粉末的烧结讲解
粉末冶金 第十讲 粉末烧结

液相烧结
液相烧结条件: ➢ 润湿性 ➢ 溶解度 ➢ 液相数量
液相烧结
液相烧结过程: ➢ 液相流动与颗粒重排 ➢ 固相溶解和再析出 ➢ 固相烧结
熔浸烧结
➢ 原理:将粉末坯体与液体金属接触或浸在液体 金属中,让坯体内孔隙为金属液填充,冷却后 得到致密材料或零件。
粉末冶金技术 第十讲
粉末烧结
烧结的概念
➢ 粉末或压坯在低于主要组分熔点的温度和适当 气氛下借助于原子迁移实现颗粒间联结和一定 性能的现象和过程
✓ 固相烧结:烧结温度低于所有组分的熔点
✓ 液相烧结:烧结温度低于主要组分的熔点但高
于次要组分的熔点
WC-Co合金, W-Cu-Ni合金
烧结的概念
烧成与烧结 ➢ 烧成包括多种物理和化学变化,如脱水、
✓精整 ✓机加工 ✓热处理 ✓浸油 ✓电镀 ✓蒸汽处理
工艺参数
气孔率(1)、密度(2)、电阻(3)、强度(4)、晶粒尺寸(5)
工艺参数
烧结温度: ➢ 最低的起始烧结温度,即烧结体的某种物理或
力学性质出现明显变化的温度 ➢ 最低塔曼温度指数
烧结绝对温度 α 材料熔点
Au-0.3, Cu-0.35, Ni-0.4, Fe-0.4, Mn-0.45, W-0.4
烧结方式
➢ 无压烧结 ➢ 加压烧结 (1)热压(Hot-Pressing----HP) (2)热等静压(Hot Isostatic Pressing----HIP) (3)烧结—热等静压(Sintering-HIP)
➢自蔓延烧结 ➢微波烧结 ➢爆炸烧结 ➢电火花烧结 ➢放电等离子烧结
烧结设备
➢ 电炉:电阻炉、感应电炉 ➢ 燃料炉:固体、液体和气体燃料炉
一、烧结基本原理精讲

一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。
在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。
人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
粉末烧结原理

粉末烧结原理粉末冶金是一种重要的金属材料制备技术,而粉末烧结则是粉末冶金中的一项关键工艺。
粉末烧结是指将金属或非金属粉末在一定的温度、压力和时间条件下进行加热压制,使粉末颗粒之间发生冶金结合,从而形成致密的块状材料的工艺过程。
下面将详细介绍粉末烧结的原理。
首先,粉末烧结原理的第一步是粉末的预处理。
通常情况下,粉末材料需要经过混合、干燥和成型等工艺步骤,以确保粉末颗粒的均匀性和成型性。
在混合过程中,不同种类的粉末可以被混合在一起,以获得特定性能的材料。
然后,干燥工艺可以去除粉末中的水分,有利于后续的成型工艺。
最后,成型工艺将粉末压制成特定形状的坯料,为后续的烧结工艺做好准备。
其次,粉末烧结的第二步是烧结过程。
在烧结过程中,粉末坯料被置于高温环境中,通常伴随着一定的压力。
在高温下,粉末颗粒之间会发生扩散和结合的过程,从而形成致密的晶粒结构。
在烧结过程中,温度、压力和时间是三个重要的参数,它们将直接影响到烧结后材料的密度、晶粒大小和性能。
最后,粉末烧结的第三步是后处理工艺。
烧结后的材料通常需要进行热处理、表面处理和精加工等工艺步骤,以进一步提高材料的性能和精度。
热处理可以消除烧结过程中产生的残余应力和缺陷,提高材料的强度和韧性。
表面处理可以改善材料的耐腐蚀性能和外观质量。
精加工则可以使材料达到特定的尺寸和形状要求。
总之,粉末烧结是一种重要的材料制备工艺,它通过预处理、烧结和后处理三个步骤,将粉末材料转化为致密的块状材料。
粉末烧结工艺可以制备出具有特定性能和形状的材料,广泛应用于汽车、航空航天、电子、医疗器械等领域。
通过对粉末烧结原理的深入了解,可以更好地掌握这一重要工艺,为材料制备和应用提供技术支持。
粉末烧结原理

粉末烧结原理
粉末烧结是一种常用的金属粉末加工技术,用于将细粉末颗粒通过加热和压制的方式,形成致密的固体材料。
其工作原理可简述如下:
1. 粉末制备:首先需要选择合适的金属粉末或其混合物,这些粉末通常具有较小的粒径和均匀的颗粒大小。
粉末制备过程可以包括球磨、气雾化、水热合成等手段,以获得所需的粉末。
2. 粉末混合:将所选的金属粉末混合均匀,以确保最终烧结体具有均一的组织结构和化学成分。
3. 压制成型:将混合的金属粉末置于模具中,并施加高压力以压制粉末。
压制的目的是使粉末颗粒之间发生变形,并使颗粒间的物理接触增加,促进后续烧结过程中的颗粒结合。
4. 烧结:将已压制成型的粉末坯体置于高温环境中进行加热处理。
在加热过程中,金属粉末颗粒之间发生扩散和结合,生成新的结晶颗粒,并形成致密的固体结构。
具体的烧结温度和时间取决于所使用的粉末和目标材料。
5. 冷却处理:完成烧结过程后,将烧结体从高温环境中取出,并进行冷却处理,使其达到室温。
冷却过程有助于固化和稳定烧结体的结构,并提高其力学性能。
总的来说,粉末烧结通过压制和加热金属粉末,使其颗粒结合并形成坚固的体材料。
这种方法可用于制备各种金属材料,具
有较高的加工效率和良好的成型能力,广泛应用于金属制造和材料工程领域。
粉末冶金原理-烧结技术详解

铁制品烧结用转化气体标准成分及应用
气体
标准成分
应用举例
吸热型 放热型
40H2,20%CO,1%CH4,Fe-C,Fe-Cu-C等高强度零件;
39%N2
爆炸性极强
8%H2,6%CO,6%CO2,纯铁,Fe-Cu烧结零件;有爆
80%N2
炸性
2020/6/9
School of Materials Science and Engineerin24g
一、烧结前的准备
(一)压坯的检查 ● 目的:去除尺寸、单重不合格或有掉边、掉角、分
层、裂纹等缺陷的压坯,减少烧结废品。
● 方法:抽检、肉眼观察、仪器检测。
2020/6/9
School of Materials Science and Engineerin3g
(二) 装炉(装舟及摆料) 推杆式烧结炉—装舟;网带式烧结炉—-摆料
School of Materials Science and Engineerin26g
2. 无脱碳烧结控制原理
在CH4/H2和CO/CO2气氛中:
1) 图中两线分别为在CO2/CO气氛
2
和CH4/H2气氛中Fe与C反应平衡时
1
气相平衡组成与温度关系
1: Fe + 2CO = (Fe,C) + CO2
③
①
②
④
2020/6/9
School of Materials Science and Engineerin25g
● 要无氧化烧结 ,应在①区;
● >800℃ H2还原区域更大;
● 随温度升高,欲保持CO/CO2 气氛的还原性,需降低CO2%
烧结工艺介绍

烧结工艺介绍烧结工艺是一种常见的冶金工艺,用于将粉末状物质加热至接触点熔融,形成固态结合体的过程。
本文将介绍烧结工艺的原理、应用范围以及工艺流程。
一、原理烧结是通过热量作用使粉末颗粒表面融合,而形成较强的固态接触的过程。
烧结过程中,粉末颗粒相互接触,颗粒表面由于温度升高而软化或熔化,粒子间形成了弥散相和连续相,使颗粒间形成了较强的结合力。
通过控制加热温度、时间以及加压力度等工艺参数,使颗粒状物质在相互接触的同时,形成致密且高强度的结构体。
二、应用范围烧结工艺在冶金、陶瓷、粉末冶金、高分子材料等领域有着广泛的应用。
1. 冶金领域烧结工艺在冶金领域广泛应用于粉末冶金制品的制备,如金属粉末冶金零件、冶金陶瓷、高合金材料等。
2. 陶瓷领域烧结是陶瓷领域中常用的制备工艺之一,通过烧结工艺可以制备出具有高强度和良好耐磨性的陶瓷制品,如瓷砖、陶瓷碗碟等。
3. 粉末冶金领域粉末冶金是一种以粉末为原料,通过烧结工艺制备制品的工艺。
烧结工艺可以将金属粉末制备成各种零件,如齿轮、凸轮等。
4. 高分子材料领域烧结工艺在高分子材料领域中用于制备具有特殊性能的塑料制品,如高强度塑料零件、高耐磨塑料制品等。
三、工艺流程烧结工艺的基本流程包括原料制备、粉末颗粒的装填、加热烧结和冷却等步骤。
1. 原料制备:首先需要根据所需制品的要求,选择合适的原料并对其进行加工和处理。
这一步骤可以包括粉末的混合、筛分以及添加特定添加剂等。
2. 粉末颗粒的装填:将经过处理的粉末颗粒通过特定的装填方式填入烧结模具中。
装填要求均匀且适量,以确保烧结过程中的热量传导均匀。
3. 加热烧结:将装有粉末颗粒的模具放入烧结炉中,加热至一定温度并保持一定时间。
温度和时间的选择根据所需制品的要求来确定。
4. 冷却:烧结结束后,需要进行冷却处理。
冷却可以通过自然冷却或者采用特殊的冷却方法来进行。
四、工艺优势烧结工艺相对于其他加工方式具有以下优势:1. 提高材料的致密度和强度。
粉末烧结技术

加压烧结—加压和加热同时并用,以达到消除孔
隙的目的,从而大幅度提高粉末制品的性能。常用
的加压烧结工艺有热压、热等静压及烧结-热等静压。
热压—将粉末装在压模内,在加压的同时把粉末加热到熔
点以下,使之加速烧结成比较均匀致密的制品。
热等静压—把粉末压坯或把装入特制容器内的粉末置于热
等静压机高压容器内,使其烧结成致密的材料或零件的过 程。
烧结-热等静压—把压坯放入烧结-热等静压设备的高压容
器内,先进行脱蜡、烧结,再充入高压气体进行热等静压。
反应烧结—先将原材料(如制备Si3N4时使用Si粉)
粉末以适当方式成形后,在一定气氛中(如氮气)
加热发生原位反应合成所需的材料并同时发生烧结。
微波烧结—材料内部整体地吸收微波能并被加热,
使得在微波场中试样内部的热梯度和热流方向与常规 烧结的试样相反。
电火花等离子烧结—也叫等离子活化烧结或电火
花等离子烧结,是利用粉末间火花放电多产生的等
离子活化颗粒,同时在外力作用下进行的一种特殊
烧结方法。
真空热压烧结炉图
微波生物陶瓷烧结炉图
微波烧结炉图
热等静压烧结炉图
放电等离子烧结炉图
物理 化学变化
烧结后期还可能出现二次再结还可能发生固相的溶解与析出。
烧结驱动力
烧结的驱动力----一般为体系的表面能和缺陷能。烧
结实际上是体系表面能和缺陷能降低的过程。通常体
系能量的降低靠的是高温热能激活下的物质传递过程。
烧结原动力----烧结颈部与粉末颗粒其它部位之间存 在化学位差。
扩散机制将发生孔隙的孤立、球化及收缩。
氧化铝陶瓷典 型的不同烧结 阶段显微结构
粉末冶金的烧结技术

粉末冶金烧结技术1.烧结法不同的产品、不同性能的不同烧结方法。
⑴ 按原料组成不同分类。
可以将烧结分为单元系烧结、多组分固相烧结和多组分液相烧结。
单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、MoSi2等)熔点以下的温度进行固相烧结。
多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。
粉末烧结合金多属于这一类。
如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag-W等。
在高于系统中低熔点组分熔点的温度下进行多系统液相烧结。
如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu<10%)等⑵ 按进料方式不同分类。
可分为连续烧结和间歇烧结。
连续烧结烧结炉具有脱蜡、预烧、烧结、制冷各功能区段,在烧结过程中,烧结材料是连续的或稳定的、分段地完成各阶段的烧结。
连续烧结生产效率高,适用于大批量生产。
常用的进料方式有推杆式、辊道式和网带传送式等。
间歇烧结零件置于炉内静止不动,通过控温设备,对烧结炉进行需要的预热、加热及冷却循环操作,完成烧结材料的烧结过程。
间歇烧结可以根据炉内烧结材料的性能确定合适的烧结系统,但生产效率低,适用于单件、小批量生产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类方法外。
根据烧结温度下是否存在液相,可分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,氢气保护烧结(如钼丝炉、不锈钢管和氢气炉等)和真空烧结。
另外还有超高压烧结、活化热压烧结等新的烧结技术。
2.影响粉末制品烧结质量的因素影响烧结体性能的因素很多,主要是粉末体的性状、成形条件和烧结的条件。
烧结条件的因素包括加热速度、烧结温度和时间、冷却速度、烧结气氛及烧结加压状况等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据两球相切(a)模型的几何关系,得到:
积分后得到:
金捷里-柏格采用两球相交(b)模型得到:
这两个式 子仅系数 差4倍。
X5/a2--t
如果以ln(x/a)对lnt作图,可得一直线,直线的斜率近 似等于5
四、表面扩散
表面扩散:通过颗粒表面层原子的扩散来完成物 质迁移,可以在低得多的温度下发生。
事实上:烧结过程中颗粒的相互粘结,首先是在 颗粒表面上进行。
表面扩散:在较低温度或极细粉末的烧结中,可能是主 要的;对于等温烧结过程,表面扩散只在早期阶段对烧 结颈的形成与长大以及在后期对孔隙的球比才有明显的 作用。
位交换位置,不断地向接触面迁移,使烧结颈长大;而且烧 结后期,在闭孔周围的物质内,表面应力使空位的浓度增高, 不断向烧结观点:
晶体存在着超过该温度下平衡浓度的过 剩空位,空位浓度梯度就是导致空位或 原子定向移动的动力。
在颗粒接触面上空位浓度高,原子与空 位交换位置,不断的向接触面迁移,使 烧结颈长大;而且烧结后期,在闭孔周 围的物质内,表面应力使空位的浓度增 高,不断向烧结体外扩散,引起孔隙收 缩。
三. 粉末烧结的三个阶段
(1)粘结阶段——烧结初期,颗粒间的原 始接触点或面转变成晶体结合,即通过 成核、结晶长大等原于迁移过程形成烧 结颈。
在这阶段中.颗粒内的晶粒不发生变化, 颗 粒外形也基本末变,整个烧结体不发生收缩, 密度增加极微,但是烧结体的强度和导电性 由于颗粒结合面增大,有明显增加。
烧结时空位扩散的途径
空位源
空位源远不止是烧结颈表面,还有小孔隙表面、 凹面及位错;相应的,可成为空位阱的还有晶 界、平面、凸面、大孔隙表面、位错等。
当空位由内孔隙向颗粒表面扩散以及空位由小 孔隙向大孔隙扩散时,烧结体就发生收缩,小 孔隙不断消失和平均孔隙尺寸增大。
空位由烧结颈表面向邻近的球表面发生体积扩散, 即物质沿反方向颈迁移。因此单位时间内物质的转 移量应等于烧结颈的体积增大
由于表面原子的扩散,颗粒粘结面扩大,颗粒表 面的凹处逐渐被填平。粉末极大的表面积和高的 表面能,是粉末烧结的一切表面现象的热力学本 质
蒸发与凝聚机构:以粉末在高温时具有较大饱和 蒸气压为先决条件。
较低和中等烧结温度:表面扩散的作用十分显著。 高温逐渐被体积扩散所取代。
烧结早期,大量的连通孔存在,表面扩散使小孔 不断缩小与消失,而大孔隙增大,结果好似小孔 被大孔所吸收,所以总的孔隙数量和体积减少, 同时有明显收缩出现。 烧结后期,形成隔离闭孔后,表面扩散能促进孔 隙表面光滑,孔隙球化,而对孔隙的消失和烧结 体的收缩不产生影响。
过剩空位浓度梯度将引起烧结 颈下微小区域内的空位向球体 内扩散。从而造成原子朝相反 方向迁移,使烧结颈长大。
由蒸发凝聚引起的烧结驱动力
根据Gibbs Kelvin 方程
•烧结颈表面(凹面)的蒸气压应低于 平面的饱和蒸气差. •颗粒表面(凸面)与烧纳颈表面之间 存在蒸气压差. •烧结体系内,各处的蒸气压力差就
库钦斯基根据两球模型,推导表面扩散的速度方程
烧结颈表面的过剩空位浓 度的梯度
当温度较低时,测定的 数据与按体积扩散预计 的曲线关系发生很大偏 离,比实际的扩散系数 偏高,这说明低温烧结 时,除体积扩散外,还 有表面扩散的作用。
粉末愈细,比表面愈大, 表面的活性原子数愈多, 表面扩散就愈容易进行。
蒸发与凝聚对烧结后期孔隙的球化也 起作用
三、体积扩散
扩散学说在烧
结理论的发展
史上长时间处 于领先地位
弗仑克尔:把粘性流动的宏观过程归结为原子在应力作用下
的自扩散。其基本观点是,晶体内存在超过该温度下平衡浓 度的过剩空位,空位浓度梯度就是导致空位或原子定向移动 的动力。
皮涅斯认为:在颗粒接触面上,空位浓度增高,原子与空
将
和
带入上式
积分后得
比例系数K =3/2
库欣斯基的方程
弗仑克尔的方程 库欣斯基的方程
两个方 程仅差 p
后来证明,弗仑克尔的粘性流动实际上 只适用于非晶体物质。
二、蒸发与凝聚
烧结颈对平面饱和蒸气压的差为:
当球的半径比颈的曲率半径P大得多时,球表 面蒸气压Pa对平面蒸气压的差与∆P相比可以忽 略不计. 球表面的蒸气压与颈表面(凹面)蒸气压的差可 近似地写成
1945年,弗仑克尔提出粘性流动的烧结模型,模 拟了两个晶体粉末颗粒烧结早期的粘结过程。 他把烧结过程分为两个阶段: • 第一阶段相邻颗粒间的接触表面增大,直到孔 隙封闭。 • 第二阶段,残留闭孔逐渐缩小。
第一个阶段,类似两个液润从开始的点接触, 发展到互相“聚合”,形成一个半径为x的 圆面接触。假定液滴仍保持球形,其半径为 a。
第五章 粉末的烧结
第一节 概述
1. 烧结的概念
烧结是粉末或粉末压坯,在适当的温度和气氛中 受热所发生的现象或过程。
烧结的结果:颗粒之间发生粘结,烧结体的强度 增加,大多数情况下,密度也提高。烧结条件控 制得当,烧结体的密度和其它物理、机械件能可 以接近或达到相同成分的致密材料。
从工艺上看:烧结常被看作是一种热处理,即把 粉末或粉末毛坯加热到低于其中基本成分熔点的 温度下保温,然后冷却。
实际的烧结过程,比模型研究的条件复杂
烧结理论至少指出了烧结过程可能出现的物质 迁移机构及其相应的动力学规律,这些动力学 规律只有当某一机构占优势,才能应用。
不同的粉末、不同的粉末粒度、不同的烧结温 度和气氛、方式都可能改变烧结的实际烧结机 构和动力学功率。
蒸发与凝聚: 在蒸气压高的烧结以及通过气氛活化的烧 结中为重要的机构 。
2. 烧结的分类
单元系烧结
多元系烧结 • 多元系固相烧结
无限互溶系系固相结 有限互溶系固相烧结 互不溶系固相烧结 • 液相烧结
烧结中始终存在液相的烧结 瞬间液相的烧结
3. 烧结研究的基本的问题
烧结为什么会发生? 烧结的原动力或热力学问题。
烧结是怎样进行的? 烧结构机构和动力学问题。
第二节 烧结过程的热力学基础
(2) 烧结颈长大阶段
原子向颗粒结合面的大量迁移使烧结颈扩 大,颗粒间距离缩小,形成连续的孔隙网 络,由于晶粒长大,孔隙越过晶界移动, 被晶界扫过的地方,孔隙大量消失。
烧结体收缩,密度和强度增加是这个阶 段的主要特征。
(3)闭孔隙球化和缩小阶段
烧结体密度达到 90 %以后,多数孔隙被 完全分隔,闭孔数量增加,孔隙趋近球 形并不断缩小, 在这个阶段,整个烧结体 仍可缓慢收缩,但主要是靠小孔的消失 和孔隙数量的减少来实现。。
一、烧结的基本过程 粉末烧结后,烧结体的强度增加,首先是颗粒 间的联结强度增大,即联结面上原子间的引力 增大。
在高温下,由于原子振动的振幅加大,发生扩 散,接触面上有更多的原子进入原子作用力的 范围,形成粘结面。
粘结面扩大进而形成烧结颈,使原来的颗粒界 面形成晶粒界面晶界向颗粒内部移动,导致晶 粒长大 。
二. 烧结中孔隙的变化
由于烧结颈长大,颗粒间原来相互连通 的孔隙逐渐收缩成闭孔,然后逐渐变圆 在孔隙性质和形状发生变化的同时,孔 隙个数减少,平均孔隙尺寸增大,此时 小孔隙比大孔隙更容易缩小和消失。
粘结面的形成,通常不会导致烧结体的 收缩,因而致密化并不标志烧结过程的 开始,烧结体的强度增大是烧结发生的 明显标志。
成为烧结通过物质蒸发转移而 发生的原动力。
第三节 烧结机构
两球模型
推导烧结速度方程,可采用 两种基本几何模型:假定两 个同质均匀小球半径为a, 烧结颈半径为x,颈曲面的 曲率半径为r
图(a) 两球相切,球中心距 不变,烧结时不发生收缩;
图(b)是两球相贯穿,球中 心距减小2h,烧结收缩。
一、粘性流动
勒尼尔和安;塞尔认为: 烧结的早期,表面张力较大,塑性流动可以靠位 错的运动来实现,类似蠕变的位错机构。
烧结后期,以扩散流动为主,类似低应力下的扩 散蠕变,或称纳巴罗—赫仑(Nabbar ro—Herrin) 微蠕变。
微蠕变是靠空位自扩散来实现的,蠕变速度与应 力成正比;而高温下发生的蠕变是以位错的滑移 或攀移来完成的。
烧结过程的原动力的来源
(1)由于颗粒结合面(烧结颈)的增大和 颗粒表面的平直化,粉末体的总比 表面积和总表面自由能减少;
(2)烧结体内孔隙的总体积和总表面积 减小;
(3)粉末颗粒内晶格畸变的消除。
烧结原动力的计算
由表面张力引起的烧结驱动力
负号表示作用在曲颈 面上的应力是张力, 方向朝向外,其效果 是使烧结颈长大。 随着烧结颈的扩大, 负曲率半径的绝对值 增大,说明烧结的动 力减小。
勒尼尔和安塞尔推导塑性流动烧结方程,计算表 面张力造成作用于烧结颈上的压应力,找出压应 力与应变率间的关系。
假定两球烧结后,烧结颈带 的大小等于两球贯穿形成透 镜状部分的体积。烧结过程 中,两球总表面自由能的改 变应等于总表面积的变化与 比表面能的乘积。
用动力学方程通式描述为
七、综合作用烧结理论
由孔隙引起的烧结驱动力
当烧结颈增大,张应 力减小到与Pv平衡时, 烧结的收缩过程停止。
表面张力垂直地作用于烧 结颈曲面上,使颈向外扩 大,最终形成孔隙网。
这时孔隙中的气体会阻止 孔隙收缩和烧结颈进一步 长大。
孔隙中气体的压力Pv与表 面应力之差是孔隙网生成 后对烧结起推动作用的有 效力
由空位浓度梯度引起的烧结驱动力
五. 晶界扩散
晶界扩散在许多反应或 过程中起着重要作用
晶界对烧结的重要性有两方面:
(1)烧结时,在颗粒接触面上容易形成稳定的 晶界,特别是细粉末烧结后形成许多的网状晶 界与孔隙互相交错,使烧结颈边缘和细孔隙表 面的过剩空位容易通过邻接的晶界进行扩散或 被它吸收。
(2)晶界扩散的激活能只有体积扩散的一半, 而扩散系数大1000倍,而且随着温度降低,这 种差别增大。
塑性流动理论的 最新发展是将高 温微蠕变理论应 用于烧结过程。