历年高考数学真题精选31 立体几何中的垂直关系
高中数学立体几何正交与垂直关系分析

高中数学立体几何正交与垂直关系分析在高中数学的立体几何中,正交与垂直是两个非常重要的概念。
它们在几何图形的性质、计算问题中起着至关重要的作用。
本文将通过具体的题目举例,分析正交与垂直的概念、性质以及应用,帮助高中学生和他们的父母更好地理解和掌握这些知识点。
一、正交的概念和性质正交是指两条直线、两个平面或者一条直线和一个平面相互垂直的关系。
在几何图形中,正交的性质十分重要,常常用于求解问题。
例如,考虑以下题目:已知直线l1:x-2y+z=0和直线l2:2x+y-3z=0,求证直线l1与直线l2正交。
解析:要证明直线l1与直线l2正交,需要证明直线l1的法向量与直线l2的方向向量的点积为零。
首先,求出直线l1的法向量和直线l2的方向向量:直线l1的法向量为(1,-2,1);直线l2的方向向量为(2,1,-3)。
然后,计算两个向量的点积:(1,-2,1)·(2,1,-3) = 2-2-3 = -3由于点积结果为-3,不等于零,所以直线l1与直线l2不正交。
通过这个例子可以看出,正交的性质可以通过向量的点积来判断。
如果两个向量的点积为零,则它们正交;如果不为零,则它们不正交。
二、垂直的概念和性质垂直是指两条直线、两个平面或者一条直线和一个平面相互成直角的关系。
垂直在立体几何中也是一个非常重要的概念,常常用于计算问题。
例如,考虑以下题目:已知平面α:2x-y+z=1和平面β:x+2y-3z=4,求证平面α与平面β垂直。
解析:要证明平面α与平面β垂直,需要证明平面α的法向量与平面β的法向量的点积为零。
首先,求出平面α和平面β的法向量:平面α的法向量为(2,-1,1);平面β的法向量为(1,2,-3)。
然后,计算两个向量的点积:(2,-1,1)·(1,2,-3) = 2-2-3 = -3由于点积结果为-3,不等于零,所以平面α与平面β不垂直。
通过这个例子可以看出,垂直的性质也可以通过向量的点积来判断。
浅谈立体几何中的垂直问题

浅谈立体几何中的垂直问题黎武兵湛江市太平中学交流QQ:306582633关键词:立体几何,维数转化,非90度垂直,线线垂直垂直问题在立体几何中占有重要的地位,是历年高考命题的热点.空间中的垂直关系有三种:线线垂直、线面垂直、面面垂直.而线线垂直是最基本、最重要的一种,它在三者转化过程中起着穿针引线、承前启后的作用.因此线线垂直的证明更是解决垂直问题的关键.立体几何是平面几何的升级与综合.例如正方体的侧棱垂直形式就有45度角,90度角、135度角和异面垂直等四种形式.而学生对非90度垂直的理解,不是不透彻就是误解.因此,如何帮助学生透彻理解非90度垂直,便成了立体几何的重中之重.以下的三种可以帮助学生正确理解非90度垂直.一是错误视觉分析.这就要求老师从视觉角度分析和演示线、角、面的变化,教会学生理解视觉的误导性.通过实物演示,让学生明白“横看成岭侧成峰”的道理,从而达到培养学生建立发散思维习惯和锻炼空间想象力的目的.二是维数转化思想.从初中的平面几何到高中的立体几何,即是从二维思想过渡到三维思想,大部分学生的几何思考还停留在二维思想上,这就要求老师正确引导学生掌握用二维思想理解三维思想.让学生理解立体几何中的三维表示长、宽和高,而平面几何中的二维表示长和宽,但长、宽、高并没有确定的界限.例如把正方体的左侧面独立提取出来,它就是一个正方形,原先表示正方体的宽和高,都成了正方形的边长.再例如正方体A1B1C1D1-ABCD中的对角面A1ACC1是一个长方形,其长AC和A1C1分别为正方体上底面和下底面的对角线.在垂直的证明过程中,常常要把立体几何拆分成几个平面图形分别证明,再对证明结果加以综合,从二维回到三维,即可获得证明。
三是知识系统理解.如何让学生正确理解垂直的传递性,便成了老师课堂教学的重点和难点.通过垂直传递性的理解分析,培养学生的逻辑推理能力和空间想像能力.从线线垂直到线面垂直,再到面面垂直,反之一样.这里就要求学生把其中的条件理解并熟记,在求解过程中可以信手拈来,在证明过程中可以一呼即出.在垂直传递过程中,要善于利用逆向思维思考问题.例如,正方体A1B1C1D1-ABCD中,求证:A C⊥BD1.分析:显然,直线AC与BD1没有交点,是异面直线,不能利用平面几何中的勾股定理及高线性质来证明。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。
高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系【知识结构图】第3课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。
【基础练习】1.若ba、为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。
3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。
4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a ∥c ,b ∥c ⇒a ∥b ;②a ∥r ,b ∥r ⇒a ∥b ;③α∥c ,β∥c ⇒α∥β; ④α∥r ,β∥r ⇒α∥β;⑤a ∥c ,α∥c ⇒a ∥α;⑥a ∥r ,α∥r ⇒a ∥α. 其中正确的命题是 ①④ 。
【范例导析】例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面.∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH面ABC ,GF面ABD ,由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB∴EH ∥AB . ∴AB ∥面EFG .例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN.求证:MN ∥平面AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。
立体几何中的垂直关系

立体几何中的垂直关系环节1 明晰高考要求垂直关系是立体几何中元素间关系考查的核心,主要从线线垂直、线面垂直、面面垂直三个方面进行考查,而且以线面垂直为聚焦!线面位置关系的考查强调从平面和空间两个方向研究线线垂直!在 “线线垂直”中要特别重视常规平面几何图形中存在的线线垂直性质与以及从空间角度出发,研究线线垂直的性质的定理。
真题示例① 平面几何角度研究垂直关系题1. (2018全国卷Ⅱ)如图,在三棱锥-P ABC中,==AB BC PA PB PC ===4AC =,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角--M PA C 为30︒,求PC 与平面PAM 所成角的正弦值.题2.(2017新课标Ⅲ)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.(1) 证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C --的余弦值.O MPCBAABCDE② 平面几何角度和空间几何角度研究垂直关系题3 .(2018北京)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB的中点,AB BC ==12AC AA ==.(1)求证:AC ⊥平面BEF ; (2)求二面角1B CD C --的余弦值;题4.(2018全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.环节2 问题自主解决 1回归教材题5 [必修二 P 67 练习第 1 题] 三棱锥V - ABC 中,VA = VC , BA = BC .求证:VB ^ AC .题6.必修二P 79 复习参考题第1 题] 边长为2 的正方形 ABCD 中,点 E 是 AB 的中点,点 F 是 BC 的中点,将△C 1B 1A 1G FE DC BAMD CBAAED 、△ DCF 分别沿 DE 、 DF 折起,使 A 、C 两点重合于点 A ,连接 EF ,求证: A D EF .题7. [必修二 P 74 习题 2.3B 组第 4 题]如图, AB 为圆O 的直径,点C 是圆O 上的动点,过动点C 的直线垂直于圆O 所在的平面, D , E 分别是VA ,VC 的中点,试判断直线 DE 与平面VBC 的位置关系,并说明理由.题8.[必修二 P 66 探究题]直四棱柱 AB C D ABCD (侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD 满足什么条件时, A C B D ?问题自主探索:①证明线线垂直用到了平面图形的哪些性质? ②请归纳证明线线垂直、线面垂直和面面垂直的方法. 环节3 经典考题选讲题9.(2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.题10.(2013新课标Ⅰ)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,1BAA ∠=60°.(Ⅰ)证明1AB A C ⊥;(Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.题11.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.题12.(2017江苏)如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .C 1B 1A 1CBA求证: AD ⊥AC .环节4 规律总结 1. 2. 3. 4.环节5 考题精选精做题13.(2019全国Ⅰ理18)如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值.题14.(2019北京理16)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,AD CD ⊥,ADBC ,2PA AD CD BC ====,.E 为PD 的中点,点F 在PC 上,且13PF PC =.FABCDE(Ⅰ)求证:CD PAD ⊥平面; (Ⅱ)求二面角F AE P --的余弦值; (Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由. 题15.(2019全国Ⅲ理19)图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B-CG-A 的大小.题16.(2019全国Ⅱ理17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 题17.(2019天津理17)如图,AE ⊥平面ABCD ,,CF AE AD BC∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值; (Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.题18. (2018全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC△折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.题19.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:平面11ABB A ⊥平面1A BC .题20.(2017新课标Ⅰ)如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=.PF E D C BAD 11B 1A 1DCBA(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠= ,求二面角A PB C --的余弦值.题21.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.题22.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD ' (I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.1.(2019全国Ⅲ理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则DCBAPA .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线2.(2018全国卷Ⅱ)在长方体1111-ABCD A B C D 中,1==AB BC ,1=AA 1AD 与1DB 所成角的余弦值为A .15B D 4.(2018浙江)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则 A .123θθθ≤≤ B .321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤5.(2017新课标Ⅱ)已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A B D 6.(2017浙江)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为α,β,γ,则RQ PAB CDA.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α。
立体几何中的平行与垂直关系
立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是非常基本且重要的概念。
通过理解和应用这些关系,我们可以更好地解决与立体图形相关的问题。
本文将介绍平行和垂直关系的定义和性质,并通过实例进行说明,以帮助读者更好地理解和运用这些概念。
一、平行关系在立体几何中,当两个线、面或者空间图形之间的相对位置满足特定条件时,我们可以说它们是平行的。
具体而言,以下是平行关系的定义和性质:1. 定义:如果两条直线在同一平面内,且在平面内没有交点,那么这两条直线被称为平行线。
用简单的符号表示为"//"。
2. 性质:平行线具有以下重要性质:a) 平行线之间的距离始终相等。
也就是说,如果有一条直线与一组平行线相交,那么从这条直线到任意一条平行线的距离都相等。
b) 平行线夹角与其对应的第三条平行线夹角相等。
也就是说,如果有两组平行线相交,那么相交的两对对应线之间的夹角相等。
二、垂直关系垂直关系是平行关系的一种特殊情况。
当两条直线、面或者空间图形之间的相对位置形成直角时,我们可以说它们是垂直的。
具体而言,以下是垂直关系的定义和性质:1. 定义:如果两条直线或者平面相交时,相交的两条直线或者平面的交角为90°,那么它们被称为垂直的。
2. 性质:垂直关系具有以下重要性质:a) 垂直线之间的夹角是直角,即为90°。
b) 垂直平面之间的夹角也是直角。
通过理解和应用平行和垂直关系,我们可以在解决立体几何问题时更加便捷和准确。
以下是一些实例,用以说明如何运用平行和垂直关系:实例1:矩形的性质考虑一个矩形ABCD,其中AB平行于CD,AD平行于BC。
根据平行关系的性质,我们可以得出以下结论:a) AB和CD之间的距离相等。
b) AD和BC之间的距离相等。
c) AB和CD之间的夹角以及AD和BC之间的夹角都是直角。
d) 矩形的对角线AC和BD相交于O,而OA和OC以及OB和OD之间的夹角也都是直角。
推导立体几何中的平行与垂直关系
推导立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是两个重要的几何概念。
本文将通过推导的方式来探讨平行和垂直之间的关系,从而更深入地理解它们在空间中的性质和应用。
1. 平行线的推导在立体几何中,平行线是指在同一个平面内永不相交的两条直线。
我们可以通过以下的推导过程来证明平行线之间的关系。
(省略推导过程,只列出结论)结论1:如果两条直线分别与一条第三条直线相交,并且这两个交点的两组内角互补或对顶角相等,那么这两条直线是平行的。
结论2:如果两条直线被一组平行线截断,并且这两组截断线的对应角互等,那么这两条直线是平行的。
结论3:如果两条直线被同一平面平行于第三条直线截断,并且截断线上的对应角互等,那么这两条直线是平行的。
2. 垂直关系的推导垂直关系是指两条线段、两个平面或两个立体体素之间的相互垂直性。
下面是垂直关系的推导过程。
结论4:如果两条线段的斜率相乘为-1,则它们是垂直的。
结论5:如果两个平面的法向量垂直,则这两个平面是垂直的。
结论6:如果两个立体体素的对应面之间的相交线段互相垂直,则这两个立体体素是垂直的。
通过上述的推导过程,我们可以明确平行线和垂直关系在立体几何中的性质和判定条件。
这些性质和条件在实际问题中有着广泛的应用,例如在建筑设计、空间规划和工程测量等领域。
总结起来,平行和垂直关系是立体几何中的重要概念。
通过推导我们可以得出平行线的判定条件和垂直关系的性质,从而更好地理解它们在空间中的应用。
对于解决实际问题和深入学习几何学来说,这些知识将会帮助我们更好地理解和应用平行和垂直的性质。
在实践中,我们可以通过几何题目的解答来进一步巩固对平行和垂直关系的理解。
通过本文的学习,相信读者对于立体几何中的平行和垂直关系有了更深入的认识。
在以后的学习和工作中,我们可以灵活运用这些概念和推导方法,更好地解决与立体几何相关的问题。
立体几何作为数学的一个重要分支,在应用中有着广泛的价值和意义。
因此,深入理解并掌握平行和垂直关系是我们学习立体几何的关键。
第3章3.2 立体几何中的向量方法(二)垂直关系
高考调研 ·新课标 ·数学选修2-1
授人以渔
第6页
高考调研 ·新课标 ·数学选修2-1
题型一 利用空间向量证明线线垂直 例 1 已知正三棱柱 ABC-A1B1C1 的各棱 长都为 1,M 是底面上 BC 边的中点,N 是侧棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥MN.
第7页
第15页
高考调研 ·新课标 ·数学选修2-1
探究 2 如何利用向量法证明线面垂直? 用向量法证明线面垂直的方法步骤: (1)坐标法: ①建立空间直角坐标系,将直线的方向向量用坐标表示. ②求平面内任意两条相交直线的方向向量或平面的法向量. ③证明直线的方向向量与平面内两相交直线的方向向量垂 直或与平面的法向量平行.
高考调研 ·新课标 ·数学选修2-1
1.若两个不同平面 α,β 的法向量分别为 u=(2,1,-1),
v=(3,2,8),则( )
A.α ∥β
B.α ⊥β
C.α ,β 相交不垂直 答案 B
D.以上均不正确
解析 ∵v·u=6+2-8=0.
∴v⊥u,∴α⊥β.
第32页
高考调研 ·新课标 ·数学选修2-1
高考调研 ·新课标 ·数学选修2-1
【解析】 方法一:(基向量法) 设A→B=a,A→C=b,A→A1=c,则由已知条件和正三棱柱的性 质,得|a|=|b|=|c|=1,a·c=b·c=0. A→B1=a+c,A→M=12(a+b),A→N=b+14c, M→N=A→N-A→M=-12a+12b+14c, ∴A→B1·M→N=(a+c)·(-12a+12b+14c) =-12+12cos60°+14=0. ∴A→B1⊥M→N,∴AB1⊥MN.
a,0).
第23页
2024全国高考真题数学汇编:空间中的垂直关系
2024全国高考真题数学汇编空间中的垂直关系一、单选题1.(2024天津高考真题)若,m n 为两条不同的直线, 为一个平面,则下列结论中正确的是()A .若//m ,//n ,则m nB .若//,//m n ,则//m nC .若//, m n ,则m nD .若//, m n ,则m 与n 相交2.(2024全国高考真题)已知正三棱台111ABC A B C -的体积为523,6AB ,112A B ,则1A A 与平面ABC 所成角的正切值为()A .12B .1C .2D .33.(2024全国高考真题)设 、为两个平面,m n 、为两条直线,且m .下述四个命题:①若//m n ,则//n 或//n②若m n ,则n 或n③若//n 且//n ,则//m n④若n 与 , 所成的角相等,则m n 其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④4.(2024北京高考真题)如图,在四棱锥P ABCD 中,底面ABCD 是边长为4的正方形,4PA PB ,PC PD ).A .1B .2CD二、解答题5.(2024全国高考真题)如图,四棱锥P ABCD 中,PA 底面ABCD ,2PA AC ,1,BC AB .(1)若AD PB ,证明://AD 平面PBC ;(2)若AD DC ,且二面角A CP D 的正弦值为7,求AD .6.(2024全国高考真题)如图,//,//AB CD CD EF ,2AB DE EF CF ,4,CD AD BCAE M 为CD 的中点.(1)证明://EM 平面BCF ;(2)求点M 到ADE 的距离.7.(2024上海高考真题)如图为正四棱锥,P ABCD O 为底面ABCD 的中心.(1)若5,AP AD ,求POA 绕PO 旋转一周形成的几何体的体积;(2)若,AP AD E 为PB 的中点,求直线BD 与平面AEC 所成角的大小.参考答案1.C【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m ,//n ,则,m n 平行或异面或相交,故A 错误.对于B ,若//,//m n ,则,m n 平行或异面或相交,故B 错误.对于C ,//, m n ,过m 作平面 ,使得s ,因为m ,故//m s ,而s ,故n s ,故m n ,故C 正确.对于D ,若//, m n ,则m 与n 相交或异面,故D 错误.故选:C.2.B【分析】解法一:根据台体的体积公式可得三棱台的高h3AM ,进而根据线面夹角的定义分析求解;解法二:将正三棱台111ABC A B C -补成正三棱锥 P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V ,进而可求正三棱锥 P ABC 的高,即可得结果.【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知11111662222ABC A B C S S 设正三棱台111ABC A B C -的为h ,则 11115233ABC A B C V h ,解得3h ,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x ,则1AA DN AD AM MN x =--=-,可得1DD 结合等腰梯形11BCC B 可得22211622BB DD ,即 221616433x x ,解得x所以1A A 与平面ABC 所成角的正切值为11tan 1A M A AD AMÐ==;解法二:将正三棱台111ABC A B C -补成正三棱锥 P ABC,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ,则111127P A B C P ABC V V ,可知1112652273ABC A B C P ABC V V ,则18P ABC V ,设正三棱锥 P ABC 的高为d,则11661832P ABC V d,解得d ,取底面ABC 的中心为O ,则PO 底面ABC,且AO 所以PA 与平面ABC 所成角的正切值tan 1PO PAO AO.故选:B.3.A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ,因为//m n ,m ,则//n ,当n ,因为//m n ,m ,则//n ,当n 既不在 也不在 内,因为//m n ,,m m ,则//n 且//n ,故①正确;对②,若m n ,则n 与, 不一定垂直,故②错误;对③,过直线n 分别作两平面与, 分别相交于直线s 和直线t ,因为//n ,过直线n 的平面与平面 的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s 平面 ,t 平面 ,则//s 平面 ,因为s 平面 ,m ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n 与 和 所成的角相等,如果//,// n n ,则//m n ,故④错误;综上只有①③正确,故选:A.4.D【分析】取点作辅助线,根据题意分析可知平面PEF 平面ABCD ,可知PO 平面ABCD ,利用等体积法求点到面的距离.【详解】如图,底面ABCD 为正方形,当相邻的棱长相等时,不妨设4,PA PB AB PC PD ,分别取,AB CD 的中点,E F ,连接,,PE PF EF ,则,PE AB EF AB ,且PE EF E ,,PE EF 平面PEF ,可知AB 平面PEF ,且AB 平面ABCD ,所以平面PEF 平面ABCD ,过P 作EF 的垂线,垂足为O ,即PO EF ,由平面PEF 平面ABCD EF ,PO 平面PEF ,所以PO 平面ABCD ,由题意可得:2,4PE PF EF ,则222PE PF EF ,即PE PF ,则1122PE PF PO EF ,可得PE PF PO EF,当相对的棱长相等时,不妨设4PA PC ,PB PD因为BD PB PD ,此时不能形成三角形PBD ,与题意不符,这样情况不存在.故选:D.5.(1)证明见解析【分析】(1)先证出AD 平面PAB ,即可得AD AB ,由勾股定理逆定理可得BC AB ,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC 于E ,再过点E 作EF CP 于F ,连接DF ,根据三垂线法可知,DFE 即为二面角A CP D 的平面角,即可求得tan DFE AD 的长度表示出,DE EF ,即可解方程求出AD .【详解】(1)(1)因为PA 平面ABCD ,而AD 平面ABCD ,所以PA AD ,又AD PB ,PB PA P ,,PB PA 平面PAB ,所以AD 平面PAB ,而AB 平面PAB ,所以AD AB .因为222BC AB AC ,所以BC AB ,根据平面知识可知//AD BC ,又AD 平面PBC ,BC 平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC 于E ,再过点E 作EF CP 于F ,连接DF ,因为PA 平面ABCD ,所以平面PAC 平面ABCD ,而平面PAC 平面ABCD AC ,所以DE 平面PAC ,又EF CP ,所以 CP 平面DEF ,根据二面角的定义可知,DFE 即为二面角A CP D 的平面角,即sin DFEtan DFE 因为AD DC ,设AD x,则CD 42x x DE ,又242xCE,而EFC 为等腰直角三角形,所以2EF故22tan 4DFE xxAD6.(1)证明见详解;【分析】(1)结合已知易证四边形EFCM 为平行四边形,可证//EM FC ,进而得证;(2)先证明OA 平面EDM ,结合等体积法M ADE A EDM V V 即可求解.【详解】(1)由题意得,//EF MC ,且EF MC ,所以四边形EFCM 是平行四边形,所以//EM FC ,又CF 平面,BCF EM 平面BCF ,所以//EM 平面BCF ;(2)取DM 的中点O ,连接OA ,OE ,因为//AB MC ,且ABMC ,所以四边形AMCB 是平行四边形,所以AMBC 又AD ,故ADM △是等腰三角形,同理EDM △是等腰三角形,可得,,3,OA DM OE DM OA OE又AE 222OA OE AE ,故OA OE .又,,,OA DM OE DM O OE DM 平面EDM ,所以OA 平面EDM ,易知122EDM S在ADE V 中,cosDEA所以1sin ,24242DEA DEA S .设点M 到平面ADE 的距离为d ,由M ADE A EDM V V ,得1133ADE EDM S d S OA ,得13d ,故点M 到平面ADE 的距离为13.7.(1)12π(2)π4【分析】(1)根据正四棱锥的数据,先算出直角三角形POA 的边长,然后求圆锥的体积;(2)连接,,EA EO EC ,可先证BE 平面ACE ,根据线面角的定义得出所求角为 BOE ,然后结合题目数量关系求解.【详解】(1)正四棱锥满足且PO 平面ABCD ,由AO 平面ABCD ,则PO AO ,又正四棱锥底面ABCD 是正方形,由 AD 3AO ,故4PO ,根据圆锥的定义,POA 绕PO 旋转一周形成的几何体是以PO 为轴,AO 为底面半径的圆锥,即圆锥的高为4PO ,底面半径为3AO ,根据圆锥的体积公式,所得圆锥的体积是21π3412π3(2)连接,,EA EO EC ,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由E 是PB 中点,则,AE PB CE PB ,又,,AE CE E AE CE 平面ACE ,故PB 平面ACE ,即BE 平面ACE ,又BD 平面ACE O ,于是直线BD 与平面AEC 所成角的大小即为 BOE ,不妨设6AP AD ,则3BO BE ,sinBOE,又线面角的范围是π0,2 ,故π4BOE .即为所求.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年高考数学真题精选(按考点分类)专题31 垂直关系(学生版)1.(2019•北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若60ABC ∠=︒,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得//CF 平面PAE ?说明理由.2.(2015•重庆)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,2ABC π∠=,点D 、E 在线段AC 上,且2AD DE EC ===,4PD PC ==,点F 在线段AB 上,且//EF BC . (Ⅰ)证明:AB ⊥平面PFE .(Ⅱ)若四棱锥P DFBC -的体积为7,求线段BC 的长.3.(2015•福建)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证;AC ⊥平面PDO ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.4.(2014•四川)在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形 (Ⅰ)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ;(Ⅱ)设D 、E 分别是线段BC 、1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE 平面1A MC ?请证明你的结论.5.(2014•福建)如图,三棱锥A BCD -中,AB ⊥平面BCD ,CD BD ⊥. (Ⅰ)求证:CD ⊥平面ABD ;(Ⅱ)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.6.(2014•广东)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==作如图2折叠;折痕//EF DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.7.(2014•新课标Ⅰ)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C . (1)证明:1B C AB ⊥;(2)若1AC AB ⊥,160CBB ∠=︒,1BC =,求三棱柱111ABC A B C -的高.8.(2014•山东)如图,四棱锥P ABCD -中,AP ⊥平面PCD ,//AD BC ,12AB BC AD ==,E ,F 分别为线段AD ,PC 的中点.(Ⅰ)求证://AP 平面BEF ; (Ⅱ)求证:BE ⊥平面PAC .9.(2013•安徽)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=︒.已知2PB PD ==,6PA = (Ⅰ)证明:BD ⊥面PAC(Ⅱ)若E 为PA 的中点,求三菱锥P BCE -的体积.10.(2013•重庆)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,23PA =,2BC CD ==,3ACB ACD π∠=∠=.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积.11.(2013•新课标Ⅰ)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒ (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16AC =,求三棱柱111ABC A B C -的体积.12.(2019•新课标Ⅲ)图1是由矩形ADEB ,Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=︒.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.13.(2018•江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(1)//AB 平面11A B C ; (2)平面11ABB A ⊥平面1A BC .14.(2018•新课标Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.15.(2018•新课标Ⅰ)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将ACM ∆折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.16.(2017•新课标Ⅰ)如图,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=︒. (1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.历年高考数学真题精选(按考点分类)专题31 垂直关系(教师版)1.(2019•北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若60ABC ∠=︒,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得//CF 平面PAE ?说明理由.证明:(Ⅰ)四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,BD PA ∴⊥,BD AC ⊥,PA AC A =,BD ∴⊥平面PAC .(Ⅱ)在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点,60ABC ∠=︒, AB AE ∴⊥,PA AE ⊥,PA AB A =,AE ∴⊥平面PAB ,AE ⊂平面PAE ,∴平面PAB ⊥平面PAE .解:(Ⅲ)棱PB 上是存在中点F ,使得//CF 平面PAE . 理由如下:取AB 中点G ,连结GF ,CG ,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点,//CG AE ∴,//FG PA , CGFG G =,AE PA A =,∴平面//CFG 平面PAE ,CF ⊂平面CFG ,//CF ∴平面PAE .2.(2015•重庆)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,2ABC π∠=,点D 、E 在线段AC 上,且2AD DE EC ===,4PD PC ==,点F 在线段AB 上,且//EF BC . (Ⅰ)证明:AB ⊥平面PFE .(Ⅱ)若四棱锥P DFBC -的体积为7,求线段BC 的长.解:(Ⅰ)如图,由DE EC =,PD PC =知,E 为等腰PDC ∆中DC 边的中点,故PE AC ⊥, 又平面PAC ⊥平面ABC ,平面PAC⋂平面ABC AC =,PE ⊂平面PAC ,PE AC ⊥,所以PE ⊥平面ABC ,从而PE AB ⊥. 因为2ABC π∠=,//EF BC , 故AB EF ⊥,从而AB 与平面PEF 内两条相交直线PE ,EF 都垂直, 所以AB ⊥平面PEF .(Ⅱ)设BC x =,则在直角ABC ∆中,22236AB AC BC x =--,从而2113622ABC S AB BC x x ∆==- 由//EF BC 知23AF AE AB AC ==,得AFE ABC ∆∆∽, 故224()39AFE ABC S S ∆∆==,即49AFE ABC S S ∆∆=,由12AD AE =,2114213622999AFD AFE ABC ABC S S S S x x ∆∆∆∆====-, 从而四边形DFBC 的面积为:2221173636362918DFBC ABC AFD S S S x x x x x x ∆=-=---=-.由(Ⅰ)知,PE ⊥平面ABC ,所以PE 为四棱锥P DFBC -的高. 在直角PEC ∆中,22224223PE PC EC =-=-=, 故体积2117362373318P DFBC DFBC V S PE x x -==-=, 故得42362430x x -+=,解得29x =或227x =,由于0x >,可得3x =或33x =. 所以:3BC =或33BC =.3.(2015•福建)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证;AC ⊥平面PDO ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =,点E 在线段PB 上,求CE OE +的最小值.解:(Ⅰ)在AOC ∆中,因为OA OC =,D 为AC 的中点, 所以AC DO ⊥,又PO 垂直于圆O 所在的平面, 所以PO AC ⊥, 因为DOPO O =,所以AC ⊥平面PDO . (Ⅱ)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1,又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=,又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为:111133⨯⨯=.(Ⅲ)在POB ∆中,1PO OB ==,90POB ∠=︒, 所以22112PB =+=,同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值, 又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点. 从而2626OC OE EC +'=+'=+=. 亦即CE OE +的最小值为:26+.4.(2014•四川)在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形 (Ⅰ)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ;(Ⅱ)设D 、E 分别是线段BC 、1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE 平面1A MC ?请证明你的结论.(Ⅰ)证明:四边形11ABB A 和11ACC A 都为矩形,1AA AB ∴⊥,1AA AC ⊥,AB AC A =,1AA ∴⊥平面ABC ,BC ⊂平面ABC ,1AA BC ∴⊥,AC BC ⊥,1AA AC A =,∴直线BC ⊥平面11ACC A ;(Ⅱ)解:取AB 的中点M ,连接1A M ,MC ,1A C ,1AC ,设O 为1A C ,1AC 的交点,则O 为1AC 的中点.连接MD ,OE ,则//MD AC ,12MD AC =,//OE AC ,12OE AC =, //MD OE ∴,MD OE =,连接OM ,则四边形MDEO 为平行四边形,//DE MO ∴,DE ⊂/平面1A MC ,MO ⊂平面1A MC ,//DE ∴平面1A MC ,∴线段AB 上存在一点M (线段AB 的中点),使直线//DE 平面1A MC .5.(2014•福建)如图,三棱锥A BCD -中,AB ⊥平面BCD ,CD BD ⊥. (Ⅰ)求证:CD ⊥平面ABD ;(Ⅱ)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.(Ⅰ)证明:AB ⊥平面BCD ,CD ⊂平面BCD ,AB CD ∴⊥,CD BD ⊥,AB BD B =, CD ∴⊥平面ABD ;(Ⅱ)解:AB ⊥平面BCD ,BD ⊂平面BCD ,AB BD ∴⊥. 1AB BD ==,12ABD S ∆∴=,M 为AD 中点,1124ABM ABD S S ∆∆∴==,CD ⊥平面ABD ,11312A MBC C ABM ABM V V S CD --∆∴===.6.(2014•广东)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==作如图2折叠;折痕//EF DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.解:(1)证明:PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ;又平面PCD⋂平面ABCD CD =,MD ⊂平面ABCD ,MD CD ⊥,MD ∴⊥平面PCD ,CF ⊂平面PCD ,CF MD ∴⊥;又CF MF ⊥,MD 、MF ⊂平面MDF ,MDM F M =,CF ∴⊥平面MDF ;(2)CF ⊥平面MDF ,CF DF ∴⊥, 又Rt PCD ∆中,1DC =,2PC =,30P ∴∠=︒,60PCD ∠=︒, 30CDF ∴∠=︒,1122CF CD ==;//EF DC ,∴DE CFDP CP =1223=, 3DE ∴=33PE ∴=132CDE S CD DE ∆∴==; 22223336()()44MD ME DE =--, 1136233M CDE CDE V S MD -∆∴==⨯=7.(2014•新课标Ⅰ)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C . (1)证明:1B C AB ⊥;(2)若1AC AB ⊥,160CBB ∠=︒,1BC =,求三棱柱111ABC A B C -的高.(1)证明:连接1BC ,则O 为1B C 与1BC 的交点, 侧面11BB C C 为菱形,11BC B C ∴⊥,AO ⊥平面11BB C C ,1AO B C ∴⊥,1AOBC O =,1B C ∴⊥平面ABO ,AB ⊂平面ABO ,1B C AB ∴⊥;(2)解:作OD BC ⊥,垂足为D ,连接AD ,作OH AD ⊥,垂足为H ,BC AO ⊥,BC OD ⊥,AO OD O =, BC ∴⊥平面AOD , OH BC ∴⊥, OH AD ⊥,BC AD D =,OH ∴⊥平面ABC ,160CBB ∠=︒, 1CBB ∴∆为等边三角形,1BC =,3OD ∴=1AC AB ⊥,11122OA B C ∴==, 由OH AD OD OA =,可得227AD OD OA =+21OH ∴, O 为1B C 的中点,1B ∴到平面ABC 的距离为217, ∴三棱柱111ABC A B C -的高217.8.(2014•山东)如图,四棱锥P ABCD -中,AP ⊥平面PCD ,//AD BC ,12AB BC AD ==,E ,F 分别为线段AD ,PC 的中点.(Ⅰ)求证://AP 平面BEF ; (Ⅱ)求证:BE ⊥平面PAC .证明:(Ⅰ)连接CE ,则//AD BC ,12BC AD =,E 为线段AD 的中点,∴四边形ABCE 是平行四边形,BCDE 是平行四边形, 设ACBE O =,连接OF ,则O 是AC 的中点,F 为线段PC 的中点,//PA OF ∴,PA ⊂/平面BEF ,OF ⊂平面BEF ,//AP ∴平面BEF ;(Ⅱ)BCDE 是平行四边形,//BE CD ∴,AP ⊥平面PCD ,CD ⊂平面PCD ,AP CD ∴⊥,BE AP ∴⊥,AB BC =,四边形ABCE 是平行四边形,∴四边形ABCE 是菱形,BE AC ∴⊥, APAC A =,BE ∴⊥平面PAC .9.(2013•安徽)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=︒.已知2PB PD ==,6PA =. (Ⅰ)证明:BD ⊥面PAC(Ⅱ)若E 为PA 的中点,求三菱锥P BCE -的体积.(Ⅰ)证明:连接BD ,AC 交于O 点,PB PD =,PO BD ∴⊥,又ABCD 是菱形,BD AC ∴⊥,PO ⊂平面PAC ,AC ⊂平面PAC ,ACPO O =,BD ∴⊥平面PAC .(Ⅱ)则23AC =ABD ∆和PBD ∆的三边长均为2, ABD PBD ∴∆≅∆,3AO PO ∴==,222AO PO PA ∴+=,AC PO ∴⊥,132PAC S AC PO ∆==, 11111131223232P BCEB PEC B PAC PAC V V V S BO ---∆====⨯⨯⨯=.10.(2013•重庆)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,23PA =,2BC CD ==,3ACB ACD π∠=∠=.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积.解:(Ⅰ)2BC CD ==,BCD ∴∆为等腰三角形,再由3ACB ACD π∠=∠=,BD AC ∴⊥.再由PA ⊥底面ABCD ,可得PA BD ⊥. 而PAAC A =,故BD ⊥平面PAC .(Ⅱ)侧棱PC 上的点F 满足7PF FC =,∴三棱锥F BCD -的高是三棱锥P BCD -的高的18.BCD ∆的面积112sin 22sin3223BCD S BC CD BCD π∆=∠=⨯⨯⨯=. ∴三棱锥P BDF -的体积1117133883P BCD F BCD BCDBCD BCD V V V S PA S PA S PA --∆∆∆=-=-=⨯77323244=⨯⨯=. 11.(2013•新课标Ⅰ)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒ (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16AC =,求三棱柱111ABC A B C -的体积.(Ⅰ)证明:如图, 取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故△1AA B 为等边三角形, 所以1OA AB ⊥. 因为1OCOA O =,所以AB ⊥平面1OAC . 又1A C ⊂平面1OAC ,故1AB AC ⊥; (Ⅱ)解:由题设知ABC ∆与△1AA B 都是边长为2的等边三角形, 所以13OC OA ==又16AC =22211A COC OA =+,故1OA OC ⊥. 因为OCAB O =,所以1OA ⊥平面ABC ,1OA 为三棱柱111ABC A B C -的高.又ABC ∆的面积3ABC S ∆=111ABC A B C -的体积1333ABC V S OA ∆=⨯==.12.(2019•新课标Ⅲ)图1是由矩形ADEB ,Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=︒.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.解:(1)证明:由已知可得//AD BE ,//CG BE ,即有//AD CG , 则AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面;由四边形ABED 为矩形,可得AB BE ⊥, 由ABC ∆为直角三角形,可得AB BC ⊥, 又BCBE B =,可得AB ⊥平面BCGE ,AB ⊂平面ABC ,可得平面ABC ⊥平面BCGE ;(2)连接BG ,AG ,由AB ⊥平面BCGE ,可得AB BG ⊥,在BCG ∆中,2BC CG ==,120BCG ∠=︒,可得2sin 6023BG BC =︒= 可得2213AG AB BG =+在ACG ∆中,5AC ,2CG =,13AG =, 可得cos 2255ACG ∠=⨯⨯sin 5ACG ∠=,则平行四边形ACGD 的面积为2545=.13.(2018•江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(1)//AB 平面11A B C ; (2)平面11ABB A ⊥平面1A BC .证明:(1)平行六面体1111ABCD A B C D -中,11//AB A B ,11//AB A B ,AB ⊂/平面11A B C ,11//A B ⊂平面11//A B C AB ⇒平面11A B C ;(2)在平行六面体1111ABCD A B C D -中,1AA AB =,⇒四边形11ABB A 是菱形,11AB A B ⊥⊥.在平行六面体1111ABCD A B C D -中,1AA AB =,1111AB B C AB BC ⊥⇒⊥.∴1111111,,AB A B AB BC A B BC BA B A BC BC A BC⊥⊥⎧⎪=⎨⎪⊂⊂⎩面面 1AB ⇒⊥面1A BC,且1AB ⊂平面11ABB A ⇒平面11ABB A ⊥平面1A BC .14.(2018•新课标Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.(1)证明:矩形ABCD 所在平面与半圆弦CD 所在平面垂直,所以AD ⊥半圆弦CD 所在平面,CM ⊂半圆弦CD 所在平面,CM AD ∴⊥,M 是CD 上异于C ,D 的点.CM DM ∴⊥,DMAD D =,CM ∴⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ;(2)解:存在P 是AM 的中点,理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得//MC OP ,MC ⊂/平面BDP ,OP ⊂平面BDP ,所以//MC 平面PBD .15.(2018•新课标Ⅰ)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将ACM ∆折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.解:(1)证明:在平行四边形ABCM 中,90ACM ∠=︒,AB AC ∴⊥,又AB DA ⊥.且AD AC A =,AB ∴⊥面ADC ,AB ⊂面ABC ,∴平面ACD ⊥平面ABC ;(2)3AB AC ==,90ACM ∠=︒,32AD AM ∴==, 2223BP DQ DA ∴===, 由(1)得DC AB ⊥,又DC CA ⊥,DC ∴⊥面ABC ,∴三棱锥Q ABP -的体积1133ABP V S DC ∆=⨯ 121121133313333323ABC S DC ∆=⨯⨯=⨯⨯⨯⨯⨯⨯=. 16.(2017•新课标Ⅰ)如图,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.证明:(1)在四棱锥P ABCD -中,90BAP CDP ∠=∠=︒,AB PA ∴⊥,CD PD ⊥,又//AB CD ,AB PD ∴⊥,PA PD P =,AB ∴⊥平面PAD ,AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .解:(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,PA PD AB DC ===,90APD ∠=︒,平面PAB ⊥平面PAD ,PO ∴⊥底面ABCD ,且222AD a a a +,2PO =, 四棱锥P ABCD -的体积为83, 由AB ⊥平面PAD ,得AB AD ⊥,13P ABCD ABCD V S PO -∴=⨯⨯四边形31121823333AB AD PO a a a a =⨯⨯⨯=⨯⨯⨯==, 解得2a =,2PA PD AB DC ∴====,22AD BC ==,2PO =, 4422PB PC ∴==+=,∴该四棱锥的侧面积:PAD PAB PDC PBC S S S S S ∆∆∆∆=+++侧221111()22222BC PA PD PA AB PD DC BC PB =⨯⨯+⨯⨯+⨯⨯+⨯⨯- 111122222222822222=⨯⨯+⨯⨯+⨯⨯+⨯⨯- 623=+.。