全等三角形单元备课
(精)人教版数学八年级上册《全等三角形》全单元教案

第十二章《全等三角形》单元备课一、教课剖析1、内容剖析:本章主要内容是学习全等三角形的观点、性质以及判断方法,应用全等三角形的性质和判断研究角均分线的性质,能够应用全等三等三角形的性质和判断以及角均分线的性质解决简单的几何老是,初步掌握推理证明的方法。
2、教材剖析:学生已经学过线段、角、订交线、平行线、相关三角形的一些知识,经过本章的学习能够丰富和加深学生对已学图形的认识,同时为学习其余图形打好基础,教材力争创建与生活场景邻近的、风趣的问题情境引入,使学生经历了从现实生活研究并抽象出几何模型,并应用几何模型解决实质问题的过程,在内容上重点研究三角形全等的判断方法经及应用,至于角均分线的改天换地的两上互逆定理,只需修业生认识其条件与结论之间的关系,不用介绍互逆定理的观点,经过联合详细问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培育学生的推理能力。
二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.认识全等三角形的观点和性质,能够正确地辨识全等三角形中的对应元素。
2.研究三角形全等的判断方法,能利用三角形全等进行证明,掌握综合法证明的格式。
3.利用尺规作图作一个角等于已知角、作一个角的角均分线。
4、经历角均分线的性质和判断方法的研究过程,灵巧应用角均分线的性质和判断解决问题 .三、本章教课建议(一)着重研究结论(二)着重推理能力的培育1.注意减缓坡度,顺序渐进。
2.在不一样的阶段,安排不一样的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。
3.着重剖析思路,让学生学会思虑问题,着重书写格式,让学生学会清楚地表达思虑的过程。
(三)着重联系实质三、几个值得关注的问题(一)对于内容之间的联系(二)对于证明一般状况下,证明一个几何中的命题有以下步骤:(1 )明确命题中的已知和求证;(2 )依据题意,画出图形,并用数学符号表示已知和求证;(3 )经过剖析,找出由已知推出求证的门路,写出证明过程。
人教版八年级数学上册第十二章全等三角形大单元教学设计

1.采用情境导入法,通过生活中的实例引入全等三角形的概念,让学生体会数学与实际生活的联系,激发学习兴趣。
-例如:通过展示两个完全相同的三角形模型,让学生直观地认识全等三角形,并引导他们思考全等三角形在实际生活中的应用。
2.利用多媒体课件、教具等辅助教学,直观演示全等三角形的判定方法,帮助学生理解和记忆。
-例如:设置基础题、提高题和拓展题,让学生根据自己的实际情况选择练习,巩固所学知识。
5.注重启发式教学,引导学生通过观察、猜想、验证等过程,培养他们的逻辑思维和空间想象力。
-例如:在教学全等三角形的性质时,鼓励学生通过观察图形,猜想性质,并用已学知识进行验证。
6.定期进行课堂小结,帮助学生梳理所学知识,形成完整的知识体系。
教师讲解:“像这样形状和大小完全相同的三角形,我们称之为全等三角形。今天我们将学习全等三角形的性质和判定方法。”
(二)讲授新知
1.教学活动:教师通过多媒体课件,展示全等三角形的定义及判定方法。
2.教师讲解:
(1)全等三角形的定义:形状和大小完全相同的两个三角形。
(2)全等三角形的判定方法:SSS、SAS、ASA、AAS、HL。
2.练习内容:
(1)基础题:运用全等三角形的判定方法判断两个三角形是否全等;
(2)提高题:运用全等三角形的性质解决实际问题;
(3)拓展题:将全等三角形的性质与其他几何知识相结合,进行综合应用。
3.教师点评:教师对学生的练习进行点评,指出错误原因,引导学生总结经验教训。
(五)总结归纳
1.教学活动:教师引导学生对本节课的学习内容进行总结。
3.拓展思考题:设置一些富有挑战性的题目,引导学生深入思考全等三角形的性质及其与其他几何知识的联系。
《全等三角形》单元教学设计

《全等三角形》单元教学设计《《全等三角形》单元教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!主题单元标题全等三角形所需时间4课时主题学习概述本单元是关于全等三角形的相关知识,注重学生通过动手实践而发现规律,并且重点培养学生的思维能力。
这一单元主要包括全等三角形的概念、全等三角形的性质、全等三角形的判定。
而全等三角形是研究图形中很重要的一个性质,只有灵活运用他们,才能学好之后的相似三角形等相关知识点。
本单元的学习中,我们讲先学习全等三角形的概念和性质,让同学们明白什么叫做全等三角形,之后要学习如何判定全等三角形。
而对于判定,我们将从SSS入手为学生打下一个基础,这样也便于接受其他的判定定理。
最后再进行测验来巩固学习。
主题学习目标知识与技能:1.了解全等三角形的概念和性质。
2.能够准确的辨认出全等三角形的对应变与对应角。
3.熟练掌握全等三角形基本判定定理SSS,掌握综合法证明的格式。
4.熟练掌握其他全等三角形的判定定理,掌握综合法证明的格式。
过程与方法:1.通过老师带领学生实践,具备良好的观察和分析问题的能力与方法,了解全等三角形。
2.通过老师给的证明例子与学生自己观察,增强自己的动手与观察能力,能够从中自己总结出全等三角形的判定定理。
3.通过回答教师提出的问题,养成独立思考问题的能力。
4.通过听讲以及课后练习,建立自己的思维导图,能够提取知识,并且建立自己独立思考的能力。
情感态度与价值观:1.通过动手实践给学生提供自主发先定律的机会,激发学生的学2.培养学生的观察和团结协作精神。
3.培养学生独立思考的能力。
4.通过证明,培养学生的严谨性。
对应课标:八年级第一学期的全等三角形一章内容,注重基本概念、基本原理、基本联系以及基本方法和基本应用,重视为学生打好数学的基础;人教版《中小学数学课程标准》对全等三角形的相关内容有以下要求:1.通过实例认识图形的各种变换;理解全等形的概念,并能理解掌握全等三角形的性质与判定,并能应用到实际中。
全等三角形数学教案优秀5篇

全等三角形数学教案优秀5篇更多全等三角形数学教案资料,在搜索框搜索全等三角形数学教案篇1教学目标一、学问与技能1、了解全等形和全等三角形的概念,把握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并把握全等三角形的对应边相等,对应角相等。
教学难点正确查找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以查找全等三角形的对应点、对应边、对应角。
课前预备:老师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:老师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,样子和大小都相同。
你还能说一说自己身边还有哪些样子和大小都相同的图形吗?[学生举例,集体评析] 动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形] 刚才大家所举的各种各样的样子大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
(三)全等三角形的定义动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。
初二数学全等三角形教案(五篇)

初二数学全等三角形教案〔五篇〕初二数学全等三角形教案篇一1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
一。
挖掘“隐含条件〞判全等如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)1.如图AB=CD,AC=BD,那么△ABC≌△DCB吗?说说理由。
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD2.如图点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,CD=5cm,那么∠CD的度数与BE的长。
3.如图假设OB=OD,∠A=∠C,假设AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD 二。
添条件判全等1.如图,AD平分∠BAC,要使△ABD≌△ACD,根据“SAS〞需要添加条件;根据“ASA〞需要添加条件;根据“AAS〞需要添加条件。
2.AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是。
三。
熟练转化“间接条件〞判全等1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?3.“三月三,放风筝〞,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。
稳固练习:如图,在中,,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,那么∠A的度数。
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D1.(2022攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为全等三角形是△≌△2.如图,AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE3.如图,AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L 的垂线,垂足分别为M、N(1)你能找到一对三角形的全等吗?并说明。
全等三角形单元备课

第一章全等三角形单元备课一、教学分析1、内容分析:本章主要内容是学习全等三角形的概念、性质以及判定方法,应用全等三角形的性质和判定探索角平分线的性质,能够应用全等三等三角形的性质和判定以及角平分线的性质解决简单的几何总是,初步掌握推理证明的方法。
2、教材分析:学生已经学过线段、角、相交线、平行线、有关三角形的一些知识,通过本章的学习可以丰富和加深学生对已学图形的认识,同时为学习其它图形打好基础,教材力求创设与生活场景相近的、有趣的问题情境引入,使学生经历了从现实生活探索并抽象出几何模型,并应用几何模型解决实际问题的过程,在内容上重点探索三角形全等的判定方法经及应用,至于角平分线的改天换地的两上互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆定理的概念,通过结合具体问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培养学生的推理能力。
二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标如下:1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。
2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。
3.利用尺规作图已知三边、两边夹角、两角一边画三角形。
三、本章教学建议(一)注重探索结论(二)注重推理能力的培养1.注意减缓坡度,循序渐进。
2.在不同的阶段,安排不同的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。
3.注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。
(三)注重联系实际三、几个值得关注的问题(一)关于内容之间的联系(二)关于证明一般情况下,证明一个几何中的命题有以下步骤:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程。
分析证明命题的途径,这一步学生比较困难,需要在学习中逐步培养学生的分析能力。
数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、