ok全大学物理知识点
大学物理知识点总结汇总

大学物理知识点总结大学物理知识点总结汇总大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。
欢迎阅读参考学习!一、物体的内能1.分子的动能物体内所有分子的动能的平均值叫做分子的平均动能.温度升高,分子热运动的平均动能越大.温度越低,分子热运动的平均动能越小.温度是物体分子热运动的平均动能的标志.2.分子势能由分子间的相互作用和相对位置决定的能量叫分子势能.分子力做正功,分子势能减少,分子力做负功,分子势能增加。
在平衡位置时(r=r0),分子势能最小.分子势能的大小跟物体的体积有关系.3.物体的内能(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能.(2)分子平均动能与温度的关系由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。
(3)分子势能与体积的关系分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。
而分子力与分子间距有关,分子间距的'变化则又影响着大量分子所组成的宏观物体的体积。
这就在分子势能与物体体积间建立起某种联系。
因此分子势能分子势能跟体积有关系,由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加;体积变化时,分子势能发生变化,因而物体的内能发生变化.此外, 物体的内能还跟物体的质量和物态有关。
二.改变物体内能的两种方式1.做功可以改变物体的内能.2.热传递也做功可以改变物体的内能.能够改变物体内能的物理过程有两种:做功和热传递.注意:做功和热传递对改变物体的内能是等效的.但是在本质上有区别:做功涉及到其它形式的能与内能相互转化的过程,而热传递则只涉及到内能在不同物体间的转移。
大学物理知识点汇总

大学物理知识点汇总一、质点运动学1、描述质点运动的物理量位置、速度、加速度、动量、动能、角速度、角动量2、直线运动与曲线运动的分类直线运动:加速度与速度在同一直线上;曲线运动:加速度与速度不在同一直线上。
3、速度与加速度的关系速度与加速度方向相同,物体做加速运动;速度与加速度方向相反,物体做减速运动。
二、牛顿运动定律1、牛顿第一定律:力是改变物体运动状态的原因。
2、牛顿第二定律:物体的加速度与所受合外力成正比,与物体的质量成反比。
3、牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在同一条直线上。
三、动量1、动量的定义:物体的质量和速度的乘积。
2、动量的计算公式:p = mv。
3、动量守恒定律:在不受外力作用的系统中,动量守恒。
四、能量1、动能:物体由于运动而具有的能量。
表达式:1/2mv²。
2、重力势能:物体由于被举高而具有的能量。
表达式:mgh。
3、动能定理:合外力对物体做的功等于物体动能的改变量。
表达式:W = 1/2mv² - 1/2mv0²。
4、机械能守恒定律:在只有重力或弹力对物体做功的系统中,物体的动能和势能相互转化,机械能总量保持不变。
表达式:mgh + 1/2mv ² = EK0 + EKt。
五、刚体与流体1、刚体的定义:不发生形变的物体。
2、刚体的转动惯量:转动惯量是表示刚体转动时惯性大小的物理量,它与刚体的质量、形状和转动轴的位置有关。
大学物理电磁学知识点汇总一、电荷和静电场1、电荷:电荷是带电的基本粒子,有正电荷和负电荷两种,电荷守恒。
2、静电场:由静止电荷在其周围空间产生的电场,称为静电场。
3、电场强度:描述静电场中某点电场强弱的物理量,称为电场强度。
4、高斯定理:在真空中,通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空介电常数。
5、静电场中的导体和电介质:导体是指电阻率为无穷大的物质,在静电场中会感应出电荷;电介质是指电阻率不为零的物质,在静电场中会发生极化现象。
大学物理知识点

大学物理知识点大学物理知识点大学物理是一门涉及自然界中各种现象和规律的科学,它研究的对象包括物质结构、运动、能量等方面。
在大学物理学习的过程中,有一些重要的知识点是必须掌握的,下面我将列举一些重要的知识点。
1. 力和力的分解:力是物体运动和形态变化的原因,常见的力有重力、弹力、摩擦力等。
在研究物体的运动时,我们需要将一个力分解为多个分力,以便更好地理解物体的运动规律。
2. 力的合成:当多个力作用在一个物体上时,它们会相互合成,形成一个合力。
合力的大小和方向由各个力的大小和方向决定。
3. 牛顿三定律:牛顿三定律是力学的基本定律,包括第一定律(惯性定律)、第二定律(运动定律)和第三定律(作用-反作用定律)。
它们描述了物体运动的规律和物体之间相互作用力的性质。
4. 力的作用距离:力在施力点处产生,但是其效果可以作用于施力点的任意一点。
力的作用距离是力矩的物理量,它等于施力点到力线的垂直距离乘以力的大小。
5. 力的能量转换:力和能量是物体运动和形态变化的基本原因和表现。
力可以改变物体的形态和运动状态,使物体具有能量。
6. 力学平衡:在力学中,力的合成为零的状态被称为力学平衡。
当物体处于力学平衡时,它不会发生形态和运动上的变化。
7. 动力学:动力学是研究力的作用和物体的运动规律的学科。
它主要研究力和质量之间的关系,以及物体在受力作用下的运动规律。
8. 转动运动:转动运动是物体绕一定轴线旋转的运动。
研究转动运动时,我们需要考虑力矩、转动惯量等物理量。
9. 机械波:机械波是由介质振动引起的波动。
它包括纵波和横波两类,常见的机械波有声波、水波等。
10. 光学:光学研究光的传播和作用规律。
它包括几何光学和物理光学两个方面,几何光学主要研究光的传播路径和成像,物理光学则研究光的波动性质。
以上是一些大学物理的重要知识点,它们是理解自然界运动和变化规律的基础。
在物理学习过程中,我们需要深入理解这些知识点,并能够将它们应用到实际问题中,以便更好地理解和解释物理现象。
大一物理知识点总结分章节

大一物理知识点总结分章节大一物理知识点总结第一章:力学1.1 物体和力1.1.1 物体的质量和体积1.1.2 力的概念和特点1.2 运动学1.2.1 位移、速度和加速度1.2.2 直线运动和曲线运动1.2.3 牛顿第一定律和第二定律1.3 力学中的能量1.3.1 动能和势能1.3.2 动能定理和机械能守恒定律1.4 静力学1.4.1 平衡条件和力的合成1.4.2 浮力和密度的关系第二章:热学2.1 温度和热量2.1.1 温度的测量和单位2.1.2 热量的传递和能量守恒定律2.2 热力学定律2.2.1 理想气体定律2.2.2 热传导和传热方式2.2.3 热机和热效率第三章:电学3.1 静电学3.1.1 电荷和库仑定律3.1.2 电场和电势3.2 电流和电阻3.2.1 电流的概念和测量3.2.2 电阻的概念和欧姆定律 3.2.3 欧姆定律的应用3.3 电路和电源3.3.1 并联电路和串联电路3.3.2 电源的类型和特点第四章:光学4.1 光的传播和光的特性4.1.1 光的传播模型4.1.2 光的直线传播和光的反射4.2 光的折射和色散4.2.1 光的折射定律4.2.2 光的色散和光的全反射4.3 光的成像和光学仪器4.3.1 光的成像原理4.3.2 凸透镜和凹透镜的成像第五章:波动与声学5.1 机械波的传播性质5.1.1 机械波的分类和传播特性5.1.2 波的叠加和波的干涉5.2 声音的产生和传播5.2.1 声音的产生原理和声音的特性5.2.2 声音的传播和声音的衰减5.3 声学应用和超声波5.3.1 声音的应用领域5.3.2 超声波的产生和应用以上为大一物理知识点总结的基本章节内容,每个章节可以进一步展开相关知识点的详细解释和应用案例。
希望这份总结对你的学习有所帮助!。
大学物理各章主要知识点总结

05
第五章:电磁场的基本规律
静电场
1 2
静电场的定义
电荷在空间中激发的电场,静止电荷的电场称 为静电场。
静电场的性质
高斯定理、环路定理、电场力的性质、电容和 电场的能量。
3
静电场的应用
静电场中物体的平衡、静电屏蔽、电容器的充 放电等。
恒定磁场
恒定磁场的定义
电流在空间中产生的磁场,恒定磁场与时间 无关。
开尔文表述
不可能制成一种循环动作的热机,从单一热源取 热,使之完全变为功而不引起其它变化。
卡诺循环
01
02
03
卡诺循环
卡诺循环是一种理想的热 机循环,它由两个等温过 程和两个绝热过程组成。
卡诺循环的效率
卡诺循环的效率是所有热 机效率的最高值,它等于 两个热源温度之比。
卡诺机的效率
卡诺机的效率是所有热机 效率的最高值,它等于两 个热源温度之比。
大学物理各章主要知识点总结
xx年xx月xx日
contents
目录
• 第一章:力和运动 • 第二章:能量与动量 • 第三章:振动与波 • 第四章:热力学基础 • 第五章:电磁场的基本规律 • 第六章:波动光学 • 第七章:量子物理基础 • 第八章:相对论力学基础
01
第一章:力和运动
动力学基本概念
力的概念
力是物体间的相互作用,具有 大小、方向和作用点三个要素
。
牛顿运动定律
牛顿运动定律是描述物体运动和 作用力关系的定律,包括惯性定 律、运动定律和作用与反作用定 律。
力的分类
根据力的作用方式,力可分为保守 力和非保守力;根据力的作用效果 ,力可分为汇交力和张力。
牛顿运动定律
惯性定律
大学物理 全册 知识要点

3. 只适用于惯性系; 只适用于惯性系; 4. 比牛顿定律更普遍的最基本的定律 比牛顿定律更普遍的最基本的定律.
三. 功、功率 功描述力的空间累积效应 功描述力的空间累积效应 空间累积 功率反映力做功快慢 四. 动能、动能定理 动能、 动能
W =
∫
B
A
F ⋅ dr
dW P= = F ⋅v dt
2
力学
第一章
位置矢量 位移矢量 速度 加速度
r ∆r v
∆v dv d r a = lim = = 2 ∆t →0 ∆t dt dt
2
∆r d r = v = lim ∆t → 0 ∆t dt
a
。
路程和位移的区别
dθ v = 角速度为: ω = dt R
角加速度为:
dω a= dt
。 质点运动学的两类问题是: 第一类问题:已知质点的运动方程,求质点在任意时刻的速度 和加速度,从而得知质点运动的全部情况——用微分方法求解; 第二类问题:已知质点在任意时刻的速度(或加速度)以及初 始状态,求质点的运动方程——用积分方法求解。
a = −ω x
2
对给定振动系统,周期由系统本身性质决定, 对给定振动系统,周期由系统本身性质决定, 振幅和初相由初始条件决定. 振幅和初相由初始条件决定 实例 : 弹簧振子
ω= k m
单摆
ω= g l
y vm
ωt + ϕ
0
π ωt +ϕ + 2
an
A
vm = Aω
ω
an = Aω
2
a v
x
x = A cos(ωt + ϕ )
功W
内能变化
0
P (V2 − V1 )
大学物理知识点总结

大学物理知识点总结第一章声现象知识归纳1 . 声音的发生:由物体的振动而产生。
振动停止,发声也停止。
2.声音的传播:声音靠介质传播。
真空不能传声。
通常我们听到的声音是靠空气传来的。
3.声速:在空气中传播速度是:340米/秒。
声音在固体传播比液体快,而在液体传播又比空气体快。
4.利用回声可测距离:S=1/2vt5.乐音的三个特征:音调、响度、音色。
(1)音调:是指声音的高低,它与发声体的频率有关系。
(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。
6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。
7.可听声:频率在20Hz~20XX0Hz之间的声波:超声波:频率高于20XX0Hz的声波;次声波:频率低于20Hz的声波。
8.超声波特点:方向性好、穿透能力强、声能较集中。
具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。
9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。
一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。
它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。
第二章物态变化知识归纳1. 温度:是指物体的冷热程度。
测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。
2. 摄氏温度(℃):单位是摄氏度。
1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。
3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。
体温计:测量范围是35℃至42℃,每一小格是℃。
4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。
大学物理学基础知识

大学物理学基础知识介绍:大学物理学基础知识是物理学专业学习的重要基础,它涵盖了力学、热学、电磁学、光学等方面的基本概念和原理。
本文将针对这些基础知识进行详细的解释和阐述。
一、力学力学是物理学的基础分支之一,它研究物体的运动和相互作用。
力学分为经典力学和量子力学,其中经典力学是物体在相对较低速度和宏观尺度下的运动规律的描述,而量子力学则是研究微观粒子的运动和相互作用。
1. 力和运动力是引起物体产生加速度的原因,通常用矢量表示。
牛顿第一定律说明了物体在受力作用下会发生运动,而没有外力作用时,物体将保持静止状态或匀速直线运动。
2. 牛顿定律牛顿第二定律指出,物体的加速度与作用在它上面的力成正比,与物体的质量成反比。
这一定律用公式F=ma表示,其中F为物体受到的力,m为物体的质量,a为物体的加速度。
3. 动能和势能动能是物体运动时具有的能量,它的大小等于物体的质量乘以速度的平方的一半。
势能是物体由于位置而具有的能量,主要包括重力势能和弹性势能。
4. 行星运动行星运动是力学中的一个重要研究对象,它遵循开普勒三定律。
第一定律指出,行星沿椭圆轨道绕太阳运动;第二定律说明行星在轨道上飞行时速度是不断变化的;第三定律表明行星绕太阳的轨道周期平方与平均轨道半径的立方成正比。
二、热学热学是研究热量和温度变化以及它们对物体性质影响的科学。
热学的基本定律是热力学定律,它包括热平衡定律、热力学第一定律和热力学第二定律。
1. 温度和热量温度是描述物体热平衡状态的物理量,常用单位是摄氏度。
热量是能够传递给物体或从物体中传出的能量,它的单位是焦耳。
2. 热力学第一定律热力学第一定律指出,能量在物体内部的转化是可以实现的,但总能量的量不变。
这一定律可以用公式ΔU = Q - W表示,其中ΔU表示物体内能的变化,Q表示吸热,W表示对外做功。
3. 热力学第二定律热力学第二定律是热学中最重要的定律之一,它指出热量不能自发地从低温物体传递到高温物体,而是会自发地从高温物体传递到低温物体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o k全大学物理知识点 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-第一章 质点运动学主要内容一. 描述运动的物理量1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt = 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度v a t∆=∆ 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动)1.线量:线位移s 、线速度ds v dt =切向加速度t dv a dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
2.角量:角位移θ(单位rad )、角速度d dtθω=(单位1rad s -⋅) 角速度22d d dt dt θωα==(单位2rad s -⋅) 3.线量与角量关系:2 = t n s R v R a R a R θωαω===、、、 4.匀变速率圆周运动:(1) 线量关系020220122v v at s v t at v v as =+⎧⎪⎪=+⎨⎪⎪-=⎩ (2) 角量关系020220122t t t ωωαθωαωωαθ=+⎧⎪⎪=+⎨⎪⎪-=⎩第二章 牛顿运动定律主要内容一、牛顿第二定律 物体动量随时间的变化率dp dt 等于作用于物体的合外力即: i F =F =dP dmv F dt dt =, m =常量时 dV F =m F =ma dt 或 说明:(1)只适用质点;(2) F为合力 ;(3) a F 与是瞬时关系和矢量关系; (4) 解题时常用牛顿定律分量式(平面直角坐标系中)x x yy F ma F ma F ma =⎧=⎨=⎩ (一般物体作直线运动情况)(自然坐标系中) ⎪⎩⎪⎨⎧====⇒=(切向)(法向)dt dv m ma F r v m ma F a m F t t n n 2(物体作曲线运动) 运用牛顿定律解题的基本方法可归纳为四个步骤运用牛顿解题的步骤:1)弄清条件、明确问题(弄清已知条件、明确所求的问题及研究对象)2)隔离物体、受力分析(对研究物体的单独画一简图,进行受力分析)3)建立坐标,列运动方程(一般列分量式);4) 文字运算、代入数据举例:如图所示,把质量为10m kg =的小球挂在倾角030θ=的光滑斜面上,求(1) 当斜面以13a g =的加速度水平向右运动时, (2) 绳中张力和小球对斜面的正压力。
解:1) 研究对象小球2)隔离小球、小球受力分析3)建立坐标,列运动方程(一般列分量式);:cos30sin 30T x F N ma -= (1):sin 30cos300T y F N mg +-= (2)4) 文字运算、代入数据:2T x N ma -= (13a g =) (3) : 2T y F mg = (4)(2)由运动方程,N =0情况第三章 动量守恒和能量守恒定律主要内容一. 动量定理和动量守恒定理1. 冲量和动量21t t I Fdt =⎰称为在21t t -时间内,力F 对质点的冲量。
质量m 与速度v 乘积称动量P mv =2. 质点的动量定理:2121t t I F dt mv mv ==-⎰ 质点的动量定理的分量式:3. 质点系的动量定理:21t 000t =-=-∑∑∑⎰n n nex i i i i i i i F dt m v m v P P 质点系的动量定理分量式x x ox y y oy zz oz I P P I P P I P P =-⎧⎪=-⎨⎪=-⎩动量定理微分形式,在dt 时间内: =dP Fdt dP F dt=或 4. 动量守恒定理:当系统所受合外力为零时,系统的总动量将保持不变,称为动量守恒定律动量守恒定律分量式:二.功和功率、保守力的功、势能1.功和功率:质点从a 点运动到b 点变力F 所做功cos θ=⋅=⎰⎰b b a a W F dr F ds 恒力的功:cos W F r F r θ=∆=⋅∆功率:cos θ===dw p F v F v dt 2.保守力的功物体沿任意路径运动一周时,保守力对它作的功为零0==⎰clW F dr 3.势能 保守力功等于势能增量的负值,()0=--=-p p p w E E E 物体在空间某点位置的势能()p E x,y,zex in 2201122n n nn i i i i i i i i W W mv mv +=-∑∑∑∑三.动能定理、功能原理、机械能守恒守恒1. 动能定理 质点动能定理:2201122=-W mv mv 质点系动能定理:作用于系统一切外力做功与一切内力作功之和等于系统动能的增量2.功能原理:外力功与非保守内力功之和等于系统机械能(动能+势能)的增量 机械能守恒定律:只有保守内力作功的情况下,质点系的机械能保持不变第四章 刚 体 力 学 基 础知识点:1. 描述刚体定轴转动的物理量及运动学公式。
2. 刚体定轴转动定律3. 刚体的转动惯量∑∆=2i i r m I (离散质点)⎰=dm r I 2 (连续分布质点)平行轴定理 2ml I I c +=4. 定轴转动刚体的角动量定理定轴转动刚体的角动量L I ω= 刚体角动量定理 ()d I dL M dt dtω== 5. 角动量守恒定律刚体所受的外力对某固定轴的合外力矩为零时,则刚体对此轴的总角动量保持不变。
即6. 定轴转动刚体的机械能守恒只有保守力的力矩作功时,刚体的转动动能与转动势能之和为常量。
式中h c 是刚体的质心到零势面的距离。
重点:1. 掌握描述刚体定轴转动的角位移、角速度和角加速度等概念及联系它们的运动学公式。
2. 掌握刚体定轴转动定理,并能用它求解定轴转动刚体和质点联动问题。
3. 会计算力矩的功、定轴转动刚体的动能和重力势能,能在有刚体做定轴转动的问题中正确的应用机械能守恒定律。
4. 会计算刚体对固定轴的角动量,并能对含有定轴转动刚体在内的系统正确应用角动量守恒定律。
难点:1. 正确运用刚体定轴转动定理求解问题。
2. 对含有定轴转动刚体在内的系统正确应用角动量守恒定律和机械能守恒定律。
第五章机械振动主要内容一. 简谐运动振动:描述物质运动状态的物理量在某一数值附近作周期性变化。
机械振动:物体在某一位置附近作周期性的往复运动。
简谐运动动力学特征:F kx =-简谐运动运动学特征:2a x ω=-简谐运动方程: cos()x A t简谐振动物体的速度:sin dx v A t dt 加速度222cos d xa A t dt速度的最大值m v A , 加速度的最大值2m a A二. 描述谐振动的三个特征物理量1. 振幅A :2202v A x ,取决于振动系统的能量。
2. 角(圆)频率:22T ,取决于振动系统的性质 对于弹簧振子k m 、对于单摆g l ω= 3. 相位——t ,它决定了振动系统的运动状态(,x v )0t =的相位—初相00arc v tg x 所在象限由00x v 和的正负确定:00x >,00v <,ϕ在第一象限,即ϕ取(02π) 00x <,00v <,ϕ在第二象限,即ϕ取(2ππ) 00x <,00v >,ϕ在第三象限,即ϕ取(322ππ) 00x >,00v >,ϕ在第四象限,即ϕ取(322ππ) 三. 旋转矢量法简谐运动可以用一旋转矢量(长度等于振幅)的矢端在Ox 轴上的投影点运动来描述。
1.A 的模A =振幅A ,2. 角速度大小=谐振动角频率ω3.0t =的角位置ϕ是初相4.t 时刻旋转矢量与x 轴角度是t 时刻振动相位t ωϕ+5.矢端的速度和加速度在Ox 轴上的投影点速度和加速度是谐振动的速度和加速度。
四.简谐振动的能量以弹簧振子为例:五.同方向同频率的谐振动的合成设()111cos x A t ωϕ=+2cos[()]v x a A t t uωωϕ∂==--+∂])(sin[ϕωω+--=∂∂=ux t A t y v 合成振动振幅与两分振动振幅关系为:12A A A =+合振动的振幅与两个分振动的振幅以及它们之间的相位差有关。
一般情况,相位差21ϕϕ-可以取任意值1212A A A A A -<<+第六章机械波主要内容一.波动的基本概念1.机械波:机械振动在弹性介质中的传播。
2. 波线——沿波传播方向的有向线段。
波面——振动相位相同的点所构成的曲面3.波的周期T :与质点的振动周期相同。
4. 波长λ:振动的相位在一个周期内传播的距离。
5. 波速u:振动相位传播的速度。
波速与介质的性质有关二. 简谐波沿ox 轴正方向传播的平面简谐波的波动方程质点的振动速度质点的振动加速度 这是沿ox 轴负方向传播的平面简谐波的波动方程。
三.波的干涉两列波频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象。
两列相干波加强和减弱的条件:(振幅最大,即振动加强)(振幅最小,即振动减弱)(2)若12ϕϕ=(波源初相相同)时,取21r r δ=-称为波程差。
212r r k δλ=-=± ),2,1,0(⋅⋅⋅=k 时,21A A A +=(振动加强)其他情况合振幅的数值在最大值12A A +和最小值12A A -之间。
第七章气体动理论主要内容一.理想气体状态方程:112212PV PV PV C T T T =→=; m PV RT M'=; P nkT = 8.31J R k mol =;231.3810J k k -=⨯;2316.02210A N mol -=⨯;A R N k =二. 理想气体压强公式23kt p n ε= 212kt mv ε=分子平均平动动能 三. 理想气体温度公式 四.能均分原理1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。