组线性相关【分析 】A,B 的行列向量组是否线性相关,可从 零解进行分析讨论 .A,B 是否行(或列)满秩或 Ax=0 (Bx=0 )是否有非同理,由AB=O知,B T A T O,于是有B T的列向量组,从而B的行向量组线性相关,故应选(A).【评注】AB=O是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=O r(A) r(B) n;2) AB=O B的每列均为Ax=0的解.(13)设随机变量X服从正态分布N(0,1),对给定的(0 1),数u满足P{X u } ,若P{X x} ,则x等于(A) u_2(B) u1 -2(C) u L~2(D) u1(A) Cov(X n Y) (B) Cov(X「Y)Cov(X1, X i) 1Cov(X1,X1) 1 Cov(X1,X i)n i 1 n n i 2【分析】此类问题的求解,可通过u的定义进行分析, 也可通过画出草图, 直观地得到结论【详解】由标准正态分布概率密度函数的对称性知,P{XP{X x} P{X x} P{X x} P{X x} 2P{X x}即有P{X x}1,可见根据定义有x2本题【评注】A,故应选(C).u相当于分位数,直观地有2(14)设随机变量X1,X2, ,X n( n 1)独立同分布,且其方差为nX i,则n i 1(C) D(X1 Y) (D)【分析】本题用n方差和协方差D(X1 Y)-n的运算性质直接计算即可,注意利用独立性有:Cov(X1,X i) 0,i 2,3, n.【详解】Cov( X1,Y)(x) (e 2)= -DX 11 2.n n本题(C),(D)两个选项的方差也可直接计算得到:如2n 3n2 nn 2 2n 22n(15) (本题满分12分)$ (b a). e【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明In 2 b In 2 a24In x ,则e【证法1】 对函数2In x 在[a,b ]上应用拉格朗日中值定理,设(t)平,则(t),当t>e 时,0, 所以(t)单调减少,从而2 (e ),即In In e~2e2~~2,e故 In 2 b In 2 a 4(b a).所以当 即当e(x) (x) x>e 时, 2 .x e 时,In x 2 -xJ In x 2 2x(x)0,4_2 , e (x)单调减少,从而当(x)单调增加.e 2时,【评注】 D(X iY) D(^X 1n-X 2 n^X n ) n(1 n)2 n 2n 1 22nD(X in 1 Y) D( X 1n 1 X n )n(n 1)2 2nn 1 22~n2o2设 e a b e ,证明 In b In ab.【证法2】(x)因此当e x e 2时,(b)(a),v 0解得C v 0,两端积分得通解 v Cek —tm,代入初始条件v即 ln 2beln 2a4 ~~2a,故In 2 b ln 2 af (b e a).【评注】 本题也可设辅助函数为(x) 2 2 42In x In a 2 (x a),e a x e 或 e(x) ln 2 b ln 2 x$(b x),e x b2e ,再用单调性进行证明即可.e(16) (本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使 飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可 【详解1】 由题设,飞机的质量 m=9000kg ,着陆时的水平速度 v 0 700km/h .从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得dvm kv . dt dv dx dx dt所以,飞机滑行的最长距离为 1.05km.dvvdx ,又史dt由以上两式得dx 积分得x(t) x(t)m .dv ,k mv k m (v0 kC. 由于v(0)V 0, x(0)0,故得C — v °,从而k当 v(t)0时, v(t)). x(t)mv °k9000 700 66.0 101.05(km).【详解2】 根据牛顿第二定律,得 dv m — dtkv ,所以dv±dt. m【详解】取1为xoy 平面上被圆x 2 y 2 1所围部分的下侧,记 为由 与1围成的空间闭区域,(17) (本题满分12分) 计算曲面积分2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,其中是曲面z 1 x 2 y 2(z 0)的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直 接投影法求解即可.jkt故 v(t)v 0e m .飞机滑行的最长距离为v(t)dtmv ° ekmv ° k1.05( km).或由dr上t v °e m,知x(t)t0v 0e上tmdtItm1),故最长距离为当t时,kv ox(t)m1.05(km).【详解3】 根据牛顿第二定律,d 2x m —亏dt 2dx k , dtd 2x dt 2k dx dt其特征方程为解之得m0, 2C 2edxx0,v --t 01 t 0dtkC 2 emV 0,得C 1C 2x(t) mv 0Atm).所以, 时,x(t)mv 0 1.05(km).k飞机滑行的最长距离为1.05km.【评注】本题求飞机滑行的最长距离, 可理解为t 或v(t)0的极限值,这种条件应引起注意•由 mv 0t 0C 1 Jkt m3 3 2I 2x dydz 2y dzdx 3(z 1)dxdy13 3 22x dydz 2y dzdx 3(z 1)dxdy.1由高斯公式知3 3 22x dydz 2y dzdx 3(z 1)dxdy122 1 1 r 2 2=6 d dr (z r )rdz3322x dydz 2y dzdx 3(z1 )dxdy 3dxdy 3x 2 y 2 1故123【评注】 本题选择 1时应注意其侧与围成封闭曲面后同为外侧(或内侧),再就是在 1上直接投影积分时,应注意符号(1取下侧,与z 轴正向相反,所以取负号).(18) (本题满分11分) 设有方程x nnx 1 0,其中n 为正整数.证明此方程存在惟一正实根 x n ,并证明当 1时,级数x n 收敛.n 1【分析】利用介值定理证明存在性,利用单调性证明惟一性 .而正项级数的敛散性可用比较法判定 .【证】记 f n (x)x n nx 1.由f n (O) 1 0, f n (1) n 0,及连续函数的介值定理知,方程x n nx 10存在正实数根x n (0,1).当x>0时,f n (x) n x n 1 n 0,可见f n (x)在[0,)上单调增加,故方程x n nx 1 0存在惟一正实数根 X n ・由x n nx1 0与 X n0知1 X :11 0 X n,故当1 时,0 X n(-).n nn 而正项级数1丄收敛, 所以当1时,级数x n 收敛n 1nn 1【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要2 26( x y z)dxdydz=121[1r(1 r 2) 22、2 r 3(1 r 2)]dr1(9, 3, 3)i ,C2z2x2z2z(9, 3, 3)(9, 3, 3)基本概念清楚,应该可以轻松求证 (19) (本题满分12分)设z=z(x,y)是由x 2 6xy 10y 2 2yz z 218 0确定的函数,求z z(x, y)的极值点和极值【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然 后用二阶偏导确定是极大值还是极小值,并求出相应的极值2 2 2因为 x 6xy 10y 2yz z 18 0,所以2x 6y 2^z 2z^0,x x6x 20 y 2z 2y-^ 2z —z 0. y y故 x 3y , z y.x 9, x 9, y 3, 或 y 3, z 3z3.类似地,由【详解】—0, x —0 yx 3y 0, 3x 10y z 0,将上式代入x 26xy 10y 2 2yz z 218 0,可得由于22 2— 2(上)2x x2z2z2x2z2yx y2z2z0,202— 2二 y y2y- 2z 2y2(二)2 y22z z y 0,2所以 A—z x1 B2 z1,C2z5 (9,3,3)6,x y(9,3,3)2y(9,3,3)3,21 1 故 AC B 236,又A6z(9,3)=3.6xxx y0 ,从而点(9,3)是z(x,y)的极小值点,极小值为21 1 可知AC B 0,又A0 ,从而点(-9,-3)是z(x,y)的极大值点,极大值为366z(-9, -3)= -3.【评注】本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意 x,y,z 满足原方程•(20) (本题满分9分) 设有齐次线性方程组(1 a)x 1 X 2 X n 0, 2捲 (2 a)X 2 2x n 0, (n 2)n% nx 2(n a)X n0,试问a 取何值时,该方程组有非零解,并求出其通解【分析】本题是方程的个数与未知量的个数相同的齐次线性方程组, 可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于 n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵 A 作初等行变换,有1 a 1 1 1 1 a 1 11A2 2 a 2 2 2a aBnnnn ana 0 0 a当a=0时,r(A)=1<n ,故方程组有非零解,其同解方程组为X i X 2x n 0,由此得基础解系为1( 1,1,0,,0)T,2( 1,0,1, ,0)Tj , n 1 (1,0,0,,1)T ,于是方程组的通解为x k 1 1 k n 1 n 1,其中k 1, ,k n1为任意常数.当a 0时,对矩阵B作初等行变换, 有1 a 11 1a n(n 1)0 0 0 B2 1 0 022 1n 00 1n0 01可知an(n 2 1)时,r(A) n 1 n ,故方程组也有非零解,其同解方程组为2%X20, 3%X3,n^X n0 ,由此得基础解系为(1,2, ,n)T,于是方程组的通解为x k ,其中k为任意常数. 【详解2】方程组的系数行列式为1 a 1 12 2 a 2An n n当A 0,即a=0或a n(n 1)时,方程组有非零解2当a=0时,对系数矩阵A作初等行变换,有1 1 11 1 1112 2 220 000An n n n0 00 00故方程组的同解方程组为x1x2X n 0,由此得基础解系为1 ( 1,1,0, ,0)T,2 ( 1,0,1,,0)T,,n 1(1,0,0, ,1)T于是方程组的通解为x k1 1 k n 1 n 1 ,其中k1, , k n 1为任意常数a2卫时,对系数矩阵A作初等行变换,有1 a111 1 a 1112 A 2 a222a a00n n n n a na 00a(a 3)a n112 3E A1 4 31a 511 0 =(2) 14 31a52 (2) 0 14 3 1a522 16 18 3a 0,解得 a= -2.1 a 1 1 1 0 0 0 02 1 0 0 2 1 0 0 n 01n 01故方程组的同解方程组为2% x 2 0,3x 1 X 30,n% x 0,由此得基础解系为(1,2, ,n)T ,于是方程组的通解为x k ,其中k 为任意常数【评注】 矩阵A 的行列式 A 也可这样计算:1 a 1 1 1 1 1 11 1 1 1 1 A2 2 a 2 2 2 =aE +2 22,矩阵2 2 2 2的nnnn an n nn n n nn特征值为0,,0, n(n °,从而A 的特征值为a,a, ,a n(n 1),故行列式 A (a n(n 1))a n 1.2 2 2(21) (本题满分9分)1 23设矩阵A 1 43的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.1 a 5【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可•【详解】 A 的特征多项式为(2)( 2 8 18 3a).2是特征方程的二重根,则有323a2时,A的特征值为2, 4,4,矩阵4E-A= 103秩为2,故4对应的线性无关32113的特征向量只有一个,从而A不可相似对角化求:(I)二维随机变量(X,Y)的概率分布;(II) X和Y的相关系数XY-【分析】先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I) 由于P(AB) P(A)P(BA) 2,P(B)P(AB) 1 P(AB) 6'所以,P{X1,Y1}1 P(AB)—,12P{X1,Y0}P(AB) P(A)P(AB)1 6P{X0,Y1}P(AB) P(B)P(AB)1 12,1 当a= -2时,A的特征值为2,2,6,矩阵2E-A=12 32 3的秩为1,故2 32对应的线性无关的特征向量有两个,从而A可相似对角化.若2不是特征方程的二重根,则18 3a为完全平方,从而18+3a=16,解得a【评注】n阶矩阵A可对角化的充要条件是: 对于A的任意k i重特征根i,恒有n r( i E A) 而单根一定只有一个线性无关的特征向量•(22) (本题满分9分)1设A,B为随机事件,且P(A) -,P(B A)43,P(AB)1, A发生,0, A不发1, B发生,P{X 0,Y 0} P(AB) 1 P(A B)=1 P(A) P(B) P(AB)(或P{X 0,Y 0}故(X,Y)的概率分布为i 1 1 丄2),12 6 12 3【评注】本题尽管难度不大,但考察的知识点很多,综合性较强•通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意(23)(本题满分9分)设总体X的分布函数为1,X1,X2, ,X n为来自总体X的简单随机样本,求:(I) 的矩估计量;(II) 的最大似然估计量•【分析】先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可【详解】X的概率密度为——X 1,X 1,40, X「(I)由于则EXX01Y013151P——P一—446611351-,EY DX DY=——,E(XY)=46163612'(II) X, Y的概率分布分别为故Cov(X,Y) E (XY) EX EY —,从而24XYCov(X,Y) 1515F(x,)x0,1,1其中未知参数f(x,)1,X i 1(i 1,2, ,n),(X 1X 2 X n )0,其他 n1) In X i , i 1dInL()d故的最大似然估计量为 nnIn X ii 1难度不大,但计算量比较大,实际做题时应特别注意计算的准确性 EX Xf (X ; )dX X — 1 X T dx 令X ,解得 1 1,所以参数 的矩估计量为(II )似然函数为两边对求导,得 令dInL( ) 0,可得 d nn, In x ii 1L() f (X i ; 当x i1(i 1,2, ,n)时, L( 0,取对数得 lnL()n In In X i ,【评注】本题是基础题型,。
2004年考研数学一试题与答案解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ .(2)已知(e )e x xf x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 (A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n na收敛,则0lim 2=∞→n n a n(D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f -(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ= (C)212)(σnn Y X D +=+(D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时) (17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10n x nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1nn x α∞=∑收敛. (19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n n n a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2004年考研数学试题答案与解析(数学一)一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y . 本题比较简单,类似例题在一般教科书上均可找到.(2)已知xx xe e f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x .【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221x c x c y +=.【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可.【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-, ][11122222222dt dydty d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dy dty d , 解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91. 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B 【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可.【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 22002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx xx dtt dtt x x xx x tan 221sin lim tan sin lim lim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序.(8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n n n a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ] 【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=t tydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系.(12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关.(C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT=,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A).【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论.【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αuα 21α-(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+ =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(t t t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b ea b ->-. 【证法2】 设x ex x 224ln )(-=ϕ,则24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a e a b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm-=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCev -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dtdx -=0,知)1()(000--==--⎰t m kt t mke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dt dxm k dtx d , 其特征方程为02=+λλm k ,解之得mk-==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意.(17)(本题满分12分) 计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy zdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知dxdydz z y x dxdy z dzdx y dydz x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n 存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A00002111122221111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P)(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32 121 1 61 121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121, 故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而 .1515),(=⋅=DY DX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量;(II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ (I ) 由于1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX ,令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为.1ˆ-=X X β (II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可。
【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分。
完全类似的例题见《数学复习指南》P89第8题, P90第11题.(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。
【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.完全类似例题见《数学题型集粹与练习题集》P143例10.11,《考研数学大串讲》P122例5、例7 .(4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221x c x c y +=.【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可。
【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-, ][11122222222dt dydty d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- 完全类似的例题见《数学复习指南》P171例6.19, 《数学题型集粹与练习题集》P342第六题.,《考研数学大串讲》P75例12.(5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91. 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B 【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简。
完全类似例题见《数学最后冲刺》P107例2,P118例9 (6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可。
【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{ =.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算。
完全类似例题见《数学一临考演习》P35第5题.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 202002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项,又 xx xx dtt dtt x xxx x tan 221sin lim tan sin lim lim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. 完全类似例题见《数学一临考演习》P28第9题.(8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可。
【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论。
完全类似例题见《数学一临考演习》P28第10题. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n n n a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B).完全类似的例题见《数学复习指南》P213例8.13.(10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可。
关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=t tydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上。
完全类似例题见《数学最后冲刺》P184例12,先交换积分次序再求导.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积。
【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系。
完全类似例题见《数学题型集粹与练习题集》P196例2.2(12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关。