6.5一次函数的应用同步测试含解析鲁教版七年级上册数学

合集下载

鲁教版七年级上册6.5 一次函数的应用(第一课时)

鲁教版七年级上册6.5 一次函数的应用(第一课时)

随堂练习 课本163页为了提高某种农作物的产量,农场通常采
用喷施药物的方法控制其高度,已知该农作物的平均高度
y(米)与每公顷所喷施药物的质
量 x(千克)之间的关系如图所示,
经验表明,该种农作物高度在
1.25 米左右时它的产量最高,此
时每公顷应喷施药物多少千克? 解:仔细观察图形可知直线过(0,1.5),(10,0.5)两点
图2
干旱造成的灾情
由于持续高温和连日无雨,某水库的蓄水量随着时间
的增加而减少.干旱持续时间 t( 天)与蓄水量V(万立方
米 ) 的关系如图所示,
V/万米3
想一想
(1).水库干旱前的蓄水量是多少? (2).干旱持续10天,蓄水量为多少?
连续干旱23天呢?
(3).蓄水量小于400 万立方米时,将发生
10-8=2
(3)将y=1代入上式 解得 x=450
(1).一箱汽油可供摩托车行驶多少 千米? (2). 摩托车每行驶100千米消耗多 少升? (3). 油箱中的剩余油量小于1升时 将自动报警.行驶多少千米后,摩托 车将自动报警?
总结:如何解答实际情景函数图象的信息?
1:理解横纵坐标分别表示的的实际意义
t/天
例1 某种摩托车的油箱最多可储油10升,加满油 后,油箱中的剩余油量y(升)与摩托车行驶路程 x(千米)之间的关系如图所示(:1).一箱汽油可供摩托车行驶多
少千米?
(2). 摩托车每行驶100千米消耗 多少升? (3). 油箱中的剩余油量小于1升 时将自动报警.行驶多少千米后, 摩托车将自动报警?
当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
(450,1)
还有其他方法做吗?

6、5一次函数的应用 同步练习题 -鲁教版(五四制)七年级数学上册

6、5一次函数的应用 同步练习题 -鲁教版(五四制)七年级数学上册

2021-2022学年鲁教版七年级数学上册《6.5一次函数的应用》同步练习题(附答案)1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m22.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣33.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x﹣1=2x+5,其中正确的是()A.B.C.D.4.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.5.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.6.已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y=k1x+b1,直线CD的表达式为y=k2x+b2,则k1•k2=.7.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.8.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.9.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为4,那么b1﹣b2等于.10.如图,直线l:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.11.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.12.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030…甲复印店收费(元)0.52…乙复印店收费(元)0.6 2.4…(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x 的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.13.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.14.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?15.在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?16.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?14.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?18.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030y(单位:万元∕台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)19.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时a超过150千瓦时但不超过300千瓦时的部b分超过300千瓦时的部分a+0.35月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?20.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.参考答案1.解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.2.解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选:D.3.解:5x﹣1=2x+5,∴实际上求出直线y=5x﹣1和y=2x+5的交点坐标,把x=0分别代入解析式得:y1=﹣1,y2=5,∴直线y=5x﹣1与y轴的交点是(0,﹣1),y=2x+5与y轴的交点是(0,5),选项A、B、C、D都符合,∴直线y=5x﹣1中y随x的增大而增大,故选项D错误;∵直线y=2x+5中y随x的增大而增大,故选项C错误;当x=2时,y=5x﹣1=9,故选项B错误;选项A正确;故选:A.4.解:由直线y=x+b(b>0),可知∠1=45°,∵∠α=75°,∴∠ABO=180°﹣45°﹣75°=60°,∴OB=OA÷tan∠ABO=.∴点B的坐标为(0,),∴b=.故选:B.5.解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.6.解:设点A(0,a)、B(b,0),∴OA=a,OB=﹣b,∵△AOB≌△COD,∴OC=a,OD=﹣b,∴C(a,0),D(0,b),∴k1==,k2==,∴k1•k2=1,故答案为:1.7.解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×(180﹣30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.8.解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.9.解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为:4.10.解:过点C作CE⊥x轴于点E由直线AB的解析式可知当x=0时,y=,即OB=当y=0时,x=1,即OA=1∵∠AOB=∠C=90°,tan∠3=OB:OA=∴∠3=60°∵△AOB与△ACB关于直线l对称∴∠2=∠3=60°,AC=OA=1∴∠1=180°﹣∠2﹣∠3=60°在RT△ACE中AE=CE=∴OE=1+=∴点C的坐标是(,).11.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.12.解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x≥0);y2=;(3)顾客在乙复印店复印花费少;当x>70时,y1=0.1x,y2=0.09x+0.6,设y=y1﹣y2,∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,设y=0.01x﹣0.6,由0.01>0,则y随x的增大而增大,当x=70时,y=0.1∴x>70时,y>0.1,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.13.解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==100千米/小时.由题意60(x+1)=100x解得x=1.5小时.(3)设y甲=kt+b,则解得,∴y甲=60t﹣300,设y乙=k′t+b′,则,解得,∴y乙=100t﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60t﹣300﹣(100t﹣600)=20或100t﹣600﹣(60t﹣300)=20或60t﹣300=20或60t ﹣300=280解得t=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.14.解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.15.解:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0≤x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=kx+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+6000.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x<60x+6000,解得x>200,所以至少买201张票时选择方案一比较合算.16.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y 元,由题意,得y=(30﹣25)a+(60﹣45)(1200﹣a),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45(1200﹣a)]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.17.解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴25≤x≤100,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.18.解:(1)设y与x之间的关系式为y=kx+b,由题意,得,解得:,∴y=﹣x+65.∵该机器生产数量至少为10台,但不超过70台,∴10≤x≤70;(2)由题意,得xy=2000,﹣x2+65x=2000,﹣x2+130x﹣4000=0,解得:x1=50,x2=80>70(舍去).答:该机器的生产数量为50台;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,由函数图象,得,解得:,∴z=﹣a+90.当z=25时,a=65,由(2)知:成本每台为2000÷50=40(万元).总利润为:25×(65﹣40)=625(万元).答:该厂第一个月销售这种机器的利润为625万元.19.解:(1)根据5月份,该市居民甲用电100千瓦时,交电费60元;得出:a=60÷100=0.6,居民乙用电200千瓦时,交电费122.5元.则(122.5﹣0.6×150)÷(200﹣150)=0.65,故:a=0.6;b=0.65.(2)当x≤150时,y=0.6x.当150<x≤300时,y=0.65(x﹣150)+0.6×150=0.65x﹣7.5,当x>300时,y=0.9(x﹣300)+0.6×150+0.65×150=0.9x﹣82.5;(3)当居民月用电量x≤150时,0.6x≤0.62x,故x≥0,当居民月用电量x满足150<x≤300时,0.65x﹣7.5≤0.62x,解得:x≤250,当居民月用电量x满足x>300时,0.9x﹣82.5≤0.62x,解得:x≤294,综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过250千瓦时时,其月平均电价每千瓦时不超过0.62元.20.解:(1)小明骑车速度:在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).方法三:设从家到乙地的路程为n(km),由题意得:(n/20+0.5)﹣(n/60+4/3)=10/60∴n=30∴从家到乙地的路程为30(km).方法四:设小明离家a小时到达乙地,则妈妈到达乙地时,小明离家(a﹣)小时,则60(a﹣﹣)=20(a﹣),解得,a=2,20×(2﹣)=30,∴从家到乙地的路程为30(km).。

鲁教版初中数学七年级上册《一次函数的图象》同步练习1

鲁教版初中数学七年级上册《一次函数的图象》同步练习1

6.3 一次函数的图象一、填空题(1)一次函数的图象经过点(-1,2),且函数y的值随自变量x的增大而减小,请你写出一个符合上述条件的函数关系式________.(2)你能根据下列一次函数y=kx+b的草图,得到各图中k和b的符号吗?(3)若一次函数y=(2-m)x+m的图象经过第一、二、四象限时,m的取值范围是________,若它的图象不经过第二象限,m的取值范围是________.二、选择题(1)一水池蓄水20 m3,打开阀门后每小时流出5 m3,放水后池内剩下的水的立方数Q(m3)与放水时间t(时)的函数关系用图表示为()(2)两个受力面积分别为S A(米2)、S B(米2)(S A、S B为常数)的物体A、B,它们所受压强p(帕)与压力F(牛)的函数关系图象分别是射线l A、l B,则S A与S B的大小关系是()A.S A>S BB.S A<S BC.S A=S BD.不能确定(3)早晨,小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校走去,且v1>v2,则表示小强从家到学校的时间t(分钟)与路程S(千米)之间的关系是()三、已知一次函数y=-2x-2(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标. (3)求A、B两点间的距离.(4)求△AOB的面积.(5)利用图象求当x为何值时,y≥0.参考答案一、(1)y=-x+1,y=-2x,y=-3x-1等,必须使k<0(2)①>>②><③<>④<<(3)m>2,m<0二、(1)D (2)B (3)A三、(1)如下图(2)A(-1,0)B(0,-2)(3)|AB|=5(4)S△AOB=1(5)x≤-1。

鲁教版(五四制)数学七年级上册6.5一次函数的应用 巩固练习

鲁教版(五四制)数学七年级上册6.5一次函数的应用 巩固练习

鲁教版数学七年级上册6.5一次函数的应用巩固练习一、选择题1.若一次函数y=kx+3(k为常数且k≠0)的图象经过点(−2,0),则关于x的方程k(x−5)+3=0的解为()A. x=−5B. x=−3C. x=3D. x=52.公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A. L=10+0.5PB. L=10+5PC. L=80+0.5PD.L=80+5P3.如图,直线y=ax+b(a≠0)过点A(0,4),B(−3,0),则方程ax+b=0的解是()A. x=−3B. x=4C. x=−43D. x=−344.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=30.以上结论正确的有()A. ①②B. ①②③C. ①③④D. ①②④5.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数表达式是()A. Q=40−s100B. Q=40+s100C. Q=40−s10D. Q=40+s106.若关于x的方程4x−b=0的解为x=2,则直线y=4x−b一定经过点()A. (2,0)B. (0,3)C. (0,4)D. (2,5)7.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.下列说法错误的是()A. 乙晚出发1小时B. 乙出发3小时后追上甲C. 甲的速度是4千米/小时D. 乙先到达B地8.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是()①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为y=15x+6;③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A. ①②③B. ②④C. ②③D. ①②③④9.某计算器每个定价80元,若购买不超过20个,则按原价付款:若一次购买超过20个,则超过部分按七折付款.设一次购买数量为x(x>20)个,付款金额为y元,则y与x之间的表达式为()A. y=0.7×80(x−20)+80×20B. y=0.7x+80(x−10)C. y=0.7×80⋅xD. y=0.7×80(x−10)10.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154. 其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个11. 如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法: ①汽车共行驶了120千米; ②汽车在行驶途中停留了0.5小时; ③汽车在整个行驶过程中的平均速度为1603千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法有( )A. 1个B. 2个C. 3个D. 4个12. 某校组织学生到距学校6 km 的光明科技馆参观,准备乘出租车去科技馆,出租车的收费标准如下:里程数 收费/元 3 km 以下(含3 km)8 3 km 以上每增加1 km1.8则收费y(元)与出租车的行驶里程数x(km)(x ≥3)之间的函数表达式为 ( )A. y =8xB. y =1.8xC. y =8+1.8xD. y =2.6+1.8x二、填空题13. 小华用500元去购买单价为3元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是______________,x 的取值范围是__________.14. 已知一次函数y =2x +b 图象与正比例函数y =kx 图象交于点(2,3)(k,b 是常数),则关于x 的方程2x =kx −b 的解是______.15. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是______.16. 某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表质量x(千克) 1 2 3 4 …… 售价y(元)3.60+0.207.20+0.2010.80+0.2014.40+0.20……由上表得y 与x 之间的关系式是____________________ .17. 已知一次函数y =kx +5和y =k′x +3,假设k >0,k′<0,则这两个一次函数图象的交点在第______象限.三、计算题18. 预防新型冠状病毒期间,某种消毒液A 地需要6吨,B 地需要10吨,正好M 地储备有7吨,N 地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A 地和B 地.消毒液的运费价格如表(单位:元/吨).设从M 地调运x(0<x ≤6)吨到A 地.初中数学资源(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?终点起点A地B地M地70120N地458019.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分费用与参加比赛的人数(x)人成正比.当x=20时,y=1600;当x=30时,y=2000.(1)求y与x之间的函数关系式;(2)如果承办此次比赛的组委会共筹集;经费6350元,那么这次比赛最多可邀请多少名运动员参赛?四、解答题20.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是______分钟,清洗时洗衣机中的水量是______升.(2)进水时y与x之间的关系式是______.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是______升.21.为了提高饮水质量,越来越多的居民选择家用净水器,光明商场计划从生产厂家购进甲、乙两种型号的家用净水器,甲型号净水器进价为160元/台,乙型号净水器进价为280元/台,经过协商沟通,生产厂家拿出了两种优惠方案:第一种优惠方案:甲、乙两种型号净水器均按进价的8折收费;第二种优惠方案:甲型号净水器按原价收费,乙型号净水器的进货量超过10台后超过的部分按进价的6折收费.光明商场只能选择一种优惠方案,已知光明商场计划购进甲型号净水器数量是乙型号净水器数量的1.5倍,设光明商场购进乙型号净水器x台,选择第一种优惠方案所需费用为y1元,选择第二种优惠方案所需要费用为y2元.(1)分别求出y1、y2与x的关系式;(2)光明商场计划购进乙型号净水器40台,请你为光明商场选择合适的优惠方案,并说明理由.初中数学资源x+2的图象与x轴和y轴分别交于点A和B,直22.如图,一次函数y=23线y=kx+b经过点B与点C(2,0).(1)点A的坐标为______;点B的坐标为______;(2)求直线y=kx+b的表达式;x+2交(3)在x轴上有一动点M(t,0),过点M做x轴的垂线与直线y=23于点E,与直线y=kx+b交于点F,若EF=OB,求t的值.(4)当点M(t,0)在x轴上移动时,是否存在t的值使得△CEF是直角三角形?若存在,直接写出t的值;若不存在,直接答不存在.初中数学资源答案1. 【答案】C2.【答案】A3.【答案】A4.【答案】B5.【答案】C6.【答案】A7.【答案】B8.【答案】A9.【答案】A 10.【答案】C 11.【答案】B 12.【答案】D13.【答案】y =500−3x ;0<x ≤166 14.【答案】x =2 15.【答案】(32,4800) 16.【答案】y =3.6x +0.2 17.【答案】二18.【答案】解:(1)由题意可知:y =70x +120(7−x)+45(6−x)+80[(9−(6−x)] =−15x +1350(0<x ≤6). (2)由(1)的函数可知: k =−15<0,所以函数的值随x 的增大而减小,当x =6时,有最小值y =−15×6+1350=1260(元).答:总运费最低的调运方案是从M 地调运6吨到A 地,1吨到B 地,最低运费为1260元.19.【答案】解:(1)设y =kx +b ,根据题意得:{20k +b =160030k +b =2000解得:{k =40b =800则函数的解析式是:y =40x +800(2)在y =40x +800中y =6350 解得:x =13834;则这次比赛最多可邀请138名运动员.20.【答案】(1)4, 40;(2) y =10x ; (3)4 .21.【答案】解:(1)由题意可得,y 1=(280x +160×1.5x)×0.8=416x ,y 2=160×1.5x +280×10+280×(x −10)×0.6=408x +1120, 即y 1,y 2与x 之间的函数关系式分别为:y 1=416x ,y 2=408x +1120;(2)当x =40时,y 1=16640元,y 2=17440元, ∵y 2>y 1,∴选择第一种优惠方案.22.【答案】(−3,0) (0,2)【解析】解:(1)∵一次函数y =23x +2的图象与x 轴和y 轴分别交于点A 和B , ∴令y =0,则x =−3;令x =0,则y =2, ∴点A 的坐标为(−3,0),点B 的坐标为(0,2), 故答案为:(−3,0),(0,2)(2)∵直线y =kx +b 经过点B 与点C(2,0). ∴{0=2k +b b =2解得:{k =−1b =2∴直线y =kx +b 的表达式为y =−x +2. (3)∵ME ⊥x 轴,∴点M 、E 、F 的横坐标都是t , ∴点E(t,23t +2),点F(t,−t +2) ∴EF =|53t|, ∵EF =OB =2,初中数学资源∴2=|53t|∴t =±65本文使用Wrod 编辑,排版工整,可根据需要自行修改,使用方便。

63一次函数的图像(1)同步测试含解析鲁教版七年级上初一数学试题试卷.doc

63一次函数的图像(1)同步测试含解析鲁教版七年级上初一数学试题试卷.doc

知能提升作业(三十二)3 一次函数的图象(30分饼50分)第1课时一、选择题(每小题4分,共12分)1・已知点P(a, -b)在正比例函数y二kx的图象上,那么也在函数y二kx 的图象上的点是()(A) (-a, 一b) (B) (a, b)(C) (-a, b) (D) (b, a)2•对于正比例函数y=kx (k<0),当x)=-3, x2=0, X3二2时,对应的y】, y2, 之间的关系为()(A)y l<y2<y3⑻ y2<yi<y3(C) yi>y2>y3 (D)无法确定3•如图所示,三个正比例函数的图象分别对应的关系式是①y二ax;② y二bx;③y二ex,则a, b, c的大小关系是()(A)a>b>c(C)b>a>c(B)c>b>a (D)b>c>a二.填空题(每小题4分,共12分)4•写出一个-正比例函数,使其图象过第二、四象限: _______ .5•当自变量x的值增加1时,止比例函数y=3x的值将增加_________ ・6•已知函数y二(m+l)xA卅是止比例函数,它的图象经过第二、四象限,则m的值为—.—・三、解答题(共26分)7.(8分)某函数具有下列两条性质:①它的图象是经过(0, 0)的一条直线;②y的值随x值的增大而减小.请你举出一个满足上述两个条件的函数一关系式.8.(8分)已知y+1与x成正比,”且当x二3时,y二5,求岀y与x的函数关系式,并求出当点-2)在这个函数图象上时d的值.【拓展延伸】9.(10分)小亮家最近购买了一套住房,准备在装修时用木质地板铺设居室,用瓷砖铺设客厅•经市场调查得知,用这两种材料铺设地面的工钱不一样•小亮根据地面的面积,对铺设居室和客厅的费用(材料费和工钱)分别做了预算,其屮用x(n?)表示铺设地面的面积,用y(元)表示铺设费用,制成如图所示图象(实线表示居室,虚线表示客厅)•请根据图中所提供的信息回答下列问题:(1)预算中铺设居室的单价和铺设客厅的单价分别为多少?(2)分别写出铺设居室的费用*(元与面积XE)之间的函数关系式及铺设客厅的费用兀(元)与面积%(代)之间的函数关系式.答案解析1•【解析】选c・因为P(a,・b)在正比例函数尸kx的图象上,所以・b=ak,所以k—即y—-x,a J a把选项A, B, C, D的坐标代入,只有C成立.2•【解析】选C.因为kvO,所以y的值随x值的增大而减小,而xi<x2<x3,故yi>y2>y3・3.【解析】选C.由图象的位置知a>0, b>0, c<0.②与①比较,②上升得比较快,说明b>a,故b>a>c.4•【解析】答案不惟一,kvO即可,如y二x, y二2x, y=・£x等. 答案:y=-x(答案不惟一)5•【解析】当x 取a 时,y=3a,当x 取a+1 时,y二3(a+l)二3a+3, 3a+3- 3a=3・答案:36.【解析】因为y=(m+l)xf 是止比例函数,所以m+lHO 且5-m2=l,所以m=±2.又它的图象经过第二、四象限,所以m+lvO,所以m=・2.答案:・27.【解析】因为它的图象是经过(0, 0)的一条直线,所以该函数为正比例函数.又y的值随x值的增大而减小,所以比例系数kvO,故答案不惟一,如y=・£x等.8.【解析】因为y+1与x成正比,所以设y+1二kx,又因为x=3时,y=5,所以5+l=3k,解得k二2,所以y+1 =2x,即y=2x・1・又仙・2)在这个函数图象上,所以・2=2不1,解得9.【解析】(1)由图象知铺设居室共30m2,花费4050元, 故铺设居室的单价为4050十30=135(元/n?)・铺设客厅的面积为25m2,花费2750元,故铺设客厅的单价为2750^25=110(7C/m2).(2)由⑴的结果知yi=135x(0WxW30), y2=l 10x(0WxW25).。

鲁教版(五四 制)七年级数学上册 第6章 一次函数 单元测试卷 (解析版)

鲁教版(五四 制)七年级数学上册 第6章 一次函数 单元测试卷 (解析版)

第6章一次函数单元测试卷一、选择题(共8小题).1.(3分)函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣1 2.(3分)下列函数中,正比例函数是()A.y=﹣8x B.y=C.y=8x2D.y=8x﹣4 3.(3分)若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.4.(3分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.5.(3分)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<06.(3分)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.47.(3分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.48.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣5的图象经过正方形OABC的顶点A和C,则正方形OABC的面积为()A.9B.10C.12D.13二、填空题(共8小题).9.(4分)在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”“=”)10.(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.11.(4分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.12.(4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.13.(4分)在平面直角坐标系中,将函数y=2x﹣3的图象先向右平移2个单位长度,再沿y轴翻折,所得函数对应的表达式为.14.(4分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为.三、解答题(15-18每题10分,19题12分,共52分)15.(10分)已知函数y=(2m+1)x+m﹣3.(1)若这个函数的图象经过原点,求m的值(2)若这个函数的图象不经过第二象限,求m的取值范围.16.(10分)一次函数y=kx+b的图象与y轴相交于点(0,﹣3),且方程kx+b=0的解为x=2,求这个一次函数的解析式.17.(10分)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.18.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.19.(12分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y (单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.参考答案一、选择题(每小题3分,共24分)1.(3分)函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣1解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.2.(3分)下列函数中,正比例函数是()A.y=﹣8x B.y=C.y=8x2D.y=8x﹣4解:A、y=﹣8x,是正比例函数,符合题意;B、y=,是反比例函数,不合题意;C、y=8x2,是二次函数,不合题意;D、y=8x﹣4,是一次函数,不合题意;故选:A.3.(3分)若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.4.(3分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:A.5.(3分)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0解:∵一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,∴k﹣2<0,﹣m<0,∴k<2,m>0.故选:A.6.(3分)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.4解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.7.(3分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.8.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣5的图象经过正方形OABC的顶点A和C,则正方形OABC的面积为()A.9B.10C.12D.13解:过点C作CM⊥x轴于点M,过点A做AN⊥y轴于点N,∵∠COM+∠MOA=∠MOA+∠NOA=90°,∴∠NOA=∠COM,又因为OA=OC,∴Rt△OCM≌Rt△OAN(ASA),∴OM=ON,CM=AN,设点C(a,b),∵点A在函数y=2x﹣5的图象上,∴b=2a﹣5,∴CM=AN=2a﹣5,OM=ON=a,∴A(2a﹣5,﹣a),∴﹣a=2(2a﹣5)﹣5,∴a=3,∴A(1,﹣3),在直角三角形OCM中,由勾股定理可求得OA=∴正方形OABC的面积是10,故选:B.二、填空题(每小题4分,共24分)9.(4分)在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1>y2.(填“>”“<”“=”)解:∵一次函数y=﹣2x+1中k=﹣2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为:>.10.(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x=2.解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.11.(4分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是1<k<3.解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0,∴k>1,k<3,∴1<k<3;故答案为1<k<3;12.(4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是(32,4800).解:令150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).13.(4分)在平面直角坐标系中,将函数y=2x﹣3的图象先向右平移2个单位长度,再沿y轴翻折,所得函数对应的表达式为y=﹣2x﹣7.解:将函数y=2x﹣3的图象先向右平移2个单位长度,所得的函数是y=2(x﹣2)﹣3,即y=2x﹣7将该函数的图象沿y轴翻折后所得的函数关系式y=2(﹣x)﹣7,即y=﹣2x﹣7故答案为y=﹣2x﹣7.14.(4分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为P(,).解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故答案为:(,).三、解答题(15-18每题10分,19题12分,共52分)15.(10分)已知函数y=(2m+1)x+m﹣3.(1)若这个函数的图象经过原点,求m的值(2)若这个函数的图象不经过第二象限,求m的取值范围.解:(1)将原点坐标(0,0)代入解析式,得m﹣3=0,即m=3,所求的m的值为3;(2)当2m+1=0,即m=﹣,函数解析式为:y=﹣,图象不经过第二象限;当2m+1>0,即m>﹣,并且m﹣3≤0,即m≤3,所以有﹣<m≤3;所以m的取值范围为﹣≤m≤3.16.(10分)一次函数y=kx+b的图象与y轴相交于点(0,﹣3),且方程kx+b=0的解为x=2,求这个一次函数的解析式.解:∵方程kx+b=0的解为x=2,∴一次函数y=kx+b的图象经过点(2,0).把(0,﹣3)、(2,0)代入y=kx+b中,得,解得.故一次函数的解析式是y=x﹣3.17.(10分)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.解:(1)∵点P(﹣1,a)在直线l2:y=2x+4上,∴2×(﹣1)+4=a,即a=2,则P的坐标为(﹣1,2),设直线l1的解析式为:y=kx+b(k≠0),那么,解得:.∴l1的解析式为:y=﹣x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(﹣2,0),则AB=3,而S四边形PAOC=S△PAB﹣S△BOC,∴S四边形PAOC=.18.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(0,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).19.(12分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y (单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.解:(1)设y关于x的函数解析式是y=kx+b,,解得,,即y关于x的函数解析式是y=﹣x+6;(2)当h=0时,0=﹣x+6,得x=20,当y=0时,0=﹣x+6,得x=30,∵20<30,∴甲先到达地面.。

鲁教版五四学制:2024-2025年七年级第一学期上册数学6.5一次函数的应用(2)学案和答案

鲁教版五四学制:2024-2025年七年级第一学期上册数学6.5一次函数的应用(2)学案和答案

2024-2025学年度七年级数学上册第六章学案6.5一次函数的应用(2)【学习目标】1.提高学生的读图能力,解决与两个一次函数相关的图象信息题;2.进一步培养学生数形结合思想,以及分析、解决问题的能力,提高思维能力.【自主学习】自学课本第164至166页的内容,思考并解答下列问题.1.一次函数的图像与性质2.确定一次函数的表达式【课堂练习】知识点一 一次函数的应用1.一次函数y =ax +b 与两坐标轴的交点为(−2 , 0)、(0 , 3),则关于x 的方程ax +b =0的解是_______ 2.五一期间,小刚一家早晨730:出发乘车去离家300km 的某景区旅游,他们离家的距离()km y 与汽车行驶时间()h x 之间的函数图象如图所示.(1)求线段AB 对应的函数表达式;(2)小刚一家上午10时离目的地多远?【当堂达标】1.A ,B 两地相距20km ,甲、乙两人都从A 地去B 地,途中l 1和l 2分别表示甲、乙两人所走路程s (km )与时间(t )之间的关系.下列说法:①乙晚出发1h ;②乙出发3h 后追上甲;③甲的速度是4km/h ;④乙先到达B 地.其中正确的个数是( )A.1B.2C.3D.42.如图,射线OA ,BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s ,t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h.第1题图 第2题图 第3题图3.甲、乙两只气球分别从不同高度同时匀速上升60min ,气球所在位置距离地面的高度y (单位m)与气球上升的时间x (单位min)之间的函数关系如图所示.下列说法:①甲气球上升过程中y 与x 的函数关系为y =2x +5 ②10min 时,甲气球在乙气球上方 ③两气球高度差为15m 时,上升时间为50min ④上升60min 时,乙气球距离地面高度为40m.其中错误的有_____(将所有错误的序号都填上)4.(2010•北京)如图,直线y=2x+3与x 轴相交于点A ,与y 轴相交于点B.⑴ 求A ,B 两点的坐标;⑵ 过B 点作直线BP 与x 轴相交于P ,且使OP=2OA , 求ΔABP 的面积.5.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)求货车从甲地出发后多长时间与轿车相遇.6.5一次函数的应用(1)【课堂练习】1.C2.D【当堂达标】1.C2.0.8km/h3.D【课后拓展】1. 解:(1)令y=0,得x=-,∴A点坐标为(-,0),令x=0,得y=3,∴B点坐标为(0,3);(2)设P点坐标为(x,0),依题意,得x=±3,∴P点坐标为P1(3,0)或P2(-3,0),∴S△ABP1=×(+3)×3=;S△ABP2=×(3-)×3=,∴△ABP的面积为或。

义务教育62一次函数同步测试含解析鲁教版(五四学制)数学七年级上初一数学试题试卷.doc

义务教育62一次函数同步测试含解析鲁教版(五四学制)数学七年级上初一数学试题试卷.doc

知能提升作业(三十一)2 一次函数一、选择题(每小题4分,共12分)1•若y 二x+2-3b 是正比例函数,则b 的值是()(A) 0 ⑻ (0 2•李大爷要围成一个矩形菜园,菜园的一边利用足 够长的墙,用篱笆围成的另外三边总长应恰好为 24m,要围成的菜园是如图所示的矩形ABCD •设BC 边的长为xni, AB 边的长为ym,则y 与x 之间的函 数关系式是()(A) y=-2x+24(0<x<12)(B) y=-:x+12(0<x<24)■(C) y=2x-24(0<x<12)(D) y=zx-12(0<x<24)3. 若5y+2与x-3成正比例,则y 是x 的()(A)正比例函数⑻一次函数 (O 没有函数关系 (D)以上答案均不正确二、填空题(每小题4分,共12分)(30分钟 50分)(D)-; /////////////////////////z4.____________________________________________________ 已知尸(k-Dx^+kF是一次函数,则(3k+2)2014的值是__________________5 •从甲地向乙地打长途电话,按时间收费,3min内收费2.4元,超过3min 的部分每lmin收1元(不足lmin按lmin计),则时间123 (min)时,电话费y (元)与时间t(min)之间的函数关系式是_________ ・6.已知|a+l| + (b-2)2=0,则函数y=(b+3)x-a+l-2b+b2的关系式是_______ ,当x二计时,y=______ .三、解答题(共26分)7.(8分)已知:y与2x成正比例,且当x二3时,y二-12.求y与x的函数关系式.8・(8分)某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;•方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克,则超过3千克的部分的种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量x (千克)和付款金额y (元)之间的函数关系式.(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.【拓展延伸】9. (10分)生态公园计划在园内的坡地上造一片有A, B两种树的混合林,需要购买这两种树苗共2000棵,种植A, B两种树苗的相关信息如表:设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y (元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?答案解析1.【解析】选C.由正比例函数的定义可得:2-3b二0,解得b=|・2.【解析】选B.根据题意,得x+2y二24,所以y二-》+12,而菜园的一边利用足够长的墙,所以0<x<24.3.【解析】选B.由题意可设5y+2=k(x-3) (k^O),整理得:y书-氷- I因为k为不等于零的常数,所以y是x的一次函数.&4.【解析】由题意得|k|二1且k-lHO,解得k二-1, 所以(3k+2)2014= [3X(-1) +2]$叫(-1)叫.答案:15.【解析】y二2.4+(t-3)二t-0.6.答案:y二t-0.66.【解析】因为|a+l| + (b-2)~0,所以沪-1, b=2,所以函数变为:y二5x+l.当时,y二5 X (一卩+1 二0.答案:y=5x+l 07.【解析】设此函数关系式为y二k・2x(kH0),把x二3, y二-12代入上式中,解得k二-2.所以函数关系式为y二-4x・8.【解析】(1)方案一:y二4x・方案二:y二5x(xW3) ; y=3X5+(x-3) X5X70%=3. 5x+4. 5 (x>3). (2)设购买x千克的种子时,两种方案所付金额一样,则4x=3. 5x+4. 5,解这个方程得x=9,所以当购买9千克种子时,两种方案所付金额相同;当购买种子数量0〈x〈9时,方案一所付金额少,应选择方案一;当购买种子数量超过9千克时,方案二所付金额少,应选择方案二.9.【解析】(1)y= (15+3)x+(20+4) (2000-x)二-6x+48000.(2)由题意可得:0. 95x+0・ 99 (2000-x) =1960.解得x二500,则y=-6X 500+48000二45000.所以造这片林的总费用需45000元.我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知能提升作业(三十五)
5 一次函数的应用
(30分钟 50分)
一、选择题(每小题4分,共12分)
1.两个物体A、B所受压强分别为P A帕与P B帕(P A、P B为常数),它们所受压力F(牛)与受力面积S(m2)的函数关系图象分别是射线l A、l B.如图所示,则( )
(A)P A<P B(B)P A=P B
(C)P A>P B(D)P A≤P B
2.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是( )
(A)汽车在高速公路上行驶速度为100km/h
(B)乡村公路总长为90km
(C)汽车在乡村公路上行驶速度为60km/h
(D)该记者在出发后4.5h到达采访地
3.如图,是甲、乙两家商店销售同一种产品的销售价
y(元)与销售量x(件)之间的函数图象.下列说法:①
售2件时甲、乙两家售价一样;②买1件时买乙家的
合算;③买3件时买甲家的合算;④买乙家的1件售
价约为3元,其中正确的说法是( )
(A)①②(B)②③④
(C)②③(D)①②③
二、填空题(每小题4分,共12分)
4.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比甲单独完成这项工程所需时间少______天.
5.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=4的解为________.
6.拖拉机工作时,油箱中有24L油,如果每小时耗油4L,那么油箱中的剩余油量y(L)与工作时间x(h)之间的函数关系为________,当油箱中剩余油量为12L 时,拖拉机工作了______小时.
三、解答题(共26分)
7.(12分) 2011年11月16日召开的国务院常务会议,会议决定建立三江源国家生态保护综合实验区.现要把228t物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:
(1)求这两种货车各用多少辆?
(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为ω元,求出ω与a的函数关系式(写出自变量的取值范围).
【拓展延伸】
8.(14分)某气象研究中心观测到一场沙尘暴从发生到结束的全过程,开始时风
速平均每小时增加2km ,4小时后沙尘暴经过开阔的荒漠地,风速平均每小时增加4km ,一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减少1km ,最终停止,结合图象回答下列问题. (1)y 轴左侧括号内依次应填入多少? (2)沙尘暴从发生到结束,共经历多长时间?
(3)求出当x ≥25时,风速y(km/h)与时间x(h)之间的函数关系式.
1.【解析】选A.由压强的公式:P=F S ,得S=1
P
F , 所以1P A >1P B ,P A <P B .
2.【解析】选C.汽车在高速公路上行驶速度为180÷2=90km/h ,A 错误; 由图象知高速公路长180km ,且总长为360km ,故乡村公路长180km ,B 错误; 汽车在乡村公路上行驶速度为90÷1.5=60km/h ,C 正确;
该记者从出发到到达采访地的时间为2+(360-180)÷60=5h ,D 错误.
3.【解析】选D.由图象可得甲、乙的交点为(2,4),所以售2件时,两家售价都是4元,所以①正确.当x=1时乙所对应的函数值比甲所对应的函数值小,所以②正确;当x=3时甲对应的函数值比乙对应的函数值小,所以③正确;乙家1件的售价小于3元.
4.【解析】甲的工作效率是14÷10=1
40, 所以甲完成总工程需要1÷140=40(天), 甲乙合作的工作效率是(12-14)÷(14-10)=116,
所以实际完成这项工程所用的时间是10+(1-14)÷116=22(天),40-22=18(天).
答案:18
5.【解析】根据图象可把(2,3),(0,1)代入表达式求得k=1,b=1; 所以kx+b=4即为x+1=4,故x=3. 答案:x=3
6.【解析】已知每小时耗油4L ,则xh 可耗油4x L ,则油箱中余油量为:y=24-4x
(0≤x ≤6).当y=12L 时,12=24-4x ,解得:x=3. 答案:y=-4x+24(0≤x ≤6) 3
7.【解析】(1)设大货车用x 辆,则小货车用(18-x)辆,根据题意得 16x+10(18-x)=228,解得x=8,
所以18-x=18-8=10(辆).
答:大货车用8辆,小货车用10辆.
(2)ω=720a+800(8-a)+500(9-a)+650[10-(9-a)]=70a+11550,
所以ω=70a+11550(0≤a≤8且为整数).
(3)若运往甲地的物资正好为120t,
则16a+10(9-a)=120,
解得a=5.
又运往甲地的物资不少于120t,
所以a≥5.
又因为0≤a≤8,所以5≤a≤8且为整数.
因为ω=70a+11550,k=70>0,ω随a的增大而增大,
所以当a=5时,ω最小.
最小值为ω=70×5+11550=11900(元).
答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少总运费为11900元.
8.【解析】(1)当x=4时,y=2×4=8;当x=10时,
y=8+4×(10-4)=32.
(2)由题意得,32÷1=32(h),25+32=57(h),
即沙尘暴从发生到结束共经历57小时.
(3)设所求函数的关系式为y=kx+b(k≠0)
由图象知该函数图象经过点(25,32)和(57,0),所以得25k+b=32,57k+b=0,解得k=-1,b=57.
所以函数的关系式为y=-x+57(25≤x≤57).。

相关文档
最新文档