人教版数学四年级下册第七讲

合集下载

第七讲-年龄问题教案

第七讲-年龄问题教案

四年级奥数课程部分第七讲:年龄问题日常生活中到处存在着数学,一些关于年龄的数学趣题,尤其使人迷恋。

年龄问题生动有趣,又往往是和差、倍数等问题的综合,因此需要灵活地解决。

解答年龄问题时需要了解其自身的特点:1.无论在哪一年,两人的年龄差固定不变;2.随着时间的变化,两人的年龄跟着一起增加或减少相同的数量;3.随着时间的变化,两人的平均年龄之间的倍数关系也会发生变化。

有关年龄问题的公式:几年前的年龄=小年龄-(大年龄-小年龄)÷(倍数-1)几年后的年龄=(大年龄-小年龄)÷(倍数-1)-小年龄大年龄=(两人年龄和+两人年龄差)÷2小年龄=(两人年龄和-两人年龄差)÷2例题精讲例1 儿子今年10岁,5年前母亲的年龄是他的6倍,母亲今年多少岁?分析与解:儿子今年10岁,5年前的年龄为5岁,那么5年前母亲的年龄为5×6=30(岁),因此母亲今年是解:30+5=35(岁)。

例2今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍?分析与解:今年爸爸与儿子的年龄差为“48——20”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年龄差还是这个数,这样就可以用“差倍问题”的解法。

当爸爸的年龄是儿子年龄的5倍时,儿子的年龄是解:(48—20)÷(5—1)=7(岁)。

由20-7=13(岁),推知13年前爸爸的年龄是儿子年龄的5倍。

例3.妈妈今年43岁,女儿今年11岁,几年后妈妈的年龄是女儿的3倍?几年前妈妈的年龄是女儿的5倍?解:(43-11)÷(3-1)=5(年)11-(43-11)÷(5-1)=3(年)例4.今年,父亲的年龄是女儿的4倍,3年前,父亲和女儿年龄的和是49岁。

父亲、女儿今年各是多少岁?解:49+6=55(岁)55÷(4+1)=11(岁)11×4=44(岁)例5兄弟二人的年龄相差5岁,兄3年后的年龄为弟4年前的3倍。

四年级数学之平均数问题

四年级数学之平均数问题

第七讲平均数问题知识要点与学法指导:平均数在日常生活中和工作中应用很广泛,例如,求平均身高问题,求某天的平均气温等。

求平均数问题的基本数量关系是:总数量÷总份数=平均数解答平均数问题的关键是要确定“总数量”以及与“总数量”相对应的“总份数”,然后用总数量除以总份数求平均数。

也可用移多补少的方法,或找一个基准数,用基数+各数与基数的差之和÷份数=平均数。

例1王老师为四年级羽毛球队的同学测量身高。

其中两个同学身高153厘米,一个同学身高152厘米,有两个同学身高149厘米,还有两个同学身高147厘米。

求四年级羽毛球队同学的平均身高。

【分析与解】这道题可以按照一般思路解,即用身高总和除以总人数。

这道题还可以采用假设平均数的方法求解,容易发现,同学的身高都在150厘米左右。

可以假设平均身高为150厘米,把它当作基准数,用基数+各数与基数的差之和÷份数=平均数。

(153×2+152+149×2+147×2)÷(2+1+2+2)=150(厘米)或:150+(3×2+2-1×2-3×2)÷(2+1+2+2)=150(厘米)答:四年级羽毛球队的同学平均身高是150厘米。

试一试1某小学选出7名同学参加数学竞赛,其中两人得了99分,还有三人得96分,另外两人得了93分,这7个同学的平均成绩是多少?例2 从山顶到山脚的路长36千米,一辆汽车上山,需要4小时到达山顶,下山沿原路返回,只用2小时到达山脚。

求这辆汽车往返的平均速度。

【分析与解】求往返的平均速度,要用往返的路程除以往返的时间,往返的路程是36×2=72(千米);往返的时间是4+2=6(小时)。

所以,这辆汽车往返的平均速度是每小时行72÷6=12(千米)。

(36×2)÷(4+2)=12(千米)答:这辆汽车往返的平均速度是每小时12千米。

四年级数学下册竞赛第七讲格点图形的计算

四年级数学下册竞赛第七讲格点图形的计算

哪个图形的面积与其他图形不一样?同学们已经学过了正方形、长方形、三角形、平行四边形及梯形的面积公式,掌握了用公式求面积这一基本方法.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.怎么做到这一点呢?请大家看下面的例题.分析 这两个多边形都不规则,我们能不能把它们切成很多规则的小块,一块一块地求面积呢?注意切成的每一小块面积都要能通过最小正方形或最小正三米.这个多边形的面积是多少平方厘米?最小正三角形的面积为米.这个多边形的面积是多少平方厘米?角形的面积来计算,大家动手试一试吧.练习1.(1)左图中相邻格点围成的最小正方形的面积为1.这个多边形的面积是多少?(2)右图中相邻格点围成的最小正三角形的面积为1.这个多边形的面积是多少?例题1中我们把大图形分成了好几块规则的小图形,这种方法称为“分割法”.但是不一定每个图形都很容易分割,有一些图形就是这么奇怪,想把它们分割成规则图形非常不容易,但是如果在它们的周围添上几小块规则图形,恰好能补成一块很大的规则图形.这时我们采用“添补法”就更合适了.分析 对于这两个图形,像例题1那样的分割法究竟好不好用呢?尝试用添补法会不会更容易?除了图形的形状之外,还有没有什么条件看上去和例题1不一样呢?练习2.图中每个最小正方形或三角形的面积都是2,请分别求出两个图中阴影部分的面积.分面积是多少平方厘米?形的面积是分面积是多少平方厘米?(1)(2)分割法,正所谓“大事化小”,把不规则的大图形化为规则的小图形.添补法则正好相反,是“以小见大”,把不规则图形周围添上规则的小图形,使总面积便于计算.“割”一题,“补”一题,“割割补补”又一题.下面的例题中,分割法和添补法哪个更好用呢?分析 大家分别用分割法和添补法试试看吧.练习3.图中每个最小正方形的面积都是10,请求出图中阴影部分的面积.对于复杂的格点图形,使用割补法一定能计算面积.但是割补法有时显得有些繁琐,有没有更简单明了的方法呢?有的.如果图形恰好是顶点都是格点的多边形,即格点多边形,就好办了!例如,我们要计算如右图的格点多边形面积(假设最小的正方形面积为1).割补的方法是可以求出这个图形的面积的,同学们可以自行尝试一下.我们还有另一种方法,从格点数入手:围成阴影部分的边线,经过了一些格点.这些边界上的格点(图中标成黑色圆点)叫做边界格点,一共有12个;格点图形还完全盖住了一些格点,这些图形内部的格点(图中标成白色圆点)叫做内部格点,一共有1个.一般的,在最小正方形面积为1的正方形网格中,我们有:这样,按122116÷+−=计算,我们就得到图中格点图形的面积了.方厘米.阴影部分面积是多少平方厘米?分析 看上去用分割法比添补法要容易一些,但能不能直接用格点公式计算呢?练习4.如图,每个小方格的面积都是类似地,在最小正三角形面积为1的三角形网格中,三角形格点图形也有面积计算公式:仔细比较这两个公式,可以发现:三角形格点的公式正好是正方形格点公式的2倍.大家想一下,为什么是这样呢?分析 试着比较分割法、添补法、公式法,这三个方法哪个更合适?练习5.如图,三角形网格的总面积是的面积是多少平方厘米?96平方厘米,求阴影图形的面积.对于大部分格点图形而言,分割法和添补法都可以用来求面积.对于特殊的格点图形,如果不易分割,可以试试添补;如果不易添补,可以试试分割;如果用分割法和添补法都不易解决,只能请格点公式出马了!在用格点公式时,要注意是正方形格点还是三角形格点,是2÷还是2×,是减1还是减2.在数边界格点和内部格点的时候,尽量按顺序来数,一定要做到不重不漏.还有一点容易忽视的是格点图形中最小的正方形或正三角形的面积.大家要看清已知条件给出的是边长还是面积,一定要弄清楚最小正方形或正三角形的面积是多少.看似这一讲的题目不是很难,怎么保证计算的准确性呢?如果你用分割法计算面积,不妨再用添补法验算一下.如果你用割补法计算面积,不妨再用格点公式算一算.用不同方法得到的都是同样的结果,基本上就不会出错了.本讲知识点汇总一、分割法与添补法计算格点图形的面积.二、格点多边形的面积计算公式.1.在最小的正方形面积为1的图形中:注意:例题2题(1)的图形不是一个格点多边形,但可以按照两个格点多边形来算面积.2.在最小正三角形面积为1的图形中:积是多少平方厘米?作业1.如图,每相邻两个格点的距离都是1,那么这两个阴影图形的面积分别是多少?2.如图,三角形点阵所能连出的最小正三角形面积为1,请计算图中四个三角形的面积.3.每个最小正方形面积为2,则图中阴影部分的面积是多少?4.三角形网格的总面积是100平方厘米,那么阴影部分的面积是多少平方厘米?5.如图,三角形点阵所能连出的最小正三角形面积为4,请算出下面两个图形的面积各是多少.AB。

第七讲_和倍问题

第七讲_和倍问题

四年级第七讲和倍问题例1、甲班和乙班共有图书160本。

甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?例2、南京长江大桥比美国纽约大桥长4570米,纽约大桥比我国武汉长江大桥长530米。

已知三座桥长10640米,这些桥长分别是多少米?例3、光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?例4、两个数相除,商3余10,被除数,除数,商与余数的和是163,被除数和除数分别是多少?例5、三堆苹果共有130个,第二堆的苹果数是第一堆的3倍,第三堆的苹果数是第二堆的2倍多10个,问三堆苹果各有多少个?例6、甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?例7、甲水池有水2600立方米,乙水池有水1200立方米,如果甲水池里的水以每分钟23立方米的速度流入乙水池,那么多少分钟后,乙水池中的水是甲水池的4倍?例8、甲乙两数的和是52,甲数的3倍与乙数的5倍的和是202。

求甲乙两数各是多少?例9、少先队一、二、三中队共植树200棵,二中队植树的棵数是一中队的2倍多5棵,三中队植树的棵数比一、二中队之和多4棵,三个中队各植树多少棵?*例10、甲仓库存粮48吨,乙仓库存粮90吨,现在甲仓库每天继续存入3吨,乙仓库每天继续存入8吨,几天后乙仓库存粮数是甲仓库存粮总数的2倍?*例11、甲、乙、丙三数之和是100,甲数除以乙数,丙数除以甲数,商都是5,余数都是1,乙数是多少?*例12、A、B两城相距90千米,甲于上午7时骑自行车从A城出发去B城;乙于上午8时骑摩托车从B城出发去A城;甲乙两人于上午10时在途中相遇。

如果摩托车的速度是自行车的3倍,那么摩托车和自行车的速度各是每小时多少千米?*例13、甲、乙、丙、丁4个数的和是549。

如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等。

求4个数各是多少?*例14、甲乙两数的和是7106,甲数的百位和十位上的数字都是8,乙数的百位和十位上的数字都是2,如果用0代替这两个数里的这些8和2,那么所得的甲数是乙数的5倍,求原来的两数各是多少?练习:1、甲、乙两仓库共存粮264吨,甲仓库存粮是乙仓库存粮的10倍。

人教版四年级数学下第七讲 三角形(一)精讲精练 提升版

人教版四年级数学下第七讲 三角形(一)精讲精练 提升版

人教版四年级数学下第7讲三角形(一)提高篇知识点一:三角形的特性1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。

三角形只有3条高。

重点:三角形高的画法:一落二移三画四标3、三角形具有稳定性。

如:自行车的三角架,电线杆上的三角架。

4、三角形三边的关系:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

两边之差〈第三边〈两边之和。

判断三条线段能不能组成三角形,只要看最短的两条边的和是不是大于第三条边。

5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

知识点二:三角形的分类1、按照角大小来分:锐角三角形,直角三角形,钝角三角形。

2、按照边长短来分:三边不等的△,三边相等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。

3、等边△的三边相等,每个角是60度。

(顶角、底角、腰、底的概念)4、三个角都是锐角的三角形叫做锐角三角形。

5、有一个角是直角的三角形叫做直角三角形。

6、有一个角是钝角的三角形叫做钝角三角形。

7、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

8、两条边相等的三角形叫做等腰三角形。

9、三条边都相等的三角形叫等边三角形,也叫正三角形。

10、等边三角形是特殊的等腰三角形考点1:三角形的特性【典例1】(2020春•桐梓县期末)下面每组中三条线段,不能围成三角形的是()A.5m、7m、9m B.7dm、5dm、ldmC.4cm、8cm、5cm【典例2】(2020春•桐梓县期末)下面形状中具有稳定性的是()A.B.C.【典例3】(2020春•峄城区期末)把一根13厘米的小棒截成3根整厘米的小棒围成一个三角形.最长的一根小棒不能超过()厘米.【典例4】(2020春•浦城县期末)动物王国举行围篱笆比赛,()围的比较牢固.A.小熊B.公鸡C.小狗【典例5】(2020春•鄄城县期末)爷爷要给一块地围上篱笆,()形状的篱笆稳固不易变形.A.B.C.D.【典例6】(2020春•微山县期末)下面三种物品,利用了三角形稳定性的是()A.三角形花坛B.红领巾C.自行车的三角形车架考点2:三角形的分类【典例1】(2020春•邛崃市期末)如图中是锐角三角形.【典例2】(2019春•梁子湖区期末)在图中,一共有个钝角三角形,6个直角三角形,个等腰三角形,个等边三角形.【典例3】(2020春•灌阳县期末)红领巾按角分类属于三角形,按边分类属于三角形..【典例4】(2020春•洪山区期末)三角形如果有两个角是锐角,就一定是锐角三角形..(判断对错)综合练习一.选择题1.(2020秋•宁化县期中)任意一个三角形中,()有两个锐角。

四年级下册数学试题:第七讲 假设法解题 全国通用(含答案)

四年级下册数学试题:第七讲 假设法解题 全国通用(含答案)

第七讲假设法解题[同步巩固演练]1、鸡兔共100只,共有脚280只,鸡兔各有多少只?2、10元和5元一张的人民币共40张,共计325元,两种人民币各几张?3、在一棵松树上有百灵鸟和松鼠共15只,总共有48条腿,百灵鸟和松鼠各多少只?4、将92张图片分给16个小朋友,有的分到3张,有的分到7张,正好分完,分到3张和7张的各有几人?5、56个学生去划船,共乘坐10只船恰好坐满;其中大船坐6人,小船坐4人,大船和小船各几只?6、小宇去游山,他从东坡上山,每小时行2千米,到山顶上玩1小时,又从西坡下山,每小时行3千米,全程共行19千米,共用9小时,求上山、下山的路各几千米?7、四年级同学乘汽车到某地旅游,买车票99张,共花280元,其中单程票每张2元,往返票每张4元,求单程票比返票多几张?8、有100名中学生去植树,男生每人栽2棵,女生平均每3人栽1棵,一共栽了110棵,问男、女生各有多少人?9、某校举行的数学竞赛共15道题,规定每做对一题得10分,每做错一题倒扣4分,小明在这次数学竞赛中共得66分,问他错、对了几道题?10、在一个停车场上,有小汽车和三轮摩托车共24辆,摩托车轮子比小汽车轮子共少26个,问三轮摩托车有多少辆?11、甲、乙、丙、丁四人上山摘桃子,已知他们共摘了80个桃子,甲比乙少摘8个,丙比甲少摘14个,丁和丙摘的一样多,问他们每人摘了多少个桃子?12、小强和小勇一起练习长跑,小强先跑了3分钟,然后又和小勇共同跑了5分钟,两人一共跑了4050米,小勇每分钟比小强多跑30米,问小强比小勇多跑了多少米?13、有若干个零件,甲单独做需要5小时完成,乙单独做需要10小时完成,现在甲单独做了若干小时后,因有事由乙接着做,共用了7小时,问甲单独做了多少小时?14、现在要用三辆卡车运910吨水泥到某建筑工地去,已知第一辆比第二辆多运30吨,第三辆比第二辆少运20吨,问:三辆卡车各运水泥多少吨?15、王燕和爸爸、妈妈三个人年龄之和为82岁,已知爸爸比妈妈大4岁,妈妈比王燕大24岁,三个人的年龄分别是多少?16、有大小拖拉机共30台,今天一共耕地112公顷,大拖拉机每天耕地5公顷,小拖拉机每天耕地3公顷,大小拖拉机各有几台?17、现有大小塑料桶共50个,每个大桶可装果汁4千克,每个小桶可装果汁2千克,大桶和小桶共装果汁120千克,问大小塑料桶各有多少个?18、文化宫电影院有座位2000张,前排票每张4角,后排票每张2角5分,已知前排票比后排票的总价少110元,问该影院有前座和后座各多少?19、仓库所存的苹果是香蕉的3倍,春节前夕,平均每天批发出250千克香蕉,600千克苹果,几天后香蕉全部批发完,苹果还剩900千克,这个仓库原有苹果、香蕉各多少千克?20、清凉山小学的教师和学生共100人去植树,教师每人栽3棵树,学生平均每3个人栽1棵,一共栽100棵,问教师和学生各有多少人?21、甲、乙两人进行射击比赛,约定每中一发记8分,脱靶一发扣3分,两人各打了10发,共得116分,其中甲比乙多22分。

人教版四年级下册数学第七单元教教材分析

人教版四年级下册数学第七单元教教材分析

人教版四年级下册数学第七单元教教材分析小学阶段图形的运动共安排了三次,第一学段安排了一次,侧重于整体感受现象,帮助学生直观认识平移、旋转和轴对称图形,在活动中积累图形运动的活动经验;第二学段安排了两次,侧重于通过画图等方式体会平移、旋转和轴对称的特点。

本册是第2次学习,主要是对平移和轴对称图形的再认识,要求学生能在方格纸上画出简单的轴对称图形的对称轴和补全简单的轴对称图形,能在方格纸上画出一个简单图形,沿水平方向竖直方向平移后的图形,会运用平移的知识解决简单的实际问题。

在观察操作活动中帮助学生积累图形运动经验描述或画出图形的运动和变化,使学生在探索和理解运动的过程中认识图形之间的关系,发展学生的空间观念。

教学内容:轴对称;平移。

教学目标:
1、在观察、操作等活动中,使学生进一步认识轴对称图形及其对称轴,体会轴对称图形的特征和性质,并能在方格纸上补全一个轴对称图形的另一半。

2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形,感受平移运动的特点,发展空间观念。

教学重点:认识图形的对称轴,并能画出轴对称图形。

教学难点:能画出平移后的图形。

教学建议:
1、注意让学生真正地、充分地进行活动和探究。

2、用好方格图,培养学生的空间观念。

评价建议:本单元的学习内容主要有轴对称轴对称图形的性质,根据对称轴补全轴对称图形,画出平移后的图形及用平移知识求出简单的不规则图形的面积,因此本单元对知识技能的评价可以围绕两个角度进行:一是基础知识的理解水平,二是基本技能的掌握状况。

四年级 第七讲: 相遇问题1

四年级   第七讲: 相遇问题1

今天的付出就是明天的收获姓名课堂表现第七讲相遇问题思维训练:相遇问题:相遇路程=相遇时间×速度和相遇时间=相遇路程÷速度和速度和=相遇路程÷时间一、求时间:典型例题:甲、乙两地相距1200千米,一辆货车从甲地开往乙地,每小时行驶46千米,一辆客车从乙地开往甲地每小时行驶54千米,两车同时开出,经几小时两车相遇?模仿练习1、甲、乙两列火车从东西两成相向开出,甲车每小时行驶78千米,乙车每小时行驶72千米,经过5小时相遇,东西两地相距多少千米?2、甲、乙两人同时从相距1200米的两地相向而行,甲每分钟走45米,乙每分钟走35米,经过几分钟两人相遇?3、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?提升练习1、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?2、甲、乙两人同时从相距5千500米的两地相向而行,甲每分钟走50米,乙每分钟60米,已经走了半个小时。

还需几分钟两人才能相遇?3、有甲、乙两人合打一份3600字的稿件,甲每分钟打20个字,乙每分钟打30个字,甲先打5分钟,乙才开始打字,乙工作多少分钟才能完成稿件?4、两人分别骑摩托车和自行车同时从相距272千米的甲、乙两地相向开出,摩托车速度为每小时48千米,是自行车的3倍,途中摩托车发生故障修车,修理1小时后,继续前进。

两车相遇时自行车走了几小时?6、甲、乙两站相距3500米,A车每分钟行驶180米,B车每分钟行驶170米,A、B两车分别从甲、一两站相向开出,两车到站后立即返回,他们第一次相遇后要经过多少时间才能第二次相遇?二、求路程(相遇路程或者各自路程)典型例题:例题1:两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3小时两车相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祝博士学习吧教学教案学生姓名年级学科
授课老师
上课
时间
教学课

小数的意义和性质(二
总课时30课时课时计

2课时
教学内容
教学内容概括教学重难点
小数与单位的换算、小数的
近似数。

1、掌握名数之间互化的方法,能正确
进行名数的改写。

2、掌握求小数近似数的方法。

3、掌握把大数必定成用“万”或
“亿”作单位的小数的方法。

【知识点一】低级单位的单名数或复名数改写成用小数表示的
高级单位的单名数。

知识回顾名数分成单名数与复名数,只含有一个单位名称的名称叫单名数;含有两个或两个以上单位名称的名数叫复名数。

例1 把90cm、3m55cm改写成用米作单位的数。

例2 把5元7角8分改写成用元作单位的数。

归纳总结 1、把低级单位的单名数改写成高级单位的单名数的方法:用这个数除以两个单位间的进率,如果两个单位间的进率是10、100、1000……,可以直接把小数点向左移动一位、二位、三位……。

2、把复名数改写成用小数表示的高级单位的单名数的方法:复名数中高级单位的数不动,作为小数的整数部分;把复名数中低级单位的数必定成高级单位的数,作为小数部
分。

名数改写的意义:在实际生活中,有时需要把不同计量单位的数据改写成相同计量单位的数据,以便于计算或比较。

考点题库一
1.(重点题)填一填。

8米25厘米=()米 6千米45米=()千米
1千克21克=()千克 3吨45千克=()吨
61元8分=()元 32元5角9分=()元
2.(难点题)改一改。

(1)世界上最大的石陨石重1吨770千克,改写成用吨作单位是()吨。

(2)一只大象的身高是2米30厘米,改写用米作单位是()米。

(3)小明买那个玩具车用了32元7角8分,改写成用元作单位是()元。

3.(易错题)在里填上“>”、“<”或“=”。

45cm 562g
3t320kg 元 3元4角1分
4.(变式题)易建联、朱芳雨、丁锦辉和周鹏都是我国男篮2012年伦敦奥运会代表队中的队员,下面是他们的身高。

姓名易建联朱芳雨丁锦辉周鹏
身高213cm2m6cm (1)四名队员中,最高的是(),最矮的是()。

(2)把他们按从高到矮的顺序排列以来。

5.(生活运用题)下面是某校运动会纪录的数据,这些数据可以怎样改写
【知识点二】把用小数表示的高级单位的单名数改写成低级单
位的单名数。

例1 把米、米改写成用厘米作单位的数。

例2 把吨、吨改写成用千克作单位的数。

归纳总结 把高级单位的单名数改写成低级单位的单名数的方法:用这个数乘两个单位间的进率,如果两个单位间的进率是10、100、1000……,可以直接把小数点向左移动一位、二位、三位……。

拓展提高 1、只有当两个单位间的进率是10、100、1000……的时候,才可以利用小数点的移动来改写,否则只能用乘(或除以)进率的方法来改写。

例如小时≠5分钟,45分钟≠小时,只能用×60和45÷60来改写。

2、把用小数表示的高级单位的单名数改写成含有低级单位的复名数的方法:小数的整数部分直接作为高级单位的数,小数的小数部分按上述方法转化成低级单位的数。

校运会纪录 跳远 3m6dm 跳高 1m9cm 800m 2分45

知识巧记
认识小数很重要,生活应用离不了。

名数改写有诀窍,单位转换仔细瞧。

小化大来很简单,除以进率记心间。

大化小来并不难,乘进率时想周全。

进率如若十、百、千……小数点移动更简。

相关文档
最新文档