2017年武汉市九年级四月调考数学试题及参考答案
武汉市2017年中考数学试卷参考答案

2
又∵AB=AC ∴AO 平分∠BAC (2)方法 1:如图,过点 D 作 DK⊥AO 于 K. ∵由(1)知 AO⊥BC,OB=OC,BC=6
∴ BH=CH= 1 BC=3,∠COH= 1 ∠BOC,
2
2
∵∠BAC= 1 ∠BOC,∴∠COH=∠BAC 2
在 Rt△COH 中,∠OHC=90°,sin∠COH= HC CO
由
x x
2 5x 5<0
6>0
得
xx< <5-1或x>6∴
x<-1或 x<5
x>6 x<5
∴此时x<-1
由
x x
2 5x 5>0
6<0
得
x>1<5 x<6∴x>1<5x<6
解得:
5<x<6
综上,原不等式的解集是: x<-1或5<x<6
由 6 >x得, 6 x>0
x5
x5
y
y = x2 5∙x 6
∴ 6 x2 5x >0 ∴ x2 5x 6<0
x5
x5
x2 5x x 5<0
6>0
或
x x
2 5x 5>0
6<0
-1 O
6
x
结合抛物线 y=x2 5x 6 的图象可知
解法 2:图像法,将反比例函数 y 6 向右平移 5 个单位. x
23、.解:(1)∵∠ADC=90°,∠EDC+∠ADC=180°, ∴∠EDC=90°,又∠ABC=90°, ∴∠EDC=∠ABC,又∠E 为公共角, ∴△EDC∽∠EBA,
B C
∴EEDB=EECA,∴ED²EA=EC²EB. (2)过 C 作 CF⊥AD 于 F,过 A 作 AG⊥EB 交 EB 延长线于 G.
湖北省武汉市2017年中考数学真题试题(含扫描答案)

2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( )A .6B .-6C .18D .-182.若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( ) A .x 2+2 B .x 2+3x +2 C .x 2+3x +3 D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23B .23C .3D .3210.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+-+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD=2CE,则DE的长为___________16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x-3=2(x-1)18.(本题8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD 与AB之间的关系,并证明你的结论19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数分布扇形图___________②在统计表中,b=___________,c=___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数xk y =的图象相交于A (-3,a )和B 两点 (1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >-56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB (2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE(3) 如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值。
勤学早·2017年武汉市四月调考数学模拟试卷(1)-(1)

勤学早·2017年武汉市四月调考数学模拟试卷(1)一、选择题(共10小题,每小题3分,共30分) 1.9的值是( ) A .3B .-3C .±3D .32.若代数式21x 在实数范围内有意义,则x 的取值范围是( ) A .x <2B .x ≠2C .x >2D .x =23.下列计算结果是a 6的是( )A .a 2·a 3B .a 2+a 4C .a 9-a 3D .(a 3)24.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球.从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x -2)2的结果是( )A .x 2-4x +4B .x 2-4C .x 2+4x +4D .x 2-2x +4 6.已知点A (2,a )与点B (b ,3)关于坐标原点对称,则实数a 、b 的值是( ) A .a =-3,b =2B .a =3,b =2C .a =-3,b =-2D .a =3,b =-27.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是( )8.九年级某班40位同学的年龄如下表所示:年龄(岁)13 14 15 16 人数316192 则该班40名同学年龄的众数和中位数分别是( )A .19、15B .15、14.5C .19、14.5D .15、159.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.已知二次函数y =ax 2+bx +c ,函数y 与自变量x 的部分对应值如下表:x …… -1 0 2 3 4 …… y……105225……若A (m ,y 1)、B (m -1,y 2)两点都在函数的图象上,则当m 满足( )时,y 1<y 2 A .m ≤2B .m ≥3C .m <25 D .m >25二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算8+(-5)的结果为____________ 12.化简:xx x 11-+=___________ 13.甲盒子中有编号为1、2的2个白色兵乓球,乙盒子中有编号为4、5的2个黄色兵乓球.现分别从每个盒子中随机地取出1个兵乓球,则取出兵乓球的标号之和大于6个概率为___________ 14.如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,把四边形ABCD 沿EF 翻折,得到四边形GFEH ,A 的对应点为G ,B 的对应点为H .若∠B =50°,EH ∥CD ,则∠AFE 的度数是_________15.如图,△ABC 中,∠ABC =45°,∠C =30°,AD ⊥AC 交BC 于D ,以AD 为边作正方形ADEF ,F 在AC 边上,则CFBD的值为___________ 16.如图,AB 为⊙O 的直径,C 为半圆的中点,D 为弧AC 上一动点,延长DC 至E ,使CE =CD .若AB =24,当点D 从点A 运动到点C 时,线段BE 扫过的面积为___________ 三、解答题(共8题,共72分)17.(本题8分)解方程:3x +2=5(x -2)18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB =DE ,BE =CF ,求证:AC =DF19.(本题8分)学习完统计知识后,某学生就本班同学的上学方式进行调查统计,他通过收集数据后绘制的两幅不完整的统计图如下图所示,请你根据图中提供的信息解答下列问题: (1) 该班有___________名学生,其中步行的有___________人;在扇形统计图中“骑自行车”所对应扇形的圆心角大小是___________(2) 根据以上统计分析,估计该校2000名学生中骑车的人数大约是多少?20.(本题8分)某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元(1) A 、B 两种商品的单价分别是多少元?(2) 已知该商品购买B 商品的件数比购买A 商品的件数的2倍少4件,设购买A 商品的件数为x 件,该商品购买A 、B 两种商品的总费用为y 元 ① 求y 关于x 的函数关系式② 若该商品购买的A 、B 两种商品的总费用不超过296元,那么购买A 商品的件数最多只能买多少件?21.(本题8分)在△P AE 中,∠P AE =90°,点O 在边AE 上,以OA 为半径的⊙O 交AE 于B ,OP 平分∠APE(1) 求证:PE 是⊙O 的切线 (2) 设⊙O 与PE 相切于点C ,若43EC EB ,连接PB ,求tan ∠APB 的值22.(本题10分)已知反比例函数xy 6=(1) 若该反比例函数的图象与直线y =-x +b 相交于A 、B 两点,若A (3,2),求点B 的坐标 (2) 如图,反比例函数xy 6=(1≤x ≤6)的图象记为曲线C 1,将C 1沿y 轴翻折,得到曲线C 2 ① 请在图中画出曲线C 1、C 2② 若直线y =-x +b 与C 1、C 2一共只有两个公共点,直接写出b 的取值范围23.(本题10分)在等边△ABC 中,D 为AB 上一点,连接CD ,E 为CD 上一点,∠BED =60° (1) 延长BE 交AC 于F ,求证:AD =CF (2) 若32=BD AD ,连接AE 、BE ,求BE AE 的值 (3) 若E 为CD 的中点,直接写出BDAD的值24.(本题12分)抛物线y=mx2-4mx+3与x轴的交点为A(1,0)、B,与y轴交于点C(1) 求抛物线的解析式(2)P为抛物线第一象限上的一点,若∠P AB=2∠ACO,求点P的坐标(3)M为抛物线在点B右侧上的一点,M与N两点关于抛物线的对称轴对称,AN、AM交y轴于E、D,求OE-OD的值。
湖北省武汉市2017届九年级四月调考数学模拟试卷2

湖北省武汉市2017届九年级四月调考数学模拟试卷2一、选择题(共10小题,每小题3分,共30分)1.4的值是( )A .2B .-2C .±2D .42.若代数式31 x 在实数范围内有意义,则x 的取值范围是( ) A .x <-3B .x >-3C .x ≠-3D .x =-3 3.下列计算结果是a 5的是( )A .a 6÷aB .(a 3)2C .a 5·aD .3a +2a 4.下列说法正确的是( )A .打开电视,正在播放新闻节目是必然事件B .抛一枚硬币,正面朝上的概率为21,表示每抛两次就有一次正面朝上 C .抛一枚均匀的正方体骰子,朝上的点数是3的概率为61 D .任意画一个三角形,它的内角和等于360°5.运用乘法公式计算(x +3)(x -3)的结果是( )A .x 2+9B .x 2-6x +9C .x 2-9D .x 2+6x +9 6.将点A (-2,1)向右平移3个单位,再向下平移2个单位后,得到点B ,则点B 的坐标为( ) A .(-5,-1) B .(1,3) C .(-5,3)D .(1,-1) 7.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的主视图是( )8.某小组5名同学在一周内参加劳动的时间如下表所示,关于“劳动时间”的这组数据,以下列说法正确的是( )A .中位数是4B .众数是4.5C .极差是1D .平均数是3.759.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+nD .y =2n +n +110.已知二次函数y =x 2+bx +c ,当x ≤1时,总有y ≥0;当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )A .0≤c ≤3B .c ≥3C .1≤c ≤3D .c ≤3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:6-(-3)的结果为___________12.计算:aa a +++112=___________ 13.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取1个球,则取到的是白球的概率为___________14.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,连接DF ,且∠CDF =24°,则∠DAB 的度数是___________15.如图,在△ABC 中,∠ABC =60°,23=BC AB ,D 为△ABC 外一点,连接AD 、CD .若∠ADC =30°,AC =AD ,则ABBD 的值为___________ 16.如图,△ABC 中,∠ABC =90°,AB =BC =4,D 为BC 边上一动点,点O 是正方形ADEF 的中心.当点D 沿BC 边从点B 运动到点C 时,点O 运动的路径长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:2x -4=3(2x +2)18.(本题8分)如图,△ABC 和△EFD 分别在线段AE 的两侧,点C 、D 在线段AE 上,AC =DE ,AB ∥EF ,BC ∥DF ,求证:BC =FD19.(本题8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工平时成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1) 写出本次调查共抽取的职工数为__________(2) 若将得分转化为等级,规定:得分低于100分评为“D ”,100~130分评为“C ”,130~145分评为“B ”,145~160分评为“A ”,那么该年级1500名考生中,考试成绩评为“B ”的人员大约有多少名?20.(本题8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品,小红与小明去文化商店购买甲乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元(1) 求甲、乙两种笔记本的单价各是多少元?(2) 若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案21.(本题8分)如图,BC 为⊙O 的直径,AB 为⊙O 的弦,D 为弧BC 的中点,CE ⊥AD 于E ,AD 交BC 于点F ,tanB =21 (1) 求证:DE =2AE(2) 求sin ∠BFD 的值22.(本题10分)如图1,反比例函数x k y =的图象经过点A (-1,4),直线y =-x +b (b ≠0)与双曲线xk y =在第二、四象限分别相交于P 、Q 两点,与x 轴、y 轴分别相交于C 、D 两点 (1) 当b =-3时,求P 点坐标(2) 连接OQ ,存在实数b ,使得S △ODQ =S △OCD ,请求出b 的值(3) 如图2,当b =-3时,直线y =a (a >0)与直线PQ 交于点M ,与双曲线交于点N (不同于M ).若PM =PN ,则a 的值是____________(直接写出结果)23.(本题10分)在△ABC 中,AB =AC ,CD ⊥AB 于D ,E 为AC 上一点,EF ⊥BC 于F ,交CD 于G(1) 如图1,若∠BAC =120°,求证:CG =3EG(2) 如图2,点E 为AC 的中点.若BF =26,CG =5,求DG 的长(3) 如图3,若EG =2CF ,直接写出ABAD 的值24.(本题12分)已知抛物线y =21x 2+2mx -4m -2(m ≥0)与x 轴交于A 、B 两点,A 点在B 点的左边,与y 轴交于点C(1) 当AB =6时,求点C 的坐标(2) 抛物线上有两点M (-1,a )、N (4,b ),若△AMN 的面积为17.5,求m 的值(3) 在抛物线第一象限上有一点G ,连接AG 、GB 并延长分别交y 轴于F 、E .若∠AFO =∠EBO ,求证:点G 总在一条定直线上。
武汉六中上智中学2017年九年级数学四调模拟试卷及参考答案

武汉六中上智中学2017年九年级数学四调模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.4的平方根是( ) A .2B .±2C .-2D .±42.若代数式21+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <-2B .x >-2C .x ≠-2D .x =-2 3.下列运算正确的是( ) A .a +2a =2a 2B .(-2ab 2)2=4a 2b 4C .a 6÷a 3=a 2D .(a -3)2=a 2-94.下列事件是必然事件的是( ) A .通常加热100℃时,水沸腾B .篮球队员在罚球线上投篮一次,未投中C .任意画一个三角形,其内角和为360°D .经过信号灯时,遇到红灯 5.下列计算结果等于x 2-9的是( ) A .(3-x )(3+x ) B .(x -3)2C .(x +3)(x -3)D .(x +3)2 6.已知点A (-2,3)关于x 轴对称的点的坐标是( )A .(2,-3)B .(3,-2)C .(-2,-3)D .(-3,2) 7.如图是一个几何体的三视图,则这个几何体是( )A .正方体B .长方体C .三棱柱D .三棱锥8.如图是某中学九(1)班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是( ) A .20、10B .10、20C .16、15D .15、169.已知点B (1,31+)、点C (3,31-),在坐标轴上再找一点A ,使△ABC 是直角三角形,则这样的点A 有( )个 A .2个B .6个C .7个D .8个10.(2016秋·江岸区期中)如图,△ABC 内接于⊙O ,AB 是的直径,∠B =30°,CE 平分∠ACB 交于E ,交AB 于点D .连接AE ,则S △CDB ∶S △ADE 的值等于( ) A .3∶2B .3∶1C .2∶1D .2∶1二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:-3+6的结果为___________ 12.计算1116---x x 的结果为___________ 13.在一个不透明的布袋中有1个红色和2个黑色小球,从中随机摸出2个小球,其中恰好为一个红色,一个黑色的概率为___________14.如图,在平行四边形ABCD 中,BE ⊥AB 交对角线AC 于点E .若∠1=20°,则∠2的度数为___________15.若点A(m,y1)、点B(m-1,y2)是函数y=2|x|+3图象上的两点,当y1>y2时,m的范围是________________16.如图,在四边形ABCD中,对角线BD、AC相交于点E,且AE=CE,BC=AC=DC,则tan∠ABD·tan∠ADB=___________三、解答题(共8题,共72分)17.(本题8分)解方程:3(x-5)=7x-118.(本题8分)如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AD∥DE,AC∥DF,BF=CE,求证:AC=DF19.(本题8分)为积极响应市委政府“加快建设美丽江城”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:请根据所给信息解答以下问题:(1) 这次参与调查的居民人数为___________(2) 请将条形统计图补充完整(3) 请计算扇形统计图中“枫树”所在扇形的圆心角度数(4) 已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?20.(本题8分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买)运行区间成人票价(元/张)学生票价(元/张)出发站终点站一等座二等座二等座南靖厦门26 22 16若师生均购买二等座票,则共需1020元(1) 参加活动的教师有__________人,学生有__________人(2) 由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元① 求y 关于x 的函数关系式② 若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?21.(本题8分)如图,已知AB 为⊙O 直径,AC 是⊙O 的弦,∠BAC 的平分线AD 交⊙O 于D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,OE 交AD 于点F ,cos ∠BAC =53(1) 求证:DE 是⊙O 的切线 (2) 若AF =8,求DF 的长22.(本题10分)如图1,点A (8,1)、B (n ,8)都在反比例函数xmy (x >0)的图象上,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥y 轴于D (1) 求m 的值和直线AB 的函数关系式(2) 动点P 从O 点出发,以每秒2个单位长度的速度沿折线OD —DB 向B 点运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿折线OC 向C 点运动.当动点P 运动到D 时,点Q 也停止运动,设运动的时间为t 秒① 设△OPQ 的面积为S ,写出S 与t 的函数关系式② 如图2,当的P 在线段OD 上运动时,如果作△OPQ 关于直线PQ 的对称图形△O ′PQ ,是否存在某时刻t ,使得点O ′恰好落在反比例函数的图象上?若存在,求O ′的坐标和t 的值;若不存在,请说明理由23.(本题10分)如图,已知△ABC 中,D 、G 分别是边BC 、AC 上的点,连AD 、BC 相交于点E ,BE =BD .过点C 作AD 的平行线与BG 的延长线交于点F ,21=BD CD ,32=EA DE (1) 求BGFG的值 (2) 若BC =3FC ,求证:AB =BF (3) 若AB =AD ,直接写出BCCF=___________24.(本题12分)已知抛物线y =2x 2+bx +c 与x 轴的交点为A 、B ,顶点为D (1) 若点A 、点B 的坐标分别为A (-1,0)、B (3,0),求抛物线的解析式(2) 在(1)的条件下,在抛物线的对称轴上是否存在点P 使△BCP 为直角三角形?若存在,求出P 的坐标;若不存在,请说明理由(3) 若抛物线y =2x 2+bx +c 与直线y =x +h 交于E 、F 两点,点M 在EF 之间的抛物线上运动,MN ∥y 轴,交直线y =x +h 于点N ,问NFEN MN∙是否为定值,并说明理由武汉六中上智中学2017年九年级数学四调模拟试卷参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCBACCBBCA二、填空题(共6小题,每小题3分,共18分) 11.3 12.15-x 13.3214.110°15.21>m16.3116.提示:∵CB =CA =CD∴A 、B 、D 三点共圆 ∴31=∙=∙=∙EF BE BE AE DF AB BF AD BF AB DF AD 三、解答题(共8题,共72分) 17.解:27-=x 18.解:略19.解:(1) 100;(2) 如图所示;(3) 36°;(4) 2万20.解:(1) 10、50(2) ① y =26x +22(10-x )+16×50=4x +1020 ② 4x +1020≤1032,解得x ≤321.证明:(1) 连接OD∵OA =OD ∴∠OAD =∠ODA ∵AD 平分∠BAE ∴∠BAD =∠EAD ∴∠EAD =∠ODA ∴AE ∥OD ∵DE ⊥AC ∴OD ⊥DE ∴DE 是⊙O 的切线 (2) 连接CB ∵AB 为⊙O 的直径 ∴∠ACB =90°∵cos ∠BAC =53=AB AC 设AC =3x ,AB =5x ,则OA =OB =OD =x 25 设OD 与BC 交于点G ∵AD 平分∠BAE ∴弧CD =弧BD ∴OD ⊥BC ,CG =BG ∴OG =x 23,DG =x x x =-2325 ∵∠GCE =∠CED =∠EDG =90°∴四边形CEDG 为矩形 ∴CE =DG =x ∵AE ∥OD ∴ODAEDF AF =即xx DF 2548=,DF =5 22.解:(1) m =8,y =-x +9(2) 当P 在OD 上运动时,S =21×t ×2t =t 2(0<t ≤4) 当P 在DB 上运动时,S =21×t ×8=4t (4<t ≤4.5) (3) ∵Rt △PEO ′∽Rt △O ′FQ ∴''''QO PO QF EO F O PE == 设QF =b ,O ′F =a则PE =OF =t +b ,O ′E =2t -a ∴22=-=+b a t a b t ,解得t a 54=,t b 53= ∴O ′(t t 5458,)当O ′在反比例函数的图象上 ∴85458=⨯tt ,解得25=t23.解:(1)51(2) ∵BE =BD ∴∠BDE =∠BED ∵DE =FC ∴∠BFC =∠BCF ∴BF =BC设BD =BE =2,CD =EF =1,则FC =3连接CE∵CF 2=EF ·BF ,∠CFE =∠BFC ∴△CFE ∽△BFC ∴∠CEF =∠BCF =∠BFC ∴CE =CF由(1)可知,GE =GF ∴CG ⊥EF ∵AG =CG∴BG 为线段AC 的垂直平分线 ∴BA =BC =BF(3) ∵△ABD 、△BDE 等腰三角形 ∴∠BDE =∠BED =∠ABD ∴△ABD ∽△BED设CD =a ,BD =2a ,ED =2b ,则FC =3b ,BE =BD =2a ,AE =3b ∵BD 2=DE ·DA ∴4a 2=2b ·5b ∴510=a b ∴51033==a b BC CF 24.解:(1) y =2x 2-4x -6(2) 当∠BCP =90°时,P (1,213-) 当∠CBP =90°时,P (1,1)当∠CPB =90°时,P (1,113--)或(1,311-) (3) 设E (x 1,y 1)、F (x 2,y 2)联立⎪⎩⎪⎨⎧--=+=6422x x y h x y ,整理得2x 2-5x -6-h =0 ∴x 1+x 2=25,x 1x 2=26+-h 设M (t ,2t 2-4t -6)、N (t ,t +h )∴MN =t +h -(2t 2-4t -6)=-2t 2+5t +h +6 过点E 作EG ⊥MN 于G ,过点F 作FH ⊥MN 于H ∴△EGN 、△FHN 均为等腰直角三角形∴EN ·NF =2EG ·2NH =2(t -x 1)(x 2-t )==-2t 2+5t +h +6 ∴1=∙NFEN MN为定值。
武汉市2016-2017学年度年四月调考数学参考答案及评分标准(word版)

2016-2017学年度武汉市部分学校九年级调研测试数学参考答案及评分标准武汉市教育科学研究院命制一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分) 11. 3 12. 1 13.5914. 40 15. 16. 三、解答题(每小题3分,共18分)17.解: 6x+1=3x+7 …………………………………………………2分 6x-3x=7-1 …………………………………………………4分 3x=6 …………………………………………………6分∴ x=2 …………………………………………………8分18.证明:在△ACB 与△DFE 中,AC DF C F CB FE =⎧⎪∠=∠⎨⎪=⎩…………………………………………………3分 ∴△ACB ≌△DFE …………………………………………………5分 ∴ AB=DE∴ AD=BE …………………………………………………8分19.(1)200 …………………………………………………3分 (2)作出正确的条形给2分 …………………………………………………5分 (3)解:5000×78200=1950 …………………………………………………7分 答:估计该地区体育成绩为B 级的学生人数为1950人. ………………………8分20.解:(1)设每辆大货车一次可以运货xt,每辆小货车一次可以运货yt,依题意,……1分 得:2315.55635x y x y +=⎧⎨+=⎩………………………………………2分解这个方程组,得42.5x y =⎧⎨=⎩ ………………………………………3分答:每辆大货车一次可以运货4t,每辆小货车一次可以运货2.5t, …………………4分 (2)设租用大货车m 辆,依题意,得: ………………………………………5分 4m+2.5(10-m)≥30 ………………………………………6分解这个不等式,得m≥103…………………………………………7分∴m至少为4答:大货车至少租用4辆. …………………………………………8分21.(1)证明:连接OA交BC于点F∵四边形ABCD是平行四边形∴AD∥BC.∴∠DAF=∠CFO∵AD与O⊙相切∴∠OAD=90º…………………………………………2分∴∠OFC=90º∴OA平分弧BC即弧BA=弧CA …………………………………………3分(2)分别过AB两点作DE的垂线,垂足分别为N,M,连接AC.∵四边形ABCD是平行四边形∴∠D=∠ABC=∠BCE,∴弧EB=弧CA.∵弧BA=弧CA,∴弧EB=弧CA =弧BA,∴BE=AB=AC,弧EA=弧CB ,∴∠E=∠ACE.在Rt△BEM中,sin∠E=BMBE=1213,设BE=13m,则BM=12m,EM=5m.……………5分在Rt△ANC中,sin∠ANC=ANAC=sin∠E=1213,AC=BE=13m,则AN=12m,CN=5m.∵BM∥AN且BM=AN∴四边形BMNA是平行四边形∴MN=AB=13m,∴CM=18m∴tan∠BCE=122183BM mCM m==,∴tan∠D=23………………………………8分22. 解:(1)∵点A在直线32y x=上,且A点的横坐标为2,∴3232y=⨯=,即点A的坐标为A(2,3)∵A(2,3)在双曲线kyx=上∴k=6 ………………………………………3分F(2)①12或0 (12与0各1分) ………………………………………5分 ②∵PM 垂直于x 轴,点P 的坐标为(m ,3) ∴N 3(,)2m m ,M 6(,)m m∴PN=332m -,PM=63m-. ………………………………………6分 当m=2时,P 、M 、N 三点重合,PM=PN=0; …………………………………7分 当0<m <2时,PM=6633m m -=-.PN=333322m m -=-, PM-PN=633(3)2mm ---=6362m m -+=2>0. ∴PM >PN ; ………………………………………9分 当m >2时,PM=6633m m -=-.PN=333322m m -=-, PM-PN=633(3)2m m---=6362m m -+-=2--<0. ∴PM <PN.综上,当m=2时,PM=PN ;当0<m <2时,PM >PN ;当m >2时,PM <PN. ………………………………………10分23. (1)证明:在正六边形ABCDEF 中, AB=BC ,∠ABC=∠BCD=120°,∵BN=CM ,∴△ABN ≌△BCM ………………………………………2分 ∴∠ANB=∠BCM ∵∠PBN=∠CBM ∴△BPN ∽△BCM∴BP BNBC BM= ∴BP BM BN BC ⋅=⋅ ………………………………………4分(2)延长BC ,ED 交于点H ,延长BN 交DH 于G ,取BG 得中点K ,连接KC. 在正六边形ABCDEF 中,∠BCD=∠CDE=120°,∴∠HCD=∠CDH=60°,∴∠H=60°,∴DC=DH=CH.∵DC=BC ,∴CH=BC.∵BK=GK ,∴2KC=GH ,KC ∥DH. ∴∠GDN=∠KCN.∵CN=DN ,∠DNG=∠CNK ,∴△DNG ≌△CNK. ∴KC=DG ,∴DG=13DH=13DE ∵MG ∥AB ,AM ∥BG ,∴四边形MABG 是平行四边形 ∴MG=AB=DE. ∴ME=DG=13DE. 即13ME DE =………………………………………8分 (3)5………………………………………10分 24. 解:(1)∵1x ,2x 是方程2280x x --=的两根,且1x <2x , ∴1x = -2,2x =4,∴A (-2,2)C (4,8) ………………………………………3分 (2)①若直线y 轴,则直线l 的解析式为x=-2; ………………………………4分 ②若直线l 不平行于y 轴,设其解析式为y=kx+b. ∵直线l 经过点A (-2,2),∴-2k+b=2,∴直线l 解析式为y=kx+2k+2.∵直线l 与抛物线只有一个公共点,解析式为y=kx+2k+2. ∴方程21(22)02x kx k -++=有两个相等的实数根. ∴2420k k ++=,k= -2.∴直线l 的解析式为y= -2x-2.综上,直线l 的解析式为x= -2或y= -2x-2. ………………………………………7分 (3)直线AC 的解析式为y= x+4. 设点B(t ,t+4),则D(t ,212t ),E(t ,-2t-2), ∴DB=2142t t +-=1(4)(2)2t t -+, EB=t+4-(-2t-2)=3t+6 ………………………9分过点C作直线CH ∥y 轴,过点B 作直线BH ∥x 轴, 两平行线相交于H(4,t+4) ∴BH=CH=4-t ∴∵EF ∥DC,∴BD BC BE BF =.∴1(4)6BC t BF =-. ∴BF = ………………………………………12分。
武汉市2017年四月调考21题专项(校考)

21.(8分)已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C.(1)判断直线PC与⊙O的位置关系,并证明你的结论;(2)若OA:PC=1:3,AD⊥PC于点D,求AD:PA的值.21.(8分)在⊙O中,AB是直径,C是⊙O上的一点.(1)如图1,过点C作⊙O的切线,与AB的延长线相交于点D,若∠CAB=320,求∠D的度数;(2)如图2,F为AC上的一点,且OF经过弦AC的中点E,直线FC交AB的延长线于D,若AB=20,∠D=22.50,求△AOE的面积.21.(本题8分)已知:AB为⊙O的直径,C、D为⊙O上的点,C是优弧AD的中点,CE⊥DB交DB的延长线于点E(1) 如图1,判断直线CE与⊙O的位置关系,并说明理由(2) 如图2,若CE=4,BE=3,连BC、CD,求cos∠BCD的值21.(本题8分)如图,以AB 为直径的⊙O 交△ABC 的边AC 于D 、BC 于E ,过D 作⊙O 的切线交BC 于F ,交BA 延长线于G ,且DF ⊥BC (1) 求证:BA =BC (2) 若AG =2,cosB =53,求DE 的长21.(8分)(2015•武汉校级二模)AB 为⊙O 的直径,PA 为⊙O 的切线,BC ∥OP 交⊙O 于C ,PO 交⊙O 于D ,(1)求证:PC 为⊙O 的切线;(2)过点D 作DE ⊥AB 于E ,交AC 于F ,PO 交AC 于H ,BD 交AC 于G ,DF=FG ,DF=5,CG=6,求⊙O 的半径.21.(8分)(2015•潜江)如图,AC 是⊙O 的直径,OB 是⊙O 的半径,PA 切⊙O 于点A ,PB 与AC 的延长线交于点M ,∠COB=∠APB . (1)求证:PB 是⊙O 的切线;(2)当OB=3,PA=6时,求MB ,MC 的长.2,sin∠ABC 21.(本题8分)如图,已知⊙O的内接四边形ABCD的边AB是直径,BD平分∠ABC,AD=5 4=5(1) 求⊙O的半径(2) 如图2,点E是⊙O一点,连接EC交BD于点F.当CD=DF时,求CE的长21.(本题8分)如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC 于点F,CE为⊙O的直径(1) 求证:OD⊥CE(2) 若DF=1,DC=3,求AE的长21.(本题8分)在Rt△ACB中,∠C=90°,AC=3,BC=4,以BC为直径作⊙O交AB于点D(1) 点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由(2) 过O作BC的垂线交⊙O于F点,交AB于G点,求tan∠FBG21.(本题8分)如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,连接CD .过点C 作CE ⊥DB ,垂足为E ,直线AB 与CE 相交于点F (1) 求证:CF 为⊙O 的切线(2) 当BF =5,sinF =35时,求BD 的长21.(8分)(2015•东西湖区校级模拟)如图,在▱ABCD 中,AB ⊥AC ,以点A 为圆心,AB 为半径的圆交BC 于点E .(1)求证:DE 为⊙O 的切线; (2)如果BE=4,CE=2,求DE 的值.21.(本题满分8分)(2014•泸州)如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AC 和BD 相交于点E ,且DC 2=CE ·CA . (1)求证:BC =CD ;(2)分别延长AB ,DC 交于点P ,过点A 作AF ⊥CD 交CD 的延长线于点F ,若PB =OB ,CD =22,求DF 的长.22.(本题8分)如图,C 和D 分别是⊙O 的半径OA 和弦AB 上的点,CD ⊥OA ,点E 在CD 的延长线上,ED=EB(1) 求证:BE 与⊙O 相切(2) 如图2,已知AC =2CO ,△DEB 为等边三角形,若BE =3,求⊙O 的半径22.(本小题满分8分)如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙于点E 、F , 过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长 AO 与⊙O 交于点C ,连接BC ,AF .(1)试探究线段EF 、OD 、OP 之间的等量关系,并加以证明; (2)若BC=6,tan∠F=12,求cos∠ACB 的值和线段PE 的长.21.已知,⊙O 的直径AB =12,AM 和BN 是它的两条切线,DE 与⊙O 相切于点E ,并与AM 、BN 分别相交于D 、C 两点(1) 如图1,设AD =x ,BC =y ,求y 与x 的函数解析式 (2) 如图2,连BD ,若AD =4,求sin ∠BDC。
2017年武汉市四调数学答案解析

( 11. 12. 13. , 14. , 8+( 5)
6
,
3
,
18
)
x 1 − x −1 x −1
, 1 , 2 ,
5 9
.
ABCD BCF
,E
AB
, △CBE
CE
△CFE,
AF.
EAF 70 ,
15. 16. )
60
8 3,
D 90 ,
30 ( P
3
30 ) , ,
ABCD, ABC 45 , C
)
5000 ×
78 × 100%=1950( ) 200
20.(
8
) 35 t
,2
3
15.5 t;5
6
(1) (2) 10 , 30 t,
(1)
x
y
.
2 x + 3 y = 15.5 5x + 6 y = 35
x = 4, y = 2.5
4t 2 .5 t
(2)
a
,
(10 − a)
,
4a + (10 − a) × 2.5 ≥ 30 ,
E
D M
E
M
D
N
F P N
C
F
C
A E
B D
A
G
B
H
K
M J F C
P
K
N
G
A
B
H
(1) ΔABN ≌ ΔBCM ⇒ ∠PNB = ∠BMC ⇒ ΔBPN (2)
ΔBCM ⇒ BP ⋅ BM = BN ⋅ BC
MG ⊥ AB , NH ⊥ AB , CK ⊥ AB ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016~2017学年度武汉市部分学校九年级四月调研测试数学试卷
一、选择题(共10小题,每小题3分,共30分)
1.计算16的结果为( )
A .2
B .-4
C .4
D .8
2.若代数式
21+x 在实数范围内有意义, 则实数x 的取值范围是( ) A .x =-2
B .x >-2
C .x ≠0
D .x ≠-2 3.下列计算的结果为x 8的是( ) A .x ·x 7
B .x 16-x 2
C .x 16÷x 2
D .(x 4)4 4.事件A :射击运动员射击一次,刚好射中靶心;事件B :连续掷两次硬币,都是正面朝上,
则( ) A .事件A 和事件B 都是必然事件
B .事件A 是随机事件,事件B 是不可能事件
C .事件A 是必然事件,事件B 是随机事件
D .事件A 和事件B 都是随机事件
5.运用乘法公式计算(a +3)(a -3)的结果是( )
A .a 2-6a +9
B .a 2+9
C .a 2-9
D .a 2-6a -9 6.点A (-1,4)关于x 轴对称的点的坐标为( ) A .(1,4) B .(-1,-4) C .(1,-4)
D .(4,-1) 7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的左视图为( )
8成绩/m
1.50 1.60 1.65 1.70 1.75 1.80 人数
2 3 2 3 4 1 根据表中信息可以判断这些运动员成绩的中位数、众数分别为( ) A .1.70、1.75 B .1.70、1.80 C .1.65、1.75 D .1.65、1.80
9.在5×5的正方形网格中,每个小正方形的边长为1,用四边形覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m ,水平部分的线段的长度之和记作n ,则m -n =( )
A .0
B .0.5
C .-0.5
D .0.75 10.已知关于x 的二次函数y =(x -h )2+3,当1≤x ≤3时,函数有最小值2h ,则h 的值为( ) A .23 B .23或2 C .23或6 D .2、
23或6 二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:8+(-5)的结果为___________
12.计算1
11---x x x 的结果为___________ 13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球
然后放回,再随机取出一个小球,则两次取出的小球颜色相同的概率为___________
14.如图,在矩形ABCD中,E为边AB的中点,将△CBE沿CE翻折得到△CFE,连接AF.若∠EAF=70°,那么∠BCF=___________度
8,则它的内切圆的半径为___________
15.有一个内角为60°的菱形的面积是3
16.已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN (如图)在图中平移,直角边MN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=3,则当点M从点A平移到点D的过程中,点Q的运动路径长为___________
三、解答题(共8题,共72分)
17.(本题8分)解方程:6x+1=3(x+1)+4
18.(本题8分)如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,∠C=∠F,求证:AD=BE
19.(本题8分)为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题
(1) 在这次抽样调查中,一共抽取了___________名学生
(2) 请把条形统计图补充完整
(3) 请估计该地区九年级学生体育成绩为B的人数
20.(本题8分)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5 t ;5辆大货车与6辆小货车一次可以运货35 t
(1) 每辆大货车和每辆小货车一次各可以运货多少?
(2) 现在租用这两种火车共10辆,要求一次运输货物不低于30 t ,则大货车至少租几辆?
21.(本题8分)如图,□ABCD 的边AD 与经过A 、B 、C 三点的⊙O 相切
(1) 求证:弧AB =弧AC
(2) 如图2,延长DC 交⊙O 于点E ,连接BE ,sin ∠E =1312,求tan ∠D 的值
22.(本题10分)直线x y 23=
与双曲线x k y =的交点A 的横坐标为2 (1) 求k 的值
(2) 如图,过点P (m ,3)(m >0)作x 轴的垂线交双曲线x
k y =
(x >0)于点M ,交直线OA 于点N
① 连接OM ,当OA =OM 时,直接写出PN -PM 的值
② 试比较PM 与PN 的大小,并证明你的结论
23.(本题10分)在正六边形ABCDEF 中,N 、M 为边上的点,BM 、AN 相交于点P
(1) 如图1,若点N 在边BC 上,点M 在边DC 上,BN =CM ,求证:BP ·BM =BN ·BC
(2) 如图2,若N 为边DC 的中点,M 在边ED 上,AM ∥BN ,求DE ME 的值 (3) 如图3,若N 、M 分别为边BC 、EF 的中点,正六边形ABCDEF 的边长为2,请直接写出AP 的长
24.(本题12分)在平面直角坐标系中,抛物线22
1x y 经过点A (x 1,y 1)、C (x 2,y 2),其中x 1、x 2是方程x 2-2x -8的两根,且x 1<x 2,过点A 的直线l 与抛物线只有一个公共点
(1) 求A 、C 两点的坐标
(2) 求直线l 的解析式
(3) 如图2,点B 是线段AC 上的动点,若过点B 作y 轴的平行线BE 与直线l 相交于点E ,与抛物线相交于点D ,过点E 作DC 的平行线EF 与直线AC 相交于点F ,求BF 的长。