压电薄膜传感器及其在心脏监测中的应用
PVDF压电薄膜的力学性能和压电效应实验研究

华中科技大学硕士学位论文摘要PVDF(Polyvinylidene fluoride,聚偏氟乙烯)压电薄膜作为一种新型高分子压电材料,由其制成的传感器具有灵敏度高、频带宽、声阻抗低、电压输出高和可加工成特定形状等优点,被广泛用于各个领域。
本文对镀银PVDF压电薄膜的基本力学性能,不同温度场下的振动特性和不同厚度薄膜的压电效应进行了实验研究与分析,具体研究内容及结论如下:首先,选用了厚度分别为40μm、64μm和122μm(上下表面镀银层均为6μm)的PVDF压电薄膜,利用纤维拉伸试验机对其平行分子链方向(1方向)和垂直分子链方向(2方向)分别进行拉伸力学性能测试,获得了相应的应力-应变曲线。
试验结果表明:在弹性阶段,两个方向的力学性能较为接近,但进入塑性阶段,两个方向的力学性能差异明显,表现出强烈的各向异性。
其次,制作了厚度分别为40μm、64μm和122μm的PVDF悬臂梁试样,利用非接触式振动测试系统,测试了其在不同温度场下的振动特性,并获得了其一阶固有频率。
实验结果表明:PVDF悬臂梁的一阶固有频率随着温度增加而减小,在初始升温阶段,频率值下降较为缓慢,而当温度升高到一定值时,频率值下降较快,同时,PVDF压电薄膜厚度越小,其固有频率受温度影响越大。
最后,基于非接触式振动测试系统,对PVDF压电薄膜的压电效应进行了实验研究。
三种不同厚度PVDF悬臂板压电效应实验结果表明:电压-频率曲线与幅频响应曲线具有很好的一致性,且输出电压峰值对应的激励频率与PVDF悬臂板共振频率一致,表明PVDF压电传感器输出电压与输入应变具有很好的线性关系,适宜于应变测量,且厚度较小的PVDF压电薄膜灵敏度较高。
本文对PVDF压电薄膜的基本性能进行了实验研究与分析,为PVDF压电传感器的设计与优化提供基础数据支撑,具有重要的工程应用价值。
关键词:PVDF压电薄膜;拉伸力学性能;振动特性;压电效应华中科技大学硕士学位论文AbstractAs a novel piezoelectric polymer material, the sensors made of PVDF(polyvinylidene fluoride) piezoelectric film have the advantages of high sensitivity, wide frequency band, low acoustic impedance, high voltage output, and can be processed into specific shapes,which are widely applied in various fields. In this paper, the basic mechanical properties, the vibration characteristics under different temperature fields, and the piezoelectric effect of silver-coated PVDF piezoelectric films were studied experimentally and analyzed. The specific research contents and conclusions are as follows: First, the PVDF piezoelectric films with different thickness of 40 μm, 64 μm, and 122 μm (the thickness of coated silver on the upper and lower surfaces is 6μm) were prepared. The tensile samples of PVDF piezoelectric film were tested in two directions using a fiber tensile tester,i.e.,parallel (1 direction) and perpendicular (2 direction) to the molecular chains, and the corresponding stress-strain curves were obtained. The experimental results show that: in the elastic stage, the mechanical properties of the two directions are practically identical,however ,in the plastic stage, the mechanical properties of the two directions are significantly different, showing a strong anisotropy.Next, PVDF cantilever specimens with thicknesses of 40μm, 64μm and 122μm were prepared respectively. The non-contact vibration test system was used to test the vibration characteristics of the PVDF cantilever beam under different temperature fields, and its first-order natural frequency was obtained. The experimental results show that the first-order natural frequency of the PVDF cantilever beam decreases with increasing temperature. In the initial heating stage, the frequency decreases more slowly, and when the temperature rises to a certain degree, it declines rapidly.Besides ,the smaller the PVDF film thickness is, the greater its natural frequency is affected by the temperature.Finally, based on the non-contact vibration test system, the piezoelectric effect of PVDF was investigated experimentally. The experimental results of three different thickness PVDF cantilever plates show that the voltage-frequency curve is in good agreement with the amplitude-frequency response curve, and the excitation frequency corresponding to the peak output voltage is consistent with the resonance frequency of the华中科技大学硕士学位论文PVDF cantilever plate, indicating the sensor’s output voltage has a good linear relationship with the input strain and is suitable for strain measurement. In the same time ,the sensor made of smaller thickness has higher sensitivity.In this paper, the basic properties of PVDF piezoelectric films were experimentally researched and analyzed,which provides the basic data reference for the design and optimization of PVDF piezoelectric sensors and has much significance in engineering application.Keywords: PVDF piezoelectric films; Tensile mechanical properties; Vibration characteristics; Piezoelectric effect.华中科技大学硕士学位论文目录摘要 (I)Abstract (II)目录 (IV)1绪论 (1)1.1研究背景和意义 (1)1.2PVDF压电薄膜基本特性 (2)1.3PVDF传感器在不同应用领域国内外研究现状 (5)1.4本文主要研究内容及安排 (13)2PVDF压电薄膜力学性能实验研究 (15)2.1PVDF压电薄膜表面形貌表征 (15)2.2PVDF压电薄膜拉伸力学性能 (16)2.3实验结果及分析 (18)2.4本章小结 (22)3不同温度场下PVDF悬臂梁振动特性实验研究 (23)3.1悬臂梁固有频率 (23)3.2PVDF悬臂梁振动测试实验 (24)3.3实验结果与讨论 (27)3.4本章小结 (33)4PVDF悬臂板压电效应实验研究 (34)4.1PVDF压电传感器信号调理电路 (34)4.2PVDF悬臂板压电效应实验 (37)华中科技大学硕士学位论文4.3实验结果与分析 (40)4.4本章小结 (46)5总结与展望 (47)5.1总结 (47)5.2展望 (48)致谢 (49)参考文献 (51)华中科技大学硕士学位论文1 绪论1.1 研究背景和意义在日常生产活动中,结构的振动是一个很普遍的问题。
压电薄膜的应用

压电薄膜的应⽤压电薄膜的应⽤与研究进展1. 压电传感器的原理压电传感器是利⽤某些电介质受⼒后产⽣的压电效应制成的传感器。
所谓压电效应是指某些电介质在受到某⼀⽅向的外⼒作⽤⽽发⽣形变(包括弯曲和伸缩形变)时,由于内部电荷的极化现象,会在其表⾯产⽣电荷的现象。
压电材料可分为压电单晶、压电多晶和有机压电材料。
2. 压电薄膜传感器20世纪60年代,美国科学家发现在鲸鱼的⾻和腱内,存在着微弱的压电效应,于是开始了对其它有可能具有压电效应的有机材料的研究⼯作。
1969年Kawai(凯沃)发现在极化的含氟聚合物聚偏氟⼄烯(PVDF)中有很⾼的压电能⼒,其它材料如尼龙和PVC也都具有压电效应,但没有⼀种能像PVDF及其共聚物⼀样呈现出那么⾼的压电效应。
2.1 压电薄膜传感器的特点PVDF压电薄膜通常很薄,不但柔软、密度低、灵敏度极好,⽽且还具有很强的机械韧性,其柔顺性⽐压电陶瓷⾼出10倍。
可以说是⼀种柔性、质轻、韧度⾼的塑料膜,可制成较⼤⾯积和多种厚度。
它可以直接贴附在机件表⾯,⽽不会影响机件的机械运动,⾮常适⽤于需要⼤带宽和⾼灵敏度的应变传递。
作为⼀种执⾏器件,聚合物很低的声阻抗,使其可以有效的向空⽓和其它⽓体中传送能量。
2.2 压电薄膜的压电效应和特性参数共聚物聚偏氟⼄烯(PVDF)是⼀种经特殊加⼯后能将动能转化成电能的聚合体材料,具有很⾼的压电性能。
应⽤此种压电材料制成的传感器,当受到机械冲击或振动时,压电材料原⼦层的偶极⼦(氢—氟偶对)的排列顺序被打乱,并试图使其恢复原来的状态,这个偶极⼦被打乱的结果就是⼀个电⼦流的形成⽽产⽣电荷,这就是PVDF的压电效应。
此压电效应是可逆的,它可以把机械能转换为电能,也可以把电能转换为机械能。
即当有外载荷施加到传感器上时,就会产⽣电荷(电压),⽽当卸去外载荷时,就会产⽣⼀个极性相反的信号。
它产⽣的电压可以相当⾼,但传感器产⽣的电流却⽐较⼩。
传感器作动器图1 压电效应原理图如图1所⽰,像“海绵挤⽔”⼀样,当压电薄膜受到压⼒的作⽤时,其厚度发⽣变化,并随之产⽣了相应的电荷,这些电荷在薄膜的上下电极上积聚,从⽽产⽣了与作⽤⼒⼤⼩相对应的电荷;相反,当给压电薄膜接通变化的电压信号,会使得薄膜的上下运动或振动,从⽽产⽣作动⼒或声⾳。
基于柔性压电薄膜的可穿戴脉搏传感器设计

基于柔性压电薄膜的可穿戴脉搏传感器设计目录1. 内容综述 (2)1.1 研究背景及意义 (3)1.2 现有脉搏监测技术现状及不足 (4)1.3 本文研究目标及创新点 (5)2. 基于柔性压电薄膜的脉搏传感器工作原理 (6)2.1 压电材料的特性及应用 (7)2.2 传感器结构设计 (9)2.2.1 传感器组成部分 (10)2.2.2 柔性压电薄膜的特性与选择 (12)2.2.3 信号采集和处理电路设计 (13)2.3 脉搏信号获取及分析 (15)3. 材料及器件 (16)3.1 主流柔性压电薄膜材料研究 (17)3.2 器件加工工艺 (18)4. 实验设计与结果分析 (19)4.1 实验平台搭建 (21)4.2 传感器性能测试及分析 (22)4.3 压力感知特性研究 (24)4.3.1 传感器响应曲线 (25)4.3.2 传感器线性度分析 (27)4.4 脉搏信号采集与分析 (29)4.4.1 实验数据采集 (31)4.4.2 脉搏信号处理与提取 (31)4.4.3 信号分析与结果展示 (33)5. 讨论与结论 (34)5.1 研究成果总结和分析 (36)5.2 存在问题及未来展望 (37)1. 内容综述随着物联网与智能穿戴技术的不断进步,健康监测与远程医疗系统的发展需求日益显现。
在这个背景下,基于柔性压电薄膜的可穿戴脉搏传感器设计成为了研究热点。
该设计旨在实现实时、连续、非侵入式的生理信号监测,特别是针对心血管健康的监测。
该设计以人体脉搏信号的精准检测为目标,结合了柔性压电薄膜技术与现代传感技术,为用户提供一种舒适且可靠的新型穿戴监测方式。
柔性压电薄膜作为一种新兴材料,具有灵敏度高、响应速度快、可弯曲等特点,适用于可穿戴设备的制造。
基于柔性压电薄膜的可穿戴脉搏传感器不仅可用于医疗领域的心率失常预警、心血管疾病诊断,还可在运动健身领域用于运动效果评估和运动损伤预防等方面。
其设计理念的革新性在于将传统的医疗检测手段与现代可穿戴技术相结合,为用户提供个性化的健康监测服务。
压电薄膜传感器 生命体征

压电薄膜传感器与生命体征监测——尹思源一、特点压电薄膜拥有独一无二的特性,作为一种动态应变传感器,非常适合应用于人体皮肤表面或植入人体内部的生命信号监测。
一些薄膜元件灵敏到足以隔着外套探测出人体脉搏。
本文将着重介绍几种压电薄膜在生命特征监护方面的典型应用。
当你拉伸或弯曲一片压电聚偏氟乙烯PVDF 高分子膜(压电薄膜),薄膜上下电极表面之间就会产生一个电信号(电荷或电压),并且同拉伸或弯曲的形变成比例。
一般的压电材料都对压力敏感,但对于压电薄膜来说,在纵向施加一个很小的力时,横向上会产生很大的应力,而如果对薄膜大面积施加同样的力时,产生的应力会小很多。
因此,压电薄膜对动态应力非常敏感,28μm厚的PVDF 的灵敏度典型值为10 ~ 15mV /微应变(长度的百万分率变化)。
如图:压电薄膜很薄,质轻,非常柔软,可以无源工作,因此可以广泛应用于医用传感器,尤其是需要探测细微的信号时。
显然,该材料的特点在供电受限的情况下尤为突出(在某些结构中,甚至还可以产生少量的能量)。
而且压电薄膜极其耐用,可以经受数百万次的弯曲和振动。
二、应用1. 接触式传感器利用压电薄膜的动态应变片特性,可以轻松的将压电薄膜直接固定在人体皮肤上(例如手腕内侧)。
精量电子—美国MEAS传感器的产品型号是一款通用传感器,传感器的一侧涂有压力敏感胶。
但这款胶未经生物兼容性认证,在短期试验中可以将3M9842(聚亚安酯胶带)固定在皮肤上,再将压电薄膜传感器粘贴在3M 胶带上。
图2显示出重复握紧和松开物体时压电薄膜传感器的反应,输出振幅为3V左右(开路),或大约250με的动态应力。
压电薄膜之所以既能探测非常微小的物理信号又能感受到大幅度的活动,是因为PVDF膜的压电响应在相当大的动态范围内都是线性的(大约14个数量级)。
多数情况下,只要能明显区分目标信号和噪声的带宽,细小的目标信号都可以通过过滤器采集到。
类似的传感器已在睡眠紊乱研究中用于探测胸部、腿部、眼部肌肉和皮肤的运动。
薄膜传感器的原理及应用

薄膜传感器的原理及应用1. 薄膜传感器的概述薄膜传感器是一种基于薄膜材料的传感器,利用薄膜材料的特性来测量和检测各种物理量。
薄膜传感器具有小巧轻便、灵敏度高、可靠性好等优点,已被广泛应用于工业自动化、生物医学、环境监测等领域。
2. 薄膜传感器的工作原理薄膜传感器的工作原理基于薄膜材料在外部作用下的物理和化学变化。
常见的薄膜材料包括聚合物薄膜、金属薄膜和半导体薄膜等。
2.1 聚合物薄膜传感器聚合物薄膜传感器的工作原理是利用聚合物材料在吸附物质后的体积或电学性质的变化来测量和检测物质的浓度、压力等物理量。
当目标物质接触到聚合物薄膜时,聚合物膨胀或溶解,并产生相应的电信号。
2.2 金属薄膜传感器金属薄膜传感器的工作原理是利用金属膜的电阻、电容或感应变化来检测外部物理量。
当外部物理量作用在金属薄膜上时,金属膜的电学性质会发生变化,从而产生相应的电信号。
2.3 半导体薄膜传感器半导体薄膜传感器的工作原理是基于半导体薄膜材料在外界作用下的电学性质变化。
半导体薄膜传感器通常由一层或多层半导体薄膜组成,当目标物质接触到薄膜表面时,薄膜的电阻或电容会发生变化,从而产生相应的电信号。
3. 薄膜传感器的应用领域薄膜传感器具有广泛的应用领域,以下列举了几个典型的应用领域:•工业自动化:薄膜传感器可用于测量温度、压力、流量等工业过程中的物理量,用于控制和监测生产过程。
•生物医学:薄膜传感器可用于测量生物体内的体温、血压、心率等生理参数,用于医学监测和诊断。
•环境监测:薄膜传感器可用于检测大气中的污染物浓度、土壤中的湿度、水质中的PH值等环境参数,用于环境监测和保护。
•智能穿戴设备:薄膜传感器可用于智能手表、智能眼镜等设备中,用于检测人体姿态、运动状态等信息。
•汽车工业:薄膜传感器可用于汽车中的空气质量监测、胎压监测等应用,提高汽车驾驶的安全性和舒适性。
4. 薄膜传感器的发展趋势随着科技的不断进步和应用领域的扩展,薄膜传感器也在不断发展和创新。
压电式传感器的应用

3、常见压电材料:以石英晶体为例 天然结构石英晶体的理想外形是一个正六面体,在晶体 学中它可用三根互相垂直的轴来表示,其中纵向轴Z-Z 称为光轴;经过正六面体棱线,并垂直于光轴的X-X轴 称为电轴(electrical axis) ;与X-X轴和Z-Z轴同时 垂直的Y-Y轴(垂直于正六面体的棱面)称为机械轴。 通常把沿电轴X-X方向的 Z Z 力作用下产生电荷的压电 效应称为“纵向压电效应 Y Y ”,而把沿机械轴Y-Y方 向的力作用下产生电荷的 X 压电效应称为“横向压电 X (a) (b) 效应”,沿光轴Z-Z方向 (a)理想石英晶体的外形 (b)坐标系 理想石英晶体的外形 坐标系 受力则不产生压电效应。
压电式加速度传感器
• 压电式加速度传感器又 称压电加速度计。它也 属于惯性式传感器。它 是利用某些物质如石英 晶体的压电效应,在加 速度计受振时,质量块 加在压电元件上的力也 随之变化。当被测振动 频率远低于加速度计的 固有频率时,则力的变 化与被测加速度成正比。
常用的压电式加速度计的结构形式如图一所示。S是弹 簧,M是质块,B是基座,P是压电元件,R是夹持环。图 一a是中央安 装压缩型,压电元件—质量块—弹簧系统 装在圆形中心支柱上,支柱与基座连接。这种结构有高 的共振频率。然而基座B与测试对象连接时,如果基座B 有变形则将直接影响拾振器输出。此外,测试对象和环 境温度变化将影响压电元件,并使预紧力发生变化,易 引起温度漂移。图一c为三角剪切形,压电元件由夹持 环将其夹牢在三角形中心柱上。加速度计感受轴向振动 时,压电元件承受切应力。这种结构对底座变形和温度 变化有极好的隔离作用,有较高的共振频率和良好的线 性。图一b为环形剪切型,结构简单,能做成极小型、 高共振频率的加速度计,环形质量块粘到装在中心支柱 上的环形压电元件上。
压电薄膜传感器工作原理以及应用

压电薄膜传感器工作原理以及应用压电薄膜拥有独一无二的特性,作为一种动态应变传感器,非常适合应用于人体皮肤表面或植入人体内部的生命信号监测。
一些薄膜元件灵敏到足以隔着外套探测出人体脉搏。
本文将着重介绍几种压电薄膜在生命特征监护方面的典型应用。
工作原理当你拉伸或弯曲一片压电聚偏氟乙烯PVDF高分子膜(压电薄膜),薄膜上下电极表面之间就会产生一个电信号(电荷或电压),并且同拉伸或弯曲的形变成比例。
一般的压电材料都对压力敏感,但对于压电薄膜来说,在纵向施加一个很小的力时,横向上会产生很大的应力,而如果对薄膜大面积施加同样的力时,产生的应力会小很多。
因此,压电薄膜对动态应力非常敏感,28μm厚的PVDF的灵敏度典型值为10~15mV/微应变(长度的百万分率变化)。
使用‘动态应力’这个术语是因为形变产生的电荷会从与薄膜连接的电路流失,所以压电薄膜并不能探测静态应力。
当需要探测不同水平的预应力时,这反而成为压电薄膜的优势所在。
薄膜只感受到应力的变化量,最低响应频率可达0.1Hz。
压电薄膜传感器简介压电薄膜传感器拥有独一无二的特性,作为一种动态应变传感器,非常适合应用于人体皮肤表面或植入人体内部的生命信号监测。
一些薄膜元件灵敏到足以隔着外套探测出人体脉搏。
工采网将着重介绍几种压电薄膜在生命特征监护方面的典型应用。
压电薄膜传感器工作原理当你拉伸或弯曲一片压电聚偏氟乙烯PVDF高分子膜(压电薄膜),薄膜上下电极表面之间就会产生一个电信号(电荷或电压),并且同拉伸或弯曲的形变成比例。
一般的压电材料都对压力敏感,但对于压电薄膜来说,在纵向施加一个很小的力时,横向上会产生很大的应力,而如果对薄膜大面积施加同样的力时,产生的应力会小很多。
因此,压电薄膜对动态应力非常敏感,28μm厚的PVDF的灵敏度典型值为10~15mV/微应变(长度的百万分率变化)。
使用‘动态应力’这个术语是因为形变产生的电荷会从与薄膜连接的电路流失,所以压电薄膜并不能探测静态应力。
压电薄膜传感器

传感器 优势(yōushì)
对人体微弱生理信号的有效采集和处理一直是医疗器械领域(lǐnɡ yù)的研
究热点。目前有多种用于人体微弱信号采集的传感器。
新型高分子压电材料聚偏氟 乙烯研制的压电传感器
结构简单、灵敏度高、频带宽 能准确测量微弱的人体信号
与人体接触安全舒适,能紧贴体壁
声阻抗与人体组织声阻抗十分接近等一
精品资料
系统 硬件 系统 (xìtǒng)
(yìnɡ jiàn)
信号的处理控制部分
利用8031单片机中的两个定时器/计数器T0和T1分别工作 于定时和计数方式,对心音心电波形整形后的脉冲进行 计数,然后通过软件计算脉搏心率每分钟跳动次数,并根据软
件分析心电心音数据相关的量。
精品资料
系统 硬件 系统 (xìtǒng)
精品资料
传感器 设计 压电薄膜传感器的设计主要考虑了传感器的灵敏度和信噪
(shèjì)
比,根据测量信号的频率和响应幅度。
在采集人体心音的信号时,由于心音的频响范围(fànwéi)较宽, 同时其输出的物理信号值也很微弱,采用硬质衬底和中空的
设计。
精品资料
传感器 设计(shèjì)
优点:提高传感器中薄膜在收到心音信号时的形变量,从而提高信 号强度。
精品资料
计数,读取寄存器值,计算最终结果。
精品资料
(zǒngjié)
ห้องสมุดไป่ตู้
总 结
利用高分子压电材料聚偏氟乙稀研制成压电薄膜传感 器应用于心音心电监测系统,能够准确不失真的采集 人体微弱(wēiruò)的心音脉搏信号。该薄膜传感器与心音 心电整机之间结构、性能匹配,通过实验,本心音心 电监测系统可以初步监测人体的心音心电信号,该系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电薄膜传感器及其在心脏监测中的应用
压电薄膜传感器及其在心脏监测中的应用
一、引言
心脏疾病是造成病残和死亡的常见疾病,在发达国家中,心血管系统疾病已成为最为常见的疾病和致死的重要原因,而随着我国人口老龄化,心血管疾病的比例也一年比一年高。
心血管诊断除了临床外,主要依靠医疗器械。
心电和心音是检测心血管疾病的两种不同的手段,心电主要应用于心率失常及心肌缺血的定性与定量分析诊断,心血管药物的疗效评价。
心音图能够有效的弥补心脏听诊的不足,将心脏听诊不能记录的心音信号或不容易分辨的信号用图形的形式记录下
来,供医生分析使用[1]。
心音图结合心电图,能够大大提高心血管疾病的鉴别
和诊断水平,对于了解心血管功能,选择治疗,判断病理以及研究某些疾病的机理都提供了很有价值的资料,应用日益广泛。
对人体微弱生理信号的有效采集和处理一直是医疗器械领域的研究热点。
目前有多种用于人体微弱信号采集的传感器,如压电陶瓷传感器、多普勒效应传感器等,但在结构和成本上都存在一定的问题。
目前有一种采用新型高分子压电材料聚偏氟乙烯研制的压电传感器,其结构简单,灵敏度高,能准确测量微弱的人体信号。
我们将其应用于对人体心音信号的采集,研制了两通道的综合微型记录仪,分别动态记录心音信号和心电信号。
实验表明,该薄膜传感器与整机之间结构、性能匹配,该心音心电监测系统能够比较准确地监测分析人体心音心电信号,为系统以后的产品化奠定了基础。
二、压电薄膜传感器的设计
PVDF压电薄膜是一种新型的高分子压电材料,在医用传感器中应用很普遍
[2,3]。
它既具有压电性又有薄膜柔软的机械性能,用它制作压力传感器,具有设计精巧、使用方便、灵敏度高、频带宽、与人体接触安全舒适,能紧贴体壁,以及声阻抗与人体组织声阻抗十分接近等一系列特点[4],可用于脉搏心音等人
体信号的检测。
脉搏心音信号携带有人体重要的生理参数信息,通过对该信号的有效处理,可准确得到波形、心率次数等可为医生提供可靠的诊断依据。
压电薄膜传感器的设计主要考虑了传感器的灵敏度和信噪比,根据测量信号
的频率和响应幅度,我们设计薄膜传感器的结构有如同图1所示的几种。
在采
集人体心音的信号时,由于心音的频响范围较宽,同时其输出的物理信号值也很微弱,采用硬质衬底和中空的设计。
这样可以提高传感器中薄膜在收到心音信号时的形变量,从而提高信号强度。
这样结构设计的缺点是结构不牢固,使用时间
长了需要校正。
PVDF压电薄膜的压电常数一般为D33=15×10-12C/N,g值比较高,但是具有很高的内阻抗,一般高达1012Ω,制作出的传感器的输出阻抗较大,不利于后面的信号采集和放大。
为防止信号的衰减,我们采
用高输出阻抗的场效应管作为阻抗变换器,即为测量系统的前置电路。
我们利用结型场效应管的高输入阻抗的特点,根据其静态工作点设计阻抗变换器,,传感器获得的人体信号经过阻抗变换器后,得到可靠的低阻抗的输出信号。
其输出阻抗。
可以看出,在信号频率变化的情况下,传感器的输出阻抗保基本保持不变。
三、心脏监测系统硬件
整个硬件系统可以分为三个部分:信号的采集部分、信号的处理控制部分、信号的输出部分。
信号的采集包括心音传感器、心电电极、阻抗变换电路、滤波
器、同相放大器和模数转换电路。
信号的处理控制部分主要由8031单片机完成,信号的输出由8255芯片完成。
1、信号采集部分心音和心电综合检测系统的信号拾取包括心电和心音信号的拾取,鉴于二者的产生机理不同,该部分由心电电极和心音传感器组成。
心电电极我们采用市售的普通一次性心电电极,心音传感器采用我们自己研制PVDF
压电薄膜传感器。
通过压电薄膜传感器采集的心音信号强度仅有几个毫伏的数量级,需要对信号进行放大,我们利用一种高共模抑制比、高输入阻抗的运算放大器,利用电路的高度对称性,来控制放大倍数。
心电放大单元包括输入缓冲电路、
高共模抑制比高增益差动放大器、低通滤波器、QRS波检测电路等部分。
图3
是我们的设计的前两级放大电路的频率响应图谱。
从图中可以看出来,在包括心音和心电信号的很大的一个宽频率范围内,电路能够对信号有效放大,并且其增益基本相同。
有效的减少了由于基线和信号放大不均所造成的误诊和漏诊。
数据采集系统是很多应用领域中不可缺少的部分。
它是实时采集与温度、湿度、压力、
流量、速度等有关的连续变化的模拟量信号,通过模/数转换器把这些模拟信号
变成数字信号或直接采集代表某些状态特性的开关量,送计算机进行处理。
我们的数据采集系统的硬件结构。
图4中,译码器用最高3位进行译码。
它的输出分别作为ROM、RAM、通道地址锁存器、模/数转换器、数/模转换器、8255等片选信号。
系统配置8K 字节的EPROM监控程序,实现系统自检、输入/输出驱动;提供扩展8K字节RAM 的能力。
8路开关输入量通过光隔离器件后,直接连到P1口的8位。
8路开关
输出接口到8255P的B通道。
8模拟输入通道连接到模拟开关,用软件控制切换,分时使用一片模/数转换器。
模拟输出通道采用带输入数据缓冲器的数/模转换芯片。
系统直接使用8031片内的串行输入、输出功能作为全双工的串行输入、
输出口。
数据的采样是依据采样定理,采样定理可以描述为:只要采样频率大于模拟信号中最高频率分量频率的两倍,则模拟信号中所包含的全部信息,也包含
在它的采样值中。
根据这个定理我们可通过模/数转换器,定时(满足采样频率大于模拟信号最高频率)对检测波形进行采样,得到的采样数据(携带有检测波形的全部信息)可保存在存储器中,来实现波形的存储和输出。
我们使用8位逐次逼近式A/D转换器AD0804,采用差动双端模拟输入。
AD0804的WR信号控制
三态门,实现数据输出线与系统数据线的连接。
2、信号处理控制部分
信号处理控制器,该控制器由8031单片机完成。
压电传感器获得通道一(心音)数据、心电电极获得通道二(心电)数据后,通过模拟电路先对其放大,后对其模拟信号进行整形,转化为脉冲形式(开关量)。
利用8031单片机中的两个定时器/计数器T0和T1分别工作于定时和计数方式,对心音心电波形整形后的脉冲
进行计数,然后通过软件计算脉搏心率每分钟跳动次数,并根据软件分析心电心音数据相关的量。
3、信号的输出部分
信号的输出部分包括接口电路和显示。
接口电路部分采用了可编程输入输出接口片子8255,通过它可直接将CPU总线接向外设。
我们选用8255的能输入/输出方式,完成微型记录盒与PC机数据传送。
为了方便计算机正确地找到该接口电路,赋予8255接口特定的地址,通过口地址译码确定接口电路地址。
译码电路。
选择采用数据查询式传送方式向外界传送数据,其优点是当CPU与外部过程不同步时,也可以很好地解决CPU的时序和I/O端口的时序之间的配
合问题,从而不同外设的状态信息,可以使用同一端口,而使用不同的位就行。
结果显示部分由液晶显示块显示。
选用点阵式液晶显示块显示心音和心电中心脏
跳动次数及记录仪的工作时间、状态等。
四、心率计算程序
计算程序中,根据实际测量精度,选择单片机定时器/计数器T0作为定时器,而定时器/计数器T1作为计数器,且都工作于16位计数器操作模式0为定时器时,选取定时时间为5ms,另设定一计数器CR。
根据公式:(216-X)×T1=T2计算出X值。
其中T1为一个机器周期时间,T2为定时时间。
首先设定模式控制字,接通T1计数器,当外部脉冲的第一个下降沿到时即TL1=1时,T0开始计数,当其溢出产生中断时,CR开始计数,直到TL1= 4时,T0、T1停止计数,读取寄存器值,计算最终结果。
简单的程序流程图如图6。
五、结果讨论
利用高分子压电材料聚偏氟乙稀研制成压电薄膜传感器应用于心音心电监测系统,能够准确不失真的采集人体微弱的心音脉搏信号。
该薄膜传感器与心音心电整机之间结构、性能匹配,通过实验,本心音心电监测系统可以初步监测人体的心音心电信号,该系统将应用于临床试验,预计不久将可能推广应用。